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Modification of the optical properties of molecular chains upon coupling to adatoms
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Adsorbed atoms (adatoms) coupled to the matrix of solid state host materials as impurities can significantly
modify their properties. Especially in low-dimensional materials, such as one-dimensional organic polymer
chains or quasi-one-dimensional graphene nanoribbons, intriguing manipulation of the optical properties, such
as the absorption cross section, is possible. The most widely used approach to couple quantum emitters to
optical antennas is based on the Purcell effect. This formalism, however, does not comprise charge transfer from
the emitter to the antenna, but only spontaneous emission of the quantum emitter into the tailored photonic
environment, that is evoked by the antenna. To capture such effects, we present a tight-binding formalism to
couple an adatom to a finite Su-Schrieffer-Heeger chain, where the former is treated as a two-level system and
the latter acts as an optical antenna. We systematically analyze how the coupling strength and the position of
the adatom influence the optical properties of the molecular chains in the model. We take into account charge
transfer from the adatom to the chain and vice versa via an intersystem hopping parameter, and also include
Coulomb interaction within the chain as well as between the adatom and the chain. We show that coupling the
adatom to one of the bulk atoms of the linear chain results in a substantial change in optical properties already
for comparatively small coupling strengths. We also find that the position of the adatom crucially determines if
and how the optical properties of the chains are altered. Therefore, we identify this adatom-chain hybrid system
as a tunable platform for light-matter interaction at the nanoscale.

DOI: 10.1103/PhysRevB.104.235414

I. INTRODUCTION

The Su-Schrieffer-Heeger (SSH) model constitutes a sim-
ple yet powerful and instructive tight-binding (TB) based
model to describe the electronic and topological properties
of solids, and induced a large body of literature within the
past four decades [1–13]. Besides being a playground to ex-
plore topological phases [6,14] and quasiparticles [1,15–17],
it is also capable of revealing transport properties of organic
polymers such as polyacetylene [18] and the electronic energy
level diagrams of molecular chains, for instance, if applied
to finite systems. Moreover, it is to a large extent analyti-
cally solvable and, therefore, allows for powerful conceptual
insights into the underlying physical principles. Within the
model, it can be readily decided if a given atomic chain is
electronically conducting or acts as an insulator. Additionally,
nontrivial topological phases and the appearance of near-zero
energy edge states in finite chains can be investigated. All
these features can be traced back to chains of atoms with
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only slightly different coupling constants that give rise to three
fundamentally different systems: the linear atomic chain (con-
ductor), the dimerized atomic chain (conventional insulator),
and the topological insulator.

These systems are physically realized in nature through
several organic molecules. Linear polyenes, for instance, ex-
hibit electrons that occupy pz orbitals of their hosting carbon
atoms. Therefore, these molecules can be understood as a
realization of a one-dimensional (1D) electron gas that is
almost completely delocalized along the molecule. Hence an
analogy to the metallic homogeneous 1D electron gas may be
established [19]. Polyacetylenes, on the other hand, constitute
representatives of insulating organic polymers with alternat-
ing bond strengths between neighboring carbon atoms and
only exhibit considerable electronic transport upon doping
[20–22]. Moreover, 1D atomic chains can as well be realized
artificially by growing them on a substrate [23–30]. Quasi-1D
reconstructions formed by metal deposition on silicon wafers
[31,32], and also vacancies with dangling bonds on silicon
wafers, may form 1D chains of atomlike systems [33–36].

We want to investigate the effect of introducing an
electronically coupled adsorbed atom (adatom) into the
TB description of the above mentioned finite SSH chains.
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Coupling the adatom may result in symmetry breaking of the
structure leading to a modification of its electronic properties
and optical response [37]. Here, we aim to identify the param-
eters in the system that—if altered—influence these properties
most sensitively. To derive statements that are as general as
possible, we choose to couple the adatom to the SSH chains,
i.e., generic models that represent metallic and insulating
systems, and an insulating system that additionally hosts near-
zero energy edge states. Our study reveals that the metallic
linear chain is most prone to considerable modifications of
its optical properties among the mentioned SSH chains upon
coupling to an adatom.

Structural modifications of carbon nanostructures can be
intrinsic, in the form of carbon adatoms [38] or lattice de-
fects [39,40], or extrinsic, given by foreign adatoms [41–43].
In particular, transition metal adatoms interact with carbon
nanostructures through their pz orbitals [44–47] and, there-
fore, can be described within the localized π -electron picture.
The adatoms can be treated with the extended Hückel molec-
ular orbital model [48,49], a nonmagnetic counterpart of the
Anderson impurity model [50,51] that has been successfully
employed before by the group of Jaroslav Fabian [52–56].
They coupled one-level adatoms to extended bulk graphene
in a TB framework to investigate spin-orbit coupling. In our
approach, we treat the adatom as an effective two-level system
(TLS), allowing for intraimpurity charge dynamics, such as
spontaneous emission from the excited to the ground state of
the adatom. The adatom is coupled consecutively to different
atomic sites of the chain at various coupling strengths.

The article is structured as follows. We first introduce the
model Hamiltonian, three scalar measures to characterize the
single-particle eigenstates of said Hamiltonian, and discuss
the optical properties that follow from it in Sec. II. In Sec. III,
we investigate the stand-alone SSH chains without the adatom
as a reminding preparatory work. Section IV focuses on the
hybrid chain-adatom systems without Coulomb interaction,
whereas in Sec. V we take into account electron-electron
interaction before we summarize our findings in Sec. VI.

II. THEORY

We assume the hybrid system to consist of two compo-
nents: a nanoscopic SSH chain that acts as an optical antenna
and an adatom which is effectively described as a TLS. Both
the adatom and the chain are treated in a TB framework. In
particular, we assume one mobile electron per carbon atom
in the chain’s pz orbitals {|l〉} that are localized at rl in the
vicinity of the corresponding host atoms l ∈ [1, Na] for chain
of Na atoms. Mediated through π bonds that connect pz or-
bitals of neighboring atoms l and l ′, electrons may change
their location with a probability quantified by the TB hopping
parameters tll ′ . They are proportional to the overlap integral
of neighboring pz orbitals. For simplicity, we do not take into
account the spin degree of freedom.

The TLS is characterized by its ground and excited states
|g〉 and |e〉, representing two active orbitals of the adsorbed
impurity with energies fixed at Eg = −0.5 eV and Ee =
0.5 eV relative to the isolated chain’s energy levels. The
adatom is coupled to one of the chain’s carbon atoms only,
as it is the case for hydrogen, fluorine, and hydroxyl groups as

adatoms, for instance [49,57]. The ground and excited states
couple to the host atom in the chain via hopping parameters tg
and te.

A. Model Hamiltonian

The system Hamiltonian consequently reads

H = HTB + HTLS + Hinteraction

= −
∑

l<l ′,〈l,l ′〉
tll ′ (|l〉〈l ′| + |l ′〉〈l|)

+ Ee|e〉〈e| + Eg|g〉〈g|
+ te(|lc〉〈e| + |e〉〈lc|) + tg(|lc〉〈g| + |g〉〈lc|), (1)

where the atomic site indices l, l ′ run over the chain atoms,
〈l, l ′〉 denotes a pair of nearest neighbor atoms, and lc is the
chain’s atomic site to which the adatom is coupled. We denote
the N = Na + 2 energy eigenstates of the hybrid system by
{| j〉}, where j ∈ [1, N] and

H | j〉 = Ej | j〉. (2)

Here, the energies Ej are given relative to the TB on-site
energies which are set to zero in the Hamiltonian in Eq. (1).
The energy eigenstates may be expanded into the complete
and orthonormal real-space atomic site basis {|l〉} ∪ {|g〉, |e〉}
according to

| j〉 = c je|e〉 + c jg|g〉 +
Na∑

l=1

c jl |l〉. (3)

B. State characterization

In the joint chain-adatom system, the energy eigenstates of
the stand-alone chain and the ones of the adatom hybridize,
making it difficult to identify the stand-alone modes. In this
paper, it is our goal to determine the conditions under which
the presence of the adatom considerably modifies the optical
properties of the isolated chain. We especially focus on the
tunability of the chain modes. To achieve this goal, we put
in place scalar measures for certain properties of the energy
eigenstates that help to understand, quantify, and illustrate
the changes that the electronic structures of the systems un-
dergo. These measures map single-particle energy eigenstates
to real numbers and, therefore, provide an intuitive manner
to quantify their characteristics, which translate into opti-
cal properties, and to assign a physically meaningful order
to them. The measures characterize the hybrid system for
different parameter sets and especially for various coupling
strengths and coupling positions. For the sake of brevity, from
now on we use {|l̃〉} = {|l〉} ∪ {|g〉, |e〉} for the set of all real-
space based active orbitals in the hybrid system.

1. State localization

We introduce the localization L| j〉, a measure that quantifies
how strongly state | j〉 is localized on certain chain sites |l〉 or
adatom orbitals |e〉 and |g〉,

L| j〉 = (1 − p| j〉)N
N − 1

∈ [0, 1], (4)
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where the participation ratio [58–61]

p| j〉 =
( ∑

l̃ |c jl̃ |2
)2

N
∑

l̃ |c jl̃ |4
=

(
N

∑
l̃

|c jl̃ |4
)−1

∈ [1/N, 1] (5)

is a measure for the number of atomic site orbitals |l̃〉 that
are significantly involved in the spatial distribution of the
energy eigenstate | j〉 [the second equality in Eq. (5) holds for
normalized states only]. If the spatial distribution of state | j〉
is uniform on all the sites in the system, i.e., c jl̃ = 1/

√
N , then

p| j〉 = 1 and L| j〉 = 0, and we call the state completely delo-
calized. For a state localized on a single site l0, i.e., c jl̃ = δl̃ l0 ,
we obtain p| j〉 = 1/N and L| j〉 = 1, and consequently call the
state fully localized.

2. State hybridization

To measure how strongly an eigenstate of the stand-alone
isolated chain is disturbed and modified by the presence of the
adatom, we introduce the hybridization h| j〉. It is defined as

h| j〉 = 1 − |〈 j| j0〉|, (6)

where | j0〉 is an energy eigenstate of the Hamiltonian Eq. (1)
for te = tg = 0 that evolves to | j〉 when the coupling is turned
on. Hence, in the completely decoupled system, we have
| j〉 = | j0〉 and h| j〉 = 0 ∀ j ∈ [1, N]. We want to emphasize
here that this definition of hybridization depends on the order
(index) of the states. Therefore, it is necessary to scan the
spectrum for energy level crossings before interpreting the
results.

3. State activity

We are particularly interested in the optical properties of
the hybrid system and the modifications thereof as we increase
the coupling strength and change the position of the adatom.
Therefore, it is not only necessary to identify the configu-
rations which modify the electronic states in general, but in
particular we aim to modify the set of states that is optically
active, i.e., that is responsible for the optical properties. To
quantify if and to what extent a state is involved in the optical
interaction, i.e., how strongly it contributes to the optical
absorption cross section of the system, we define the state
activity a| j〉 of state | j〉 as

a| j〉 =
N∑

j′=1

|s j j′ |, (7)

where si f = |E f − Ei||〈 f |r̂|i〉|2 is the oscillator strength of the
electronic single-particle transition |i〉 → | f 〉 with the real-
space position operator r̂ acting as 〈l ′|r̂|l〉 = rlδll ′ . In case
a| j〉 ≈ 0, we call | j〉 optically inert. For nondegenerate states,
this is equivalent to vanishing transition dipole moments be-
tween state | j〉 and all other states | j′〉, for example, for
symmetry reasons. High state activities, on the other hand,
identify the given state as a donor or acceptor state for single-
particle transitions in the hybrid system.

C. Optical properties

As the central figure of merit to characterize the optical
properties of the system we choose the linear absorption cross
section σabs(ω). All measures mentioned above are quantiz-
ers that characterize single-particle energy states. So far, we
have not been asking if these states are actually occupied by
electrons or not. This is, however, crucial to determine the
absorption cross section, which makes it a property not only
of the energy level diagram itself, but also of the number of
electrons that populate it. Throughout the whole paper, we
assume half filling of the energy landscape, corresponding to
one mobile electron per atomic site orbital. Consequently, all
states below the Fermi energy are occupied by two electrons
and are unoccupied above. To isolate the interaction-mediated
effects from the characteristics of the optical response that rely
on the single-particle energy level diagram, we distinguish be-
tween the noninteracting and the interacting absorption cross
sections, σ ni

abs(ω) and σ i
abs(ω). The latter includes Coulomb in-

teraction between electrons in the system, whereas the former
does not.

The noninteracting absorption cross section of the hybrid
system can be expressed as [62]

σ ni
abs(ω) ∝

∑
i f

si f δε(E f − Ei − h̄ω), (8)

where si f is again the oscillator strength and δε denotes
Dirac’s delta distribution broadened to a Lorentzian by a pa-
rameter ε = 20 meV according to δε(x) = 2ε/(x2 + ε2). The
indices i ∈ [1, jHOMO] and f ∈ [ jLUMO, N] denote the set of
occupied initial single-particle states from below the Fermi
energy and unoccupied final single-particle states from above
the Fermi energy of the noninteracting system, respectively,
that contribute to the transition |i〉 → | f 〉.

To compute the interacting absorption cross section
σ i

abs(ω), we probe the system with a small-amplitude spec-
trally broad electric field pulse E(t ) = E (t )êx, polarized along
the chain direction (x), and record the resulting dipole moment
p(t ). The system’s response to a pulse polarized perpendicular
to the chain direction is much smaller and at much higher
energy and, therefore, neglected in this work. The way we take
into account the induced Coulomb interactions and details
on the computation of p(t ) can be found in Appendix A.
After Fourier transforming both quantities, we calculate the
frequency-dependent polarizabilities according to αx,x(ω) =
px(ω)/Ex(ω) and αx,y(ω) = py(ω)/Ex(ω). We then obtain the
interacting absorption cross sections as

σ i
x/y,abs(ω) ∝ ω Im[αx,x/y(ω)], (9)

and σabs(ω) = σx,abs(ω) + σy,abs(ω), where Im[·] denotes the
imaginary part. In Eq. (9), the Coulomb part is scaled by
the parameter λ that (numerically) controls the Coulomb in-
teraction strength. Setting λ to 0 retrieves the noninteracting
absorption cross section in Eq. (8) (see details in Appendix
A).

In the following, we successively discuss the electronic
and optical properties of the stand-alone SSH chains, the hy-
brid chain-adatom system without Coulomb interaction, and
finally the interacting hybrid chain-adatom system.

235414-3



MARVIN M. MÜLLER et al. PHYSICAL REVIEW B 104, 235414 (2021)

FIG. 1. Jabłonski energy level diagrams (bottom left panel) and real-space illustrations of single-particle states (bottom right panel) of
(a) the linear chain, (b) the dimer chain, and (c) the topological insulator composed of Na = 70 atoms. The chains are illustrated in the top
panel, where solid dark lines between neighboring atoms represent strong bonds and dashed light lines represent weak bonds. The black
diamonds and color of the circles in the bottom right panels represent the real-valued expansion coefficients c jl of the states | j〉, whereas the
size of the colored circles encodes their squared absolute values |c jl |2. We show the two single-particle states that are lowest and highest in
energy, j ∈ {1, 2} and j ∈ {69, 70}, respectively. They are qualitatively equivalent for all three structures. Moreover, we depict representatives
of the states that are most relevant for the optical interaction of the structure. They are located around the particle-hole symmetry line at E = 0,
which is also the Fermi energy for half filling. The topological insulator exhibits two strongly localized (nearly) degenerate edge states inside
the band gap close to E = 0.

III. STAND-ALONE 1D SSH CHAINS

As a first application, we study the three 1D molecular
chains of the SSH model: the linear chain, the dimerized
chain, and the topologically insulating chain. To create a topo-
logically nontrivial system, we choose the number of atoms Na

in our system to be even. The Hamiltonian reads

H chains
TB = −(t + 	)

Na−1∑
odd l=1

(|l〉〈l + 1| + |l + 1〉〈l|)

− (t − 	)
Na−2∑

even l=2

(|l〉〈l + 1| + |l + 1〉〈l|), (10)

where we use the hopping parameter value of bulk graphene
t = tll ′ = 2.66 eV [63] and 	 = 0 for the linear chain, 	 =
0.3t for the dimer chain, and 	 = −0.3t for the topological
insulator (see schematic plots in Fig. 1). The transition from
the semiconducting or insulating topologically trivial dimer
chain (	 > 0) to the nontrivial topological insulator (	 < 0)
takes place by crossing 	 = 0 via the gapless linear chain. As
	 approaches zero from above, the dimer chain’s band gap
decreases, it closes for 	 = 0 (linear chain), and opens up
again for negative 	, however, bringing forth the two near-
zero edge states of the topological insulator.

Figure 1 shows the energy level diagrams and several
selected characteristic single-particle states of (a) the linear
chain, (b) the dimer chain, and (c) the topological insulator
made up by Na = 70 atoms. As mentioned above, we assume
half filling of the energy landscape, such that all states below
(above) the Fermi energy E = 0 are doubly occupied (unoccu-

pied) in the linear chain and the dimer chain. The topological
insulator exhibits two nearly degenerate edge states close to
the Fermi energy E = 0 that we populate with one electron
each. We immediately notice that both the low-energy and the
high-energy states are conceptually equivalent for all three
structures. The physical difference between the systems be-
comes more pronounced the closer one gets to the energetic
region around the Fermi energy E = 0. However, this is also
the energetic region where we find the single-particle states
that are predominantly active in the optical interaction of the
investigated systems. Therefore, we can indeed expect sub-
stantially differing optical responses from the three structures
as we will show in the following.

A. Linear chain

The discrete energy level diagram of the finite linear chain
in Fig. 1(a) results from quantizing the metallic band structure
of the infinite chain. Additionally to the above mentioned low-
and high-energy states, we show the |HOMO〉 and |LUMO〉
states. Their structures can be described as two nested modes
of quarter wavelength shape of even and odd symmetry, re-
spectively, on the two sublattices of the chain.

In Fig. 2, the green dotted line shows the linear chain’s
noninteracting absorption cross section as a function of the ex-
citation energy. The energy of the most prominent low-energy
absorption mode around h̄ω = 0.24 eV coincides exactly with
the energy difference of the |HOMO〉 and |LUMO〉 states.
To confirm the obvious conclusion, we quantify the contri-
butions of single-particle transitions in the linear chain to the
absorption spectrum with the state activity a| j〉. Figure 3(a)
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FIG. 2. Noninteracting absorption spectrum σ ni
abs(ω) for the linear

chain (green dotted line), the dimer chain (brown solid line), and the
topological insulator (yellow dashed line) for the parameter set given
in Sec. III assuming half filling of the energy level diagram. The data
of the linear chain have been scaled with the factor 1/4 to match the
order of magnitude of the other two structures.

(green diamonds) shows the state activity of all single-particle
states of the linear chain. Indeed, we note that the |HOMO〉
and |LUMO〉 are the only states that significantly contribute
to the noninteracting absorption spectrum. It can, therefore,
be concluded that the prominent low-energy mode at h̄ω =
0.24 eV corresponds to the electronic transition |HOMO〉 →
|LUMO〉. Along the same lines of reasoning, the two higher-
order modes of the linear chain in Fig. 2 can also be attributed
to a set of single-particle transitions of nonvanishing os-

FIG. 3. (a) State activity a| j〉 of the three molecular chains of the
SSH model. The data of the linear chain (green diamonds) have been
scaled with the factor of 1/4 to match the order of magnitude of
the other two structures. (b)–(d) State localizations L| j〉 ∈ [0, 1] of
the single-particle states of the linear chain (b), the dimer chain (c),
and the topological insulator (d). While the linear and dimer chains
exhibit localization values around Llc ≈ 0.33, the topological insula-
tor’s near-zero energy states j = 35 and j = 36 localize strongly at
the edges of the chain, cf. Fig. 1(c), and nearly reach L| j〉 ≈ 1.

TABLE I. Energies of the single-particle transitions that con-
tribute the three prominent modes of the linear chain’s absorption
cross section that is shown in Fig. 2 (green dashed line).

Mode Energy (eV) Contributing transitions 	 j

1st 0.235 |HOMO〉 → |LUMO〉 1

0.705 |HOMO − 2〉 → |LUMO〉 3
2nd 0.706 |HOMO − 1〉 → |LUMO + 1〉 3

0.705 |HOMO〉 → |LUMO + 2〉 3

1.170 |HOMO − 4〉 → |LUMO〉 5
1.173 |HOMO − 3〉 → |LUMO + 1〉 5

3rd 1.175 |HOMO − 2〉 → |LUMO + 2〉 5
1.173 |HOMO − 1〉 → |LUMO + 3〉 5
1.170 |HOMO〉 → |LUMO + 4〉 5

cillator strength. The precise correspondence is given in
Table I.

Furthermore, we note that, besides the states between
|HOMO − 4〉 and |LUMO + 4〉, all other single-particle states
are optically inert, i.e., a| j〉 ≈ 0. This is in stark contrast to
the activity of the single-particle states of the dimer chain
and the topological insulator, as can be seen from Fig. 3(a)
as well (brown squares and yellow circles). To engineer the
optical properties of the linear chain, it is, therefore, desirable
to either modify the optically active |HOMO〉 and |LUMO〉
states or to increase the optical activity of other states that
are located further away from the Fermi energy by means of
coupling the adatom to the system.

Figures 3(b)–3(d) show the localizations L| j〉 of the three
chains’ states. It is interesting to notice that the localization of
all the linear chain’s states have the exact same value. We can
compute this value by plugging the analytical solution of the
SSH model [6] for the linear chain’s lowest-energy state c1l =√

2
Na+1 sin( π l

Na+1 ), for instance, into Eqs. (5) and (4). We obtain

Lchain
|1〉 = 1

3 (1 − 1
Na−1 ), which evaluates to 0.33 for a chain of

length Na = 70. It can further be shown that all single-particle
states of the linear chain evaluate to this exact same value,
Lchain

| j〉 =: Llc, independent of j.
To visualize the weight with which the transition |i〉 → | f 〉

contributes to the optical absorption, we present in Fig. 4 the
absolute value of the transition dipole moment |〈 f |r̂|i〉|, as
well as the oscillator strength |〈 f |r̂|i〉|2 · |E f − Ei| of the tran-
sition. For the linear chain [Figs. 4(a) and 4(d)] and the dimer
chain [Figs. 4(b) and 4(e)] we observe that both quantities be-
have similarly. The squares of the transition dipole moments
in the top row are multiplied by the energy difference |E f −
Ei| and result in the oscillator strengths in the bottom row.
For the topological insulator, however, we see a qualitatively
different behavior. The |HOMO〉 and |LUMO〉 states have a
comparatively high transition dipole moment [see Fig. 4(c)].
Yet, the small energy gap of only 	E ≈ 2 × 10−9 eV effec-
tively disables the channel between the edge states and leads
to a vanishingly small oscillator strength [Fig. 4(f)].

B. Dimer chain

The energy level diagram of the dimer chain in Fig. 1(b)
is of insulating character. We observe a lower-lying and a
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FIG. 4. (a)–(c) Absolute value of the transition dipole moments |〈 f |r̂|i〉| of initial and final states |i〉 and | f 〉, respectively, around the Fermi
energy of the linear chain (a), dimer chain (b), and the topological insulator (c). (d)–(f) Oscillator strength |〈 f |r̂|i〉|2 · |Ef − Ei| of said states
for the linear chain (d), dimer chain (e), and the topological insulator (f).

higher-lying quasicontinuum of states which would consti-
tute the valence band and the conduction band in the limit
of an infinitely extended chain (Na → ∞), with a band
gap of size 4|	| ≈ 3.19 eV. Besides the low- and high-
energy states, Fig. 1(b) also shows the |HOMO〉 and |LUMO〉
states of the dimer chain. They display two nested modes
of half wavelength shape of even and odd symmetry, re-
spectively. We notice that especially the states around the
Fermi energy exhibit a dimerized nature, i.e., neighboring
atoms act alike and behave collectively as a two-atomic unit
cell and not as individual atoms anymore. This is not the
case for the low- and high-energy modes that conceptu-
ally look similar to the corresponding modes of the linear
chain.

Just as for the linear chain, the single-particle transition
|HOMO〉 → |LUMO〉 produces the most prominent reso-
nance at 3.19 eV at the lower edge of the quasicontinuum in
Fig. 2 (brown solid line). Unlike in the case of the linear chain,
however, the absorption spectrum is much richer. We observe
many more modes above 3.19 eV that are of the same order
of magnitude as the most prominent one. A way to consis-
tently complement this finding is through the state activities
of the dimer chain in Fig. 3(a) (brown squares). Although
the |HOMO〉 and |LUMO〉 states exhibit the highest state
activity here as well, many states around E = 0 are optically
active and contribute to the absorption spectrum, and none
of them is completely inert. As a consequence, many pairs
of optically active states couple and lead to the formation of
the quasicontinuum of comparatively dense lying absorption
modes above the band gap.

The slightly different localization values for the dimer
chain’s and topological insulator’s states j = 18 ≈ Na/4 and
53 ≈ 3Na/4 with respect to other states in Fig. 3(c) do not
affect the optical properties of the structure substantially due
to the low activity of these states.

C. Topological insulator

The energy level diagram of the topological insulator in
Fig. 1(c) strongly resembles the one of the dimer chain and is
of insulating character as well. The states j = 34 and j = 37
are conceptually equivalent to the |HOMO〉 and |LUMO〉 of
the dimer chain. However, we additionally find two near-zero
degenerate states inside the band gap. They are strongly lo-
calized at the edges of the chain and attain localization values
close to 1, as is shown in Fig. 3(d). Moreover, Fig. 3(a) reveals
that they are mildly optically active as well, which leads to the
formation of a few absorption peaks in Fig. 2 (yellow dashed
line) on the outskirts of the quasicontinuum in the range
between h̄ω = 2|	| and h̄ω = 4|	|. This distinguishes the
absorption spectrum of the topological insulator from the one
of the dimer chain of equal length. While the most prominent
mode at 3.19 eV is present in both insulating systems, the
spectral position of the modes differs more the higher the ener-
gies of the modes get. The highest energy modes of the dimer
chain and topological insulator, presented in Fig. 2, show this
complementary behavior.

D. Size-dependent effects

In this work, we concentrate on chains that consist of Na =
70 atoms. To address the question of whether the number
of atoms in the chain plays a crucial qualitative role in our
study, we investigate the absorption characteristics and state
activities of linear chains with different sizes. In Fig. 5(a), we
present the square root of the absorption cross section for the
linear chain of various lengths, with even numbers of atoms
forming the chain. We note that the fundamental mode as
well as all of the higher order modes redshift with increasing
length of the chain. Additionally, the absorption gets stronger
for longer chains.
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FIG. 5. (a) Square root of the absorption cross section for the linear chain as a function of the number of atoms Na in the chain. The
chain with Na = N0 = 70 atoms considered in this work is marked with a white dashed line. (b) Size-normalized square root of the absorption
cross section for the linear chain as a function of the number of atoms Na in the chain. (c) Size-normalized state activities a| j〉/(Na/N0) for all
single-particle states | j〉 in the respective chains of various lengths. Please note the logarithmic color bar scale in panel (c).

To account for these size-dependent effects, we show
the adjusted normalized root of the absorption cross section√

σ ni
abs/(Na/N0) in Fig. 5(b). We observe that the adjusted

modes, and especially the fundamental mode, are spectrally
rather stable and mostly size independent. Moreover, the peak
values of the modes remain constant as a function of the
number of atoms in the chain.

The normalized state activities of the single-particle states
in the linear chain a| j〉/(Na/N0) are shown in Fig. 5(c). The
triangular shape of the plot originates from the fact that a
chain of Na atoms provides exactly Na single-particle states in
our TB framework. This different number of states limits the
comparability of chains with different lengths. However, in
chains with different numbers of atoms, we observe the exact
same value for the normalized state activities of the |HOMO〉
and |LUMO〉 states, for instance. The same reasoning applies
also to all other states of sufficiently large chains.

Consequently, we conclude that both the energies and the
strengths of the normalized absorption modes, as well as the
normalized state activities, behave uniformly in the sense that
the normalized absorption and the normalized state activities
are nearly independent of the chain’s size. Within the size
range that we looked at, there are neither discontinuities nor
other size-dependent effects that hint to the existence of a
threshold size above (or below) which qualitatively different
behavior is expected. Hence, in the following, we continue
to concentrate our discussion to chains of a single length
(Na = 70), having in mind, however, that changing the size
of the chain leads to quantitative modifications.

IV. HYBRID CHAIN-ADATOM SYSTEM

In the previous sections, we have discussed the electronic
and optical properties of the stand-alone chain antennas. In
the following, we will discuss the optical absorption in the
presence of an adatom when te = tg > 0. It is instructive to
first investigate the case of noninteracting electrons. Within
this idealized model one may directly deduce how modifi-

cations, that the single-particle states undergo upon sensing
the adatom’s presence and that are due to the hybridization
with the newly introduced adatom states, translate into optical
properties through Eq. (8). In contrast, effects that manifest
due to Coulomb interaction can be analyzed in an isolated
manner from the previously mentioned aspect and are dis-
cussed in Sec. V.

Figure 6 shows the noninteracting absorption cross section
of the hybrid chain-adatom systems as a function of coupling
strengths, i.e., varying chain-adatom distances or TLS dipole
orientations, and for different chain coupling atoms lc. The
evolution of the system as a function of the chain-adatom
coupling strength is presented in Figs. 7 and 8. The former
shows the state activity, the hybridization measure, and the
localization of those states of the hybrid linear chain-adatom
system that are close to the Fermi energy. The latter depicts the
energy landscape of the three chains as a function of chain-
adatom coupling strength; the color of the lines encodes the
parity of the wave function part on the chain of the respective
states according to P| j〉 = 〈 j|P̂| j〉 = ∑NA

l=1 c j,l c j,NA+1−l .
In general, we note the linear chain to be much more prone

to hybridize with the adatom and change its optical properties
than the other systems under consideration. We show the main
results for all three SSH model structures. However, we limit
our detailed discussion to the more attractive case of the linear
chain.

A. Coupling to the edge

The absorption spectra of the hybrid linear chain-adatom
system in the top row of Fig. 6 show that the coupling position
plays a crucial role for the optical absorption. While coupling
to lc = 1 and lc = 3 shows a similar effect, we notice that
the absorption spectrum of the system is barely affected if
one couples the adatom to lc = 2. This observation can be
explained via the absolute value of the real-space expansion
coefficients |c j1| and |c j3| of the stand-alone chain’s energy
eigenstates, which are energetically closest to the adatom’s
states at ±0.5 eV. They are significantly larger than |c j2|.
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FIG. 6. Square root of the noninteracting absorption cross sec-
tions

√
σ ni

abs(ω) of the linear chain (a)–(e), dimer chain (f)–(j), and
topological insulator (k)–(o). The very left column shows the ab-
sorption cross section in case the adatom is coupled to the edge atom
lc = 1 of the chain. The other columns show the same quantity for
other coupling positions mentioned in the title of the figure. Please
note that coupling to lc = 18 corresponds to partitioning the chain
according to the ratio 1:3 and coupling to lc = 35 divides the chain
in the middle into two parts of equal length. Furthermore, please note
that the energy axis of the linear chain is cut at 2 eV, whereas the two
insulating structures are shown up to 5 eV since they are lacking low-
energy modes in the uncoupled case. Also note that for te = tg = 0
the shown spectra can be regarded as pertaining to the stand-alone
chains without adatom as the absorption of the stand-alone adatoms
is negligibly small.

In fact, |c j2| ≈ 0 holds true not only for the |HOMO〉 and
|LUMO〉 states [as can be seen in Fig. 1(a)], but also for the
other states in the vicinity of the Fermi energy E = 0. As a
consequence, coupling effects are negligible in this configura-
tion.

In Figs. 6(a) and 6(c), we notice a strong redshift of the
most prominent low-energy |HOMO〉 → |LUMO〉 transition
mode which is accompanied by a decrease in energy dif-
ference of the |HOMO〉 and |LUMO〉 states in the energy
landscape, as can be confirmed in Fig. 8(a). At the same time,
the mode intensity drops for higher coupling strengths, since
the |HOMO〉 and |LUMO〉 states, that were of purely odd and
even parity in the uncoupled case, P = −1 and P = 1, change
their symmetry behavior and couple less strongly. Moreover,
another prominent mode builds up in the same spectral region.

As can be seen from Fig. 7(a), especially the states
|HOMO − 1〉 and |LUMO + 1〉 become optically active,
when the adatom is coupled stronger to the linear chain.
Indeed, a thorough analysis of this newly occurring mode
reveals that it is related to the transitions |HOMO − 1〉 →

FIG. 7. (a) State activity a| j〉 for states closely below and above
the Fermi energy of the linear chain as a function of the coupling
strengths te = tg of the adatom states to lc. We investigate different
coupling positions lc ∈ {1, 2, 3, 18, 35}. (b) Hybridization h| j〉 of the
adatom states with the states of the linear chain for different coupling
positions. (c) Localization of the states of the hybrid linear chain-
adatom system.

|LUMO〉 and |HOMO〉 → |LUMO + 1〉. In Fig. 8(a), we see
that the transition |HOMO − 1〉 → |LUMO〉 is symmetry for-
bidden in the uncoupled system, since both states are of even
parity P = 1. By increasing the coupling strength, however,
the transition becomes allowed and manifests itself in Fig. 6
as the previously mentioned mode of increasing intensity.

To further illustrate the inertia of the chain to couple to the
adatom for lc = 2 in Fig. 6(b), we compare the hybridization
in Fig. 7(b) for lc = 1, 3 and lc = 2. In the former two cases
(lc = 1, 3) we observe that all states in the given range show
nonzero hybridization already for adatom coupling strength
below t , i.e., they sense the presence of the adatom and are
modified accordingly. In Fig. 8(a), this is reflected by the fact
that all states are spectrally shifted and lose their well-defined
symmetry. In the latter case (lc = 2), however, we observe a
vanishing hybridization for almost all states. Please note that
the hybridization values for the two states below the |HOMO〉
and above the |LUMO〉 are nonzero only because they in-
terchange their index [see Fig. 8(d)]. This is not the case
for lc = 1, 3 [see Fig. 8(a)]. Furthermore, Fig. 8(d) reveals
that the spectrum is not modified much by the adatom states.
In particular, we notice that all states retain their parity and
only states |HOMO − 1〉 and |LUMO + 1〉 interact with the
adatom when they change their index in an anticrossing pat-
tern.

Figure 7(c) shows the localization of the hybrid linear
chain-adatom system’s states around the Fermi energy. In the
uncoupled case (te = tg = 0), we observe that the adatom’s
states |e〉 and |g〉 exhibit a localization of 1, since the state’s
real-space wave function is fully localized on the respective
orbital of the adatom. All other states attain a localization
value of Llc ≈ 0.33, as already discussed in Sec. III A.
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FIG. 8. Energy landscape of the linear chain (a),(d), the dimer
chain (b),(e), and the topological insulator (c),(f) as a function of
coupling strengths te and tg for coupling locations lc = 1 (a)–(c) and
lc = 2 (d)–(f). The color indicates the parity P| j〉 = 〈 j|P̂| j〉 of the
part of the wave function that is localized on the chain sites, and
which is the discretized analogon of 〈ψ j (r)|ψ j (−r)〉 in our frame-
work. The edge states of the topological insulator have been slightly
shifted away from zero for the sake of better visibility.

Again, we observe a qualitatively different behavior of the
localization for lc = 1, 3 on the one hand and for lc = 2 on
the other hand. In the latter case, the ground and excited states
of the adatom interchange indices around te = tg ≈ 0.8t in
the energy level diagram with the states |HOMO − 1〉 and
|LUMO + 1〉, respectively [see also Fig. 8(d)]. The states
attributed to the linear chain’s continuum barely change their
energy as a function of coupling strength. For lc = 1, 3, on
the other hand, the energy landscape does not exhibit energy
level crossings, but the adatom’s states fit seamlessly into the
state continuum of the linear chain. An almost equally spaced
energy ladder is building up again, similar to the energy level
diagram in Fig. 1(a), however, incorporating the adatom’s
orbitals [Fig. 8(a)].

Figures 8(b) and 8(e) show the energy landscape of the
dimer chain for lc = 1, 2 as a function of coupling strength.
We note that the adatom states in the energy gap of the
insulator approach each other and produce a small-intensity
low-energetic and redshifting mode in the noninteracting ab-
sorption cross section in Figs. 6(f) and 6(g). The remaining
spectrum remains mostly unmodified.

The topological insulator’s absorption cross section in
Fig. 6(k) exhibits two strongly blueshifting modes for com-
parably small coupling strengths already. From Fig. 8(c) we

deduce that the higher-energetic one belongs to the transition
between the strongly dispersive parityless modes that dive
into the quasicontinua at a coupling strength around 0.5t . The
lower-energetic mode can be related to the transition from one
of the strongly dispersive parityless states to the edge states.
Hence their energies exactly differ by a factor of two. As
revealed by Fig. 8(f), the topological insulator is less reactive
for lc = 2. The only modifications we see in Fig. 6(l) are
the buildup of two redshifting weak modes in the low-energy
region related to the states within the band gap, reminiscent of
the dimer chain.

B. Coupling to the bulk

Before discussing the two right columns of Fig. 7 where
we couple the adatom to bulk sites lc = 18 and lc = 35 of the
chain, we need to understand Fig. 9 first. It shows the real-
space representations of the single-particle energy states of
the hybrid linear chain-adatom system for different coupling
strengths (a) te = tg = 0, (b) te = tg = 0.5t , (c) te = tg = t ,
and (d) te = tg = 2t . We have always coupled the adatom to
lc = 18, which divides the chain geometrically according to
the ratio 1:3.

In the decoupled system (a), the linear chain and the
adatom are not hybridized and the real-space wave function
either lives completely on the adatom orbitals (|e〉 and |g〉)
or completely on the chain (all other states). When we in-
crease the coupling (decrease the distance of the adatom to
the chain or align its dipole moment suitably), we observe in
Fig. 9(b) that we induce population on the adatom’s sites for
a significant number of energy eigenstates. Simultaneously,
the wave functions of the lowest-energy and highest-energy
states get attracted by the adatom. By further increasing the
coupling strength [Figs. 9(c) and 9(d)], we observe that the
adatom acts as a potential barrier for the wave function and
effectively splits the chain apart into two stand-alone chains
of smaller lengths. The real-space wave functions of most of
the energy eigenstates are apparently locked on either side of
the chain. Exceptions thereof are (i) the lowest-energy ( j = 1)
and highest-energy ( j = 72) modes which are strongly local-
ized on the adatom and in the close vicinity of the coupling
atom and (ii) the |HOMO〉 and |LUMO〉 of the strongly cou-
pled system which are localized on the adatom and on the
shorter part of the chain.

It is interesting to observe that the single-particle electronic
structure of the whole hybrid system seemingly collapses into
a small chain on the left of the adatom in Fig. 9 and a longer
part on the right. The 18 atoms belonging to the smaller
subpart of the chain host nine prominent energy eigenstates
below the Fermi energy and nine above. This sums up to 18
states, which is exactly the expected structure for a stand-
alone linear chain of 18 atoms. The larger part of the chain
behaves accordingly.

Especially in the vicinity of the Fermi energy where the
optically active states are hosted, we notice that every fourth
state is localized on the left shorter side of the system, re-
flecting the partitioning ratio of the chain. These geometrical
features are also apparent in the localization figure of merit
in Fig. 7(c) for lc = 18, where we see that one in four states
shows a substantially increased localization for high coupling
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FIG. 9. Real-space representations of the single-particle energy states of the hybrid linear chain-adatom system for different coupling
strengths (a) te = tg = 0, (b) te = tg = 0.5t , (c) te = tg = t , and (d) te = tg = 2t . The adatom is coupled to the host atom lc = 18 in all subfigures
(indicated by the black dashed line); the adatom’s states |e〉 and |g〉 are depicted to the left of the chain continuum. Like in Fig. 1, the circles’
color encodes the real-valued expansion coefficients c jl and their size is proportional to |c jl |2.

strengths, when the real-space wave function is localized on
only 18 atoms. Moreover, we notice that the adatom popu-
lation on the optically active states in the region around the
Fermi energy is maximum for intermediate couplings rather
than for larger or smaller ones.

In the noninteracting absorption spectrum of this config-
uration shown in Fig. 6(d), this translates to the emergence
of two prominent modes for high coupling strengths. We
observe that the resonant mode at 0.24 eV in the uncoupled
case evolves toward two modes at 0.33 eV and 0.98 eV.
While the former energy coincides with the HOMO-LUMO
gap of a stand-alone chain made up by 52 atoms, the latter is
equivalent to the HOMO-LUMO gap of an 18-atomic chain.
Equivalently, Fig. 6(e) shows the spectrum of the configura-
tion where the chain is split close to the middle. Effectively,
the 70-atomic chain with HOMO-LUMO gap of 0.24 eV col-
lapses into two 35-atomic chains with HOMO-LUMO gaps of
0.49 eV, which results in the appearance of a mode at 0.49 eV
for high coupling strengths.

Moreover, Fig. 7(c) for lc = 35 further reveals that,
besides the |HOMO〉 and |LUMO〉 states which have a
significant share of population concentrated on the adatom
for high coupling strengths, all other states attain a sim-
ilar localization value, just as it was the case for the
stand-alone linear chain. In this case, however, the wave func-

tions are localized on one of the two almost equally long
sides of the chain. This leads to localization values around
L| j〉 ≈ 0.67.

In Fig. 9, we observe that coupling the adatom to the
linear chain heavily breaks the symmetry of the states. Conse-
quently, additional transitions that were previously symmetry
forbidden get enabled. This gets apparent in Fig. 10, where we
show the oscillator strengths for transitions around the Fermi
energy of the hybrid linear chain-adatom system for different
coupling strengths (a) te = tg = 0, (b) te = tg = 0.5t , (c) te =
tg = t , and (d) te = tg = 2t . Like in Fig. 9, the adatom is cou-
pled to atom lc = 18. We notice that the regular chessboard
pattern in the uncoupled case [Fig. 10(a)] gets heavily dis-
turbed and many more transitions are enabled already for the
smallest shown coupling strength te = tg = 0.5t [Fig. 10(b)].
The higher the coupling strength gets, the more symme-
try is restored in the real-space representation of the states
again [see Fig. 9(d)]. Consequently, also Fig. 10(d) again ex-
hibits more white squares that represent symmetry-forbidden
transitions as compared to the lower coupling strength. The
oscillator strength of transitions between states of different
subchains is decreased as the coupling strengths te, tg are
increased. Within a given chain, transitions between states of
the same (even or odd) spatial symmetry are forbidden. If one
reshuffled the state indexing to collect all states of the same
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FIG. 10. Oscillator strengths for transitions around the Fermi energy of the hybrid linear chain-adatom system for different coupling
strengths te = tg = 0 (a), te = tg = 0.5t (b), te = tg = t (c), and te = tg = 2t (d) at atom lc = 18. The set of parameters is chosen as in Fig. 9.

subchain next to each other, the chessboard pattern would be
restored again.

V. INTERACTING HYBRID SYSTEM

So far, we have considered noninteracting electrons. In
insulating electronic systems whose optical properties are
predominantly characterized by single-particle transitions,
Coulomb interaction may often be safely neglected [19].
However, previous contributions have revealed that, espe-
cially in the metallic linear chain, Coulomb interaction
leading to collective plasmonic charge carrier oscillations
plays a significant role for determining resonant modes
[19,64–69].

To elucidate this, we show the absorption spectra of all
three stand-alone structures in Fig. 11 as a function of the
Coulomb interaction strength λ introduced in Appendix A.

FIG. 11. Square root of the linear absorption cross sections of
(a) the linear chain, (b) the dimer chain, and (c) the topological in-
sulator as a function of the Coulomb interaction scaling parameter λ.
For λ = 0, we obtain the noninteracting absorption cross section σ ni

abs

analyzed in Fig. 6; λ = 1 corresponds to the fully interacting systems
shown in Fig. 12. We find that electron-electron interaction heavily
modifies the absorption characteristics of the linear chain, whereas
the dimer chain and the topological insulator are barely influenced
by Coulomb interaction. For the latter two insulating structures, the
noninteracting absorption cross section is a valid approximation to
the fully interacting system.

In Fig. 11(a), we verify that the linear chain’s optical modes
strongly depend on the Coulomb interaction strength in a
continuous way. The lowest-energy most prominent mode
shifts from h̄ω = 0.24 eV for λ = 0 (Coulomb interaction
turned off) to 0.67 eV for λ = 1 (Coulomb interaction fully
taken into account). The next higher mode even changes
its spectral position by more than 1 eV upon turning on
electron-electron interaction. We conclude that, to properly
find resonant modes of the combined linear chain-adatom
system, performing interacting simulations which take into
account Coulomb repulsion is inevitable for the hybrid system
as well.

Figure 11(a) also reveals that the transition from the
lowest-energy mode of the noninteracting system to the cor-
responding mode of the interacting system is smooth and
continuous. It can therefore be concluded that the |HOMO〉
and |LUMO〉 continue to constitute the predominantly in-
volved single-particle states in the formation of this resonance
also in the interacting system. More detailed investigations
concerning this issue have been performed and similar con-
clusions have been drawn in the context of noninteracting
and interacting molecular chains in a TB framework [65], in
time-dependent density functional theory [19], and upon exact
diagonalization [66], as well as in metallic gold nanospheres
[66,70] and in structured nanographene [71].

On the other hand, Figs. 11(b) and 11(c) reveal that the
absorption spectra of the dimer chain and the topological
insulator hardly depend on the Coulomb interaction scaling
parameter λ, which renders their noninteracting absorption
spectra in Fig. 6 more reliable than that of the linear chain.
This statement holds true even in the presence of the adatom
as can be seen by comparing the second and third rows of
Figs. 6 and 12.

Figure 12 shows the interacting absorption spectrum of
the linear chain (a)–(e), the dimer chain (f)–(j), and the
topological insulator (k)–(o) as a function of the coupling
strengths te and tg for different coupling atom positions lc. The
dimer chain’s and the topological insulator’s absorption spec-
tra exhibit only minor changes upon increasing the coupling
strengths. Small modifications can be perceived, however,
especially when coupling the adatom to a bulk atom, i.e.,
when lc = 18 or lc = 35. Then, the modes in the quasicon-
tinua above the band gap become more pronounced but their
number decreases.
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FIG. 12. Square root of the interacting absorption cross sections√
σ i

abs(ω) of the linear chain (a)–(e), the dimer chain (f)–(j), and
the topological insulator (k)–(o). The very left column shows the
absorption cross section in case the adatom is coupled to atom lc = 1
of the chain. The other columns show the same quantity for other
coupling positions.

In contrast, the linear chain’s absorption spectra show a
rich variety of spectral features already for small coupling
strengths. In the case of coupling the adatom to atoms at the
edge [Figs. 12(a)–12(c)], the mode at h̄ω = 0.67 eV persists
relatively stable as a function of coupling strength and is the
only remaining prominent one from Figs. 6(a)–6(c). Coupling
the adatom to the bulk atoms [Figs. 12(d) and 12(e)], however,
paves the way for manipulating the modes in the range be-
tween 0.35 eV and 1 eV for lc = 18 [Fig. 12(d)] and between
0.35 eV and 1.5 eV for lc = 35 [Fig. 12(e)]. Consistent with
Fig. 11(a), the apparent modes are blueshifted with respect to
the noninteracting systems.

VI. SUMMARY AND OUTLOOK

In this paper, we have investigated the tunability of the op-
tical modes of one-dimensional atomic chains upon coupling
them to adatom impurities. To that end, we have presented
a tight-binding based hybrid system model for an atomic
SSH chain, applicable to linear organic molecules such as
polyenes, that is coupled to an adatom treated as a two-level
system. We investigated in detail how the adatom influences
the real-space representations of the model Hamiltonian’s
single-particle eigenstates and how the optical absorption
cross section is modified as a function of coupling strength
between the adatom and the chains.

We have shown that in certain coupling positions the
adatom may significantly modify the optical properties es-
pecially of the metallic linear chain antenna already for

comparatively small coupling strengths. We conclude that,
at high coupling strengths, the adatom acts as a potential
barrier and effectively splits the chain apart into two subsys-
tems. For suitable parameter sets, this is reflected as well in
the absorption spectrum which no longer shows one single
pronounced low-energy mode, but two higher-energy modes
that stem from the states of two smaller chains. We find that
the dimerized chain and the topological insulator described
within the Su-Schrieffer-Heeger model remain both relatively
inert to the presence of the adatom. The linear chain’s modes,
however, can be readily tuned over a broad spectral region by
changing the interaction strengths that couple the adatom to
the chains, i.e., the distance of the adatom to the chain or the
orientation of its dipole moment.

For future studies, an interesting route would be to address
the impact of disorder in the on-site energies and hop-
pings of the tight binding model, corresponding to structural
imperfections and positional disorder in real space. While
the geometrical structure of the above considered organic
molecules is rather rigid, artificial realizations of the Su-
Schrieffer-Heeger model, such as quantum dots on a wafer,
where disorder is readily introduced in the fabrication process,
can easily be envisioned and need further investigation.
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APPENDIX A: COMPUTATION OF THE
TIME-DEPENDENT DIPOLE MOMENT p(t )

The Hamiltonian of the hybrid system which is coupled to
a time-dependent electric field E(t ) reads

H (t ) = HTB + HTLS + Hinteraction − eϕ(t ), (A1)

where the time-independent part is given by Eq. (1), e is
the electronic charge, and ϕ(t ) = ϕext (t ) + ϕind(t ) is the total
electric potential, composed of the externally applied poten-
tial ϕext

l (t ) = −rl · E(t ) and the induced potential ϕind
l̃

(t ) =
−λ eNe

∑
l̃ ′ v

hyb
l̃ l̃ ′

[ρl̃ ′ l̃ ′ (t ) − 1
N ] at orbital l̃ . Here, Ne is the num-

ber of electrons in the system and v
hyb
l̃ l̃ ′

denotes the Coulomb
interaction matrix element which couples the charges on sites
l̃ and l̃ ′. Its construction is outlined in detail in Appendix B.
The parameter λ ∈ [0, 1] has been introduced to artificially
turn on and off the Coulomb interaction in the simulations.
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The density matrix ρ is initialized as ρ0 = 2
N

∑
j f j | j〉〈 j|,

where f j is the occupation of the energy eigenstate | j〉 of
the Hamiltonian given in Eq. (A1) without externally applied
electric field and the factor 2 in the numerator accounts for
spin degeneracy. The density matrix is propagated through
time according to the master equation

∂

∂t
ρ(t ) = − i

h̄
[H (t ), ρ(t )] − 1

2τ
[ρ(t ) − ρ0]. (A2)

Here, h̄τ−1 = 10 meV is a phenomenological scattering en-
ergy introduced to mimic dissipation. The value is taken
from doped extended bulk graphene [72]. We determine the
resulting dipole moment p(t ) = ∑

l̃ rl̃ ql̃ (t ), where ql (t ) =
−eNeρll (t ) is the charge at site l as a function of time.

APPENDIX B: COMPUTATION OF THE COULOMB
INTERACTION MATRIX vhyb

The extended Coulomb interaction matrix vhyb for the
hybrid system is based on the interaction matrix of the stand-
alone chain v.

For the latter, we employ the inverse distance 1/r power
law if carbon atoms are far away from each other [73],

vll ′ = Eha0

|rl − rl ′ | , (B1)

where Eh = 27.21 eV is the Hartree energy and a0 = 0.53 Å
the Bohr radius. However, to avoid divergences if atoms are
close, we use finite values for the on-site, nearest neighbor,
and next-to-nearest neighbor terms vos = 16.52 eV, vnn =
8.64 eV, and vnnn = 5.33 eV, respectively. They have been
analytically computed by Potasz et al. [74] through

vll ′ =
∫

d3r
∫

d3r̃ ψl (r)ψl ′ (r̃)
1

|r − r̃|ψl ′ (r̃)ψl (r)

=
∫

d3r
∫

d3r̃
|ψl (r)|2|ψl ′ (r̃)|2

|r − r̃| (B2)

directly from the real-valued carbon Slater pz orbitals

ψl (r) =
√

ξ 5

32π
z exp

(−ξrl

2

)
(B3)

in graphene with ξ = 3.14, and subsequently applied to
carbon-based quantum rings before. The values are presented
in Table I of Ref. [74].

The construction of vhyb is as follows:

v
hyb
ll ′ = vll ′ for l, l ′ ∈ [1, Na]. (B4)

Like on the diagonal of v, we impose the on-site value
vos on the part of vhyb, which corresponds to the adatom
sites v

hyb
gg = v

hyb
ee = v

hyb
eg = v

hyb
ge = vos. The intersystem ele-

ments which couple the chain and the adatom are determined
according to

v
hyb
el = v

hyb
le = vllc · acc

d + acc

√∣∣∣ te
t

∣∣∣, (B5)

v
hyb
gl = v

hyb
lg = vllc · acc

d + acc

√∣∣∣ tg
t

∣∣∣, (B6)

v
hyb
elc

= v
hyb
lce = vnn · acc

d

√∣∣∣ te
t

∣∣∣, (B7)

v
hyb
glc

= v
hyb
lcg = vnn · acc

d

√∣∣∣ tg
t

∣∣∣, (B8)

where l ∈ [1, Na]\{lc}, d is the distance of the adatom to
the coupling atom lc, and acc = 1.42 Å is the distance of
two carbon atoms in the chain. The distance d relates to the
couplings according to te,g = t ( acc

d )2 [75] and the intrachain
values vllc are determined through Eq. (B4).
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