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Quantum computation protocol for dressed spins in a global field
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Spin qubits are contenders for scalable quantum computation because of their long coherence times demon-
strated in a variety of materials, but individual control by frequency-selective addressing using pulsed spin
resonance creates severe technical challenges for scaling up to many qubits. This individual resonance control
strategy requires each spin to have a distinguishable frequency, imposing a maximum number of spins that can
be individually driven before qubit crosstalk becomes unavoidable. Here we describe a complete strategy for
controlling a large array of spins in quantum dots dressed by an on-resonance global field, namely, a field that
is constantly driving the spin qubits, to dynamically decouple from the effects of background magnetic field
fluctuations. This approach—previously implemented for the control of single electron spins bound to electrons
in impurities—is here harmonized with all other operations necessary for universal quantum computing with
spins in quantum dots. We define the logical states as the dressed qubit states and discuss initialization and
readout utilizing Pauli spin blockade, as well as single- and two-qubit control in the new basis. Finally, we
critically analyze the limitations imposed by qubit variability and potential strategies to improve performance.

DOI: 10.1103/PhysRevB.104.235411

I. INTRODUCTION

Electron spins in semiconductors are a quintessential ex-
ample of desirable qubits, with long coherence times and
excellent controllability based on either magnetic or electric
dipole spin resonance with microwaves [1–7]. In devices with
a few qubits, individual spins can be addressed by selectively
driving their unique transition frequencies. However, this ap-
proach is limited because the spread of resonance frequencies
is determined by material characteristics, which sets a maxi-
mum range and therefore a maximal number of spins one can
drive before being plagued by qubit crosstalk. The issue of
frequency crowding has been studied for transmon qubits [8]
and can be alleviated in spin qubits using engineered narrow-
band microwave pulses. With an increase in the number of
spin qubits, however, this would become increasingly difficult
and require long and complex engineered pulses.

Pursuing full scale quantum computing has its challenges.
There have been many proposals for scaling up different types
of qubits [9–15], with some [11–15] that recognize the poten-
tial of using an off-resonance global field. This field may, for
example, be generated by a three-dimensional cavity resonator
that subjects the whole chip to the oscillatory magnetic field
[15,16]. The aim of the off-resonance global field is that qubits
defined in the idle state will be spins that are not resonant with
the field. To perform qubit operations, the spins are brought
into resonance with the global field. This can be done in
different ways depending on the type of qubit and architecture,
for example, by controlling the electrical Stark shift for tuning
of the qubit resonance frequency [17].

Here, we explore in detail the use of an on-resonance
global field, in which qubits are considered idle when they
are being constantly driven by the global field, called dressed

qubit states [18–23]. Microwave dressing of qubit states in-
creases coherence times due to the constant decoupling from
background environmental fluctuations in the system [22].
Specifically, we analyze the qubit dressing strategies available
for spins in semiconductor quantum dots and harmonize all
the other operations (initialization, readout, and two-qubit
gates) with the always-on field. We study single-qubit oper-
ations discussing two strategies that we call frequency-shift
keying and frequency modulation (FM). Two-qubit gates
leveraging the Heisenberg spin-spin interaction are also ex-
plored, showing the evolution from the SWAP gate, a gate that
swaps two qubits, to the CPHASE gate, a control phase shift
gate, as the system parameters are changed. Throughout the
whole quantum computation, the dressing field is always on,
meaning the protocol should include initialization and readout
in the dressed basis. Limitations of each process are discussed,
including how variability in qubit frequencies can affect the
globally driven system.

II. OVERVIEW OF SPIN ARRAY ARCHITECTURES

Selective control of individual spin qubits becomes limit-
ing if the control mechanism uses pulsed microwave electron
spin resonance (ESR) and addresses each spin by their unique
Larmor frequency. The Larmor frequency of a spin in a
semiconductor device is determined by the microscopic en-
vironment that surrounds the spin. For example, in the case
of electron spin qubits in purified silicon 28Si, in which the
reduced presence of nuclear spins leads to small Overhauser
fields, the spin-orbit interaction is the leading mechanism that
results in the spread of qubit frequencies [24–26]. In GaAs,
on the other hand, the Overhauser field has an important
role in setting the spin qubit frequency [27]. For ESR with
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FIG. 1. Comparing three methods of controlling spin qubits in the context of scalable quantum systems. (a) A two-dimensional array of
spin qubits with microwave-pulsed (pink arrow) single qubit control mechanism. A key describing the array of qubits is given at the bottom of
the figure. The light blue spin demonstrates unintentional interactions with the microwave field. (b) The four closest spins have their frequencies
plotted as a function of time where the color map of the line shows the generalized Rabi frequency resulting from the microwave control pulse.
Three ESR control pulses (marked in pink) are applied to three spins, the marked line on the time axis indicates the snippet of time that
(a) is showing. For a global microwave control field (c) a two-dimensional array of qubits is shown, now with the qubit control achieved via
switching the voltage bias on a gate electrode to enable a Stark shift, shown by the purple square pulse. The frequencies of four qubits (d) with
the frequency (Stark) shift switched on when qubit addressing takes place. On-resonance dressed spins (e) with control mediated by pulsing
a gate with four tracked frequencies (f), where the qubit addressing is achieved by a gate-voltage-enabled Stark shift to take the spin out of
resonance with the global microwave field.

frequency selection to work in a large array of spins, each
qubit frequency should be separated by several times the Rabi
frequency to avoid errors that can degrade the quality of
fault tolerant operations. Some strategies may remedy these
errors through the use of pulse shaping [28] or by engineering
the difference in Larmor frequencies with a magnetic field
gradient introduced by a micromagnet [29,30], but ultimately
there will be difficulty in individual addressing for scaled-up
systems. A more scalable pathway, as discussed next, is to
locally control the spin-orbit coupling by applying electric
fields with gate electrodes to dynamically control the value
of the spin resonance frequency.

For scalable quantum computing, we need arrays of qubits
such as the one schematically shown in Fig. 1(a). Each spin
may be either off-resonance or on-resonance with an elec-
tromagnetic driving wave, which will mean that it is either
simply precessing (off resonance) or nutating resonantly (on
resonance), in which case the spin may rotate between |↑〉
and |↓〉. The dynamical state of each spin (driven or undriven)
is represented by the color of a sphere, where dark blue
shows an undriven spin and beige represents a driven spin.
These colors represent the generalized Rabi frequency for off-
resonant driving �

gen
R (�R,�ν) =

√
�2

R + �ν2, where �R is
the Rabi frequency and �ν the detuning of the qubit Larmor
frequency from the microwave frequency. The cuboids rep-
resent gate electrodes, with gray representing those that are
used only for forming quantum dots but are not activating
any targeted shift in the spin resonance. Purple means the

gate has been biased to a state that purposely shifts the spin
frequency of an electron by locally controlling its spin-orbit
coupling. The pink arrow shows a microwave control pulse
that is targeting control on a single qubit but simultaneously
acts on all qubits of the array. The diagram shows the qubit
array for a single time instance during the control opera-
tion. The target qubit is the beige qubit, showing resonance
control.

The main difficulty in this strategy for a spin qubit ar-
chitecture is frequency crowding—the statistical dispersion
of the qubit frequencies is limited, such that eventually the
separation between two qubit frequencies becomes smaller
than the ESR linewidth. The light-blue spin has a Larmor
frequency close to the target qubit, resulting in unwanted
rotations, corresponding to qubit crosstalk. This is more clear
in Fig. 1(b), which shows a full time trace as a function of
frequency of four spins, with each spin frequency represented
by a solid line, and the arrows show which trace corresponds
to which qubit. We represent the condition for a spin to be
considered on resonance as a color map that shows the am-
plitude of �

gen
R if we assume that the initial state was either

|↑〉 or |↓〉. This amplitude is maximum when the microwave
pulse frequency (marked in pink) matches the qubit frequency
and decays as we detune the spin in a range set by the Rabi
frequency. The control pulses of the two leftmost qubits are
performed with no crosstalk, but the two rightmost qubits are
similar in frequency so when one qubit is targeted, there is
significant off-resonant driving on the neighboring resonance.
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The line indicated on the time axis shows the time instance
that Fig. 1(a) represents.

To improve upon this method, the idea of an off-resonance
global field has been studied in the literature [11–15]. There,
the global field is always on and the qubits are considered
to be in the idle state when they are out of resonance with
the magnetic field. To perform qubit operations, the spins are
individually brought into resonance with the field by some
method that locally controls the qubit frequency. This can
be performed, for example, by electrically controlling the
frequency shift caused by hyperfine or spin-orbit interactions.
Using a gate electrode [15,31], each spin frequency can be
addressed by locally controlling the g factor [14], the overlap
between the electron wave function with a nuclear spin [32],
or a combination of the two [17].

Single qubit control using an off-resonance global field is
shown schematically in Fig. 1(c). In the figure, the electric
control is represented by a gate electrode (grey square) that
can be switched on (purple) using a voltage pulse to change
the Stark shift of a single qubit, thus changing its g factor.
The change in g factor is chosen to bring the qubit into res-
onance with the global field, allowing for rotations to occur.
This method removes the issue of having individual resonance
frequencies for each qubit, reducing crosstalk effects (repre-
sented in the figure where only a single qubit is being driven).
Figure 1(d) shows three rotations performed on qubits in an
off-resonance global field. When each of the rotations are
performed, the individual qubits are brought into resonance,
matching the always-on global field frequency.

This method has some limitations. First, it relies on the
ability to have all spins out of resonance with the global
field initially, and to be brought back to resonance on de-
mand. The first condition is achieved by guaranteeing that the
microwave frequency fmw and the frequency of each of the
individual spins ν is separated by well more than the Rabi
frequency, fmw − ν � �R. This alone can be easily achieved
by a proper choice of external magnetic field B0, which con-
trols the distribution of values of ν. However, the electric
controllability of the individual ν needs then to be sufficient
to bring each of the spins back into resonance. Electrons at
a Si/SiO2 interface, for instance, have a typical Stark shift
dν/dV in the range of ±10 MHz/V for magnetic fields near
B0 = 1 T. The range of applicable voltage pulses is typically
in the hundreds of millivolts, set by the quantum dot charge
and orbital transitions, and is preferably kept to a minimum
to avoid disturbances in the electrostatic landscape caused
by agitating charged defects. Only the qubits with the largest
Stark shift will, therefore, have enough range to be operated
in this manner.

This leads us to the method proposed in this paper: an
on-resonance global field where the qubits are tuned so
they are constantly being driven. This creates dressed qubits
[18–22,33] which are defined in terms of the combination of
the spin and the modes of the electromagnetic field. In the
rotating frame, the driving field creates an energy splitting
between the superposition states |zρ〉 = (1/

√
2)(|↓〉 + |↑〉)

and |z̄ρ〉 = (1/
√

2)(|↓〉 − |↑〉), and we use these to define the
logical states |zρ〉 = |0〉 and |z̄ρ〉 = |1〉. The dressed states
are represented by the beige colored spins in Fig. 1(e). In
Fig. 1(f), we represent one method by which single qubit

operations could be performed in three different spins with
an on-resonance global field. To perform qubit control, a sim-
ilar technique is used as for the off-resonance global control
technique; the g factor is shifted to remove the qubit from res-
onance, which allows for nutation between the dressed states
[22]. This approach combines the scalable addressability of
the global field with the added advantage of decoupling from
non-Markovian noise which affects spins [34]. Moreover, we
will demonstrate that the range of control for the qubit fre-
quencies ν can be made less stringent using this approach.

III. DEFINITION OF THE QUBIT

In this section, the derivation of the dressed spin Hamil-
tonian is shown for the case of single- and two-qubit
interactions. The basic concept of dressing with a single spin
has been discussed in the literature [22], so we will be brief
on this aspect.

Considering a single spin qubit with a static magnetic field
B0 along z and driving magnetic field B1 along x, the Hamil-
tonian is as follows:

Hlab = gμB

2
[B0σz + B1 cos (2π fmwt )σx], (1)

where μB is the Bohr magneton, g the electron spin g factor,
fmw the driving magnetic field frequency, t the time, and σ j the
Pauli matrices, where j = x, y, z. Following this, we move to
the familiar rotating frame representation in which the frame
rotates with the angular velocity of the microwave field, not
the qubits,

Hrot = h

2
(�νσz + �Rσx ), (2)

where h is the Planck’s constant, �ν the detuning from
the spin Larmor frequency ν (�ν = gμBB0/h − fmw = ν −
fmw), and �R the Rabi frequency. It should be noted that
throughout this paper, the frequencies denoted f are that
of instruments, ν the Larmor frequencies, and �R the Rabi
frequencies.

The rotating frame Hamiltonian describes the traditional
spin qubit with the quantization axis along |↑〉. A Bloch
sphere representation of this is shown in Fig. 2(a) by the blue
sphere, where the logical states |0〉 and |1〉 are represented by
|↑〉 and |↓〉, respectively. On the equator are the superposition
states |+〉 = (1/

√
2)(|↓〉 + |↑〉), |−〉 = (1/

√
2)(|↓〉 − |↑〉),

|i〉 = (1/
√

2)(|↓〉 + i |↑〉), and |ī〉 = (1/
√

2)(|↓〉 − i |↑〉).
To transform into the dressed picture, a constant ampli-

tude B1 field is applied. As discussed before, this creates
an energy separation between |+〉 and |−〉 states, which
in the rotating frame sets a new quantization axis along x.
To find the dressed basis Hamiltonian, Hrot is transformed
using the Hadamard unitary U(Hadamard) [35]. Writing Hρ =
U(Hadamard)HrotU

†
(Hadamard), we get

Hρ = h

2
(�Rσz + �νσx ). (3)

The bare spin qubit Hrot is transformed into the dressed spin
qubit Hρ , as shown in the Bloch sphere in Fig. 2(a) with the
gray arrows. Table I shows the Bloch sphere axes and qubit
state representation in the rotating basis and dressed basis,

235411-3



AMANDA E. SEEDHOUSE et al. PHYSICAL REVIEW B 104, 235411 (2021)

FIG. 2. The process of dressing spin qubits. The Bloch sphere
representation of a bare spin qubit in the rotating frame (blue) and a
dressed spin (beige). The gray arrows show the transformation from
bare to dressed via the Hadamard transformation. This transforma-
tion changes the two-qubit singlet and triplet states (b), showing |S〉
is invariant under the transformation and the triplet states remaining
in the triplet family. This means that the Pauli spin blockade remains.
The blockade in a double quantum dot system is demonstrated for
(blue) a rotating frame bare spin triplet |T+〉 and (beige) a dressed
spin triplet |T+,ρ〉.

introducing |xρ〉 , |yρ〉 , |zρ〉. The logical states are now en-
coded as |zρ〉 = |0〉 and |z̄ρ〉 = |1〉. The dressed Hamiltonian
Hρ tells us that the energy difference between the logical states
is determined by the Rabi frequency �R, and the detuning of
the driving field from the qubit frequency �ν determines the
qubit rotations.

It is important to understand that, in the dressed basis, if
the spin is pointing along the equator it will precess due to
the Rabi frequency. Figure 2(b) shows a plot of the logical
state evolving in both the rotating bare spin and dressed spin

TABLE I. The Bloch axis direction and states of the rotating
frame and dressed frame states. Each row is equivalent.

Rotating basis Dressed basis

Bloch axis State Bloch axis State

x |+〉 z |zρ〉
y |i〉 −y |ȳρ〉
z |↑〉 x |xρ〉

basis with the global field on resonance. The Bloch spheres to
the right of the plot show the direction of the Rabi frequency
amplitude in the rotating frame, as well as the laboratory
frame B1 magnetic field oscillations for both the rotating bare
spin and dressed cases.

To describe a universal gate set for dressed spins, the
Hilbert space is expanded to include two-qubit interactions.
Here, we denote the singlet states with an S and the triplet
states with a T. When referring to dressed triplet states, the
state will be followed by ρ (this is not done for singlets
because they are invariant under the dressing transformation).

The system we will describe involves a double quantum dot
with the charge occupation in the left and right dots indicated
by (N1, N2), where N1 and N2 are integers. In general, we are
interested in either the situation where there are two electrons
in the quantum dots or when the number of electrons is such
that they form closed shells, with only two active spins not
being inert. For simplicity, we omit the number of electrons
in closed shells. If both active electrons are occupying the
same quantum dot, we assume them to form a singlet state
in the lowest orbital, following the Pauli exclusion principle,
and that state is denoted |S(0, 2)〉. For the (1,1) charge config-
uration, considering the rotating bare spin case, the other four
levels are |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉.

The magnetic field vector in quantum dots (assumed to
be the same) is represented in the laboratory frame as �B =
[B1 cos (2π fmwt ), 0, B0] and the Pauli matrices acting on the
left (right) dot are given as �σ1(2), and the g-factor in the
left (right) dot is g1(2). The Hamiltonian describing the (1,1)
occupied states in the rotating frame is

H(1,1),rot = h

2
(�ν1σz1 + �ν2σz2 + �R1σx1 + �R2σx2), (4)

where the detuning from the Larmor frequency of qubit
1(2) is denoted �ν1(2) and the Rabi frequency of qubit 1(2)
�R1(2). The Pauli matrix acting on qubit 1(2) is σ j1(2). Then,
the Hamiltonian can be transformed into the dressed ba-
sis {|T+,ρ〉 , |zρ z̄ρ〉 , |z̄ρzρ〉 , |T−,ρ〉} using the transformation
Hadamard ⊗ Hadamard:

H(1,1),ρ = h

2
(�R1σz1 + �R2σz2 + �ν1σx1 + �ν2σx2). (5)

Singlet states are rotationally invariant, allowing the Pauli
spin blockade to be preserved in the dressed, basis which is
useful for initialization, readout and exchange interactions.
Figure 2(c) illustrates the blockade of |T+〉 in the rotating bare
spin picture (blue) and |T+,ρ〉 (beige) in the dressed picture,
and how the singlets remain invariant, while the triplets re-
arrange within the triplet manifold, shown with the colored
lines.
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In the dressed picture, we have the usual singlet subspace {|S(1, 1)〉 , |S(0, 2)〉}:

H(0,2)→(1,1) = h

2

(
0 2tc

2tc −2ε

)
. (6)

The tunnel coupling between the dots is given by tc and the chemical potential bias between the two quantum dots ε. Combining
the singlet interactions with the basis {|T+,ρ〉 , |zρ z̄ρ〉 , |z̄ρzρ〉 , |T−,ρ〉} gives the final 5×5 Hamiltonian in the dressed basis
{|S(0, 2)〉 , |T+,ρ〉 , |zρ z̄ρ〉 , |z̄ρzρ〉 , |T−,ρ〉},

Hρ = h

2

⎛
⎜⎜⎜⎜⎝

−2ε 0
√

2tc −√
2tc 0

0 �R1 + �R2 �ν2 �ν1 0√
2tc �ν2 �R1 − �R2 0 �ν1

−√
2tc �ν1 0 −�R1 + �R2 �ν2

0 0 �ν1 �ν2 −�R1 − �R2

⎞
⎟⎟⎟⎟⎠, (7)

and in the dressed singlet-triplet basis {|S(0, 2)〉 , |T+,ρ〉 , |S(1, 1)〉 , |T0,ρ〉 |T−,ρ〉}:

Hρ,5×5 = h

2

⎛
⎜⎜⎜⎜⎜⎝

−2ε 0 2tc 0 0
0 �R1 + �R2

−�ν1+�ν2√
2

�ν1+�ν2√
2

0

2tc
−�ν1+�ν2√

2
0 �R1 − �R2

�ν1−�ν2√
2

0 �ν1+�ν2√
2

�R1 − �R2 0 �ν1+�ν2√
2

0 0 �ν1−�ν2√
2

�ν1+�ν2√
2

−�R1 − �R2

⎞
⎟⎟⎟⎟⎟⎠. (8)

IV. INITIALIZATION AND READOUT

The experimental process of preparing different two-qubit
states is modelled following the dynamics governed by the
Hamiltonian Hρ,5×5. Beginning in the |S(0, 2)〉 ground state,
ε is adjusted to load an electron into the second dot to prepare
the spatially separated spin states (|T+,ρ〉 , |T0,ρ〉 , |T−,ρ〉, and
|S(1, 1)〉). The rate at which ε changes determines which state
is prepared; this is analogous to the initialization method in
the rotating bare spin basis [36].

The behavior of each eigenenergy in the dressed five-level
system is investigated as a function of ε. This is shown in
Figs. 3(a)–3(c), where the different colors represent the per-
centage of each state. For each initialization, the chemical
potential bias ε is ramped at a constant rate from a posi-
tive bias [which favors a (0,2) ground state] to a negative
one, see Fig. 3(d). The values used in the simulation are
tc = 1 GHz, �R1 = �R2 = 10 MHz and ramping range from
ε = 50 → 1500 GHz. To start, the case where ε is ramped to
transfer |S(0, 2)〉 into |S(1, 1)〉 is considered. In an idealized
case, one can set �ν1 = �ν2 = 0 so there is no coupling term
between the singlet and |T−,ρ〉, demonstrated in Fig. 3(a) with
an absence of an anticrossing between |S(1, 1)〉 and |T−,ρ〉
energy lines, allowing for a perfectly diabatic transition from
|S(0, 2)〉 to |S(1, 1)〉 (shown by the black arrow).

In this idealization, the transition into |S(1, 1)〉 is depen-
dent on how fast ε changes due to the |S(0, 2)〉 − |S(1, 1)〉
anticrossing, which can be controlled to be large by tuning tc,
as well as the difference in �R1 and �R2. Ideally, �R1 = �R2

to avoid S-T mixing. The inverse of the tunnel coupling sets
the timescale of the fastest allowable ramp, before a diabatic
passage through the (0, 2) → (1, 1) transition occurs. As the
ramp time is increased, the probability of preparing |S(1, 1)〉
via an adiabatic crossing is increased. The probability of
preparing each state at the end of the ramp sequence against
the ramp time is plotted in Fig. 3(e) with dashed lines. Since
�ν1 = �ν2 = 0, the only interacting states are the singlet

states, so the figure shows the reducing probability of initial-
izing |S(0, 2)〉 as the ramp time increases, and the increasing
probability of initializing |S(1, 1)〉. A ramp time of 1 μs is
sufficient to initialize |S(1, 1)〉 for the parameters used here.

Moving on to the initialization of |T−,ρ〉, we look at the
case where �ν1 = −�ν2 = 2 MHz and the other variables re-
main the same. An anticrossing between |S(1, 1)〉 and |T−,ρ〉
is now present, as shown in Fig. 3(b). As before, ε is ramped
from a positive energy to a negative one for different ramp
times. The probability of preparing each state against the ramp
time is plotted in Fig. 3(e) with solid lines. It is obvious
that the introduced �ν1 = −�ν2 condition has allowed for
the |T−,ρ〉 to be initialized after approximately 110 μs. For
shorter ramp times, when the energy gap between the singlet
and |T−,ρ〉 is crossed diabatically, the initialized state develops
components of both |S(1, 1)〉 and |T0,ρ〉 due to the coupling
created by the difference in Larmor frequencies. When the
ramp becomes fast enough (1 μs), the |S(1, 1)〉 initialization
is recovered.

The importance of the lowest energy anticrossing becomes
more apparent when the variability between the different qubit
environments is regarded. The values of the g factors are
different in a pair quantum dots [24], therefore the values of
�ν1 and �ν2 will typically be different. Although the external
magnetic field can be rotated to an angle that minimizes the
difference between a single pair of g factors [24], for larger
scale systems there will still be variability. This means that the
scenario including the lowest energy anticrossing [Fig. 3(b)]
is more realistic.

Readout of a dressed qubit follows a similar method to ini-
tialization. Instead of ramping ε from positive to negative, the
reverse is implemented. The ramping is chosen at a particular
rate so that it allows for |S(1, 1)〉 to tunnel into |S(0, 2)〉, but
not the triplet states. This is the same singlet-triplet readout
technique used for rotating bare spin qubits. Dressed parity
readout is also achievable when considering dephasing in the
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FIG. 3. Initialization process in the dressed basis. Energy dia-
grams shown as a function of chemical potential bias ε for the case
of (a) no difference in Zeeman energies, �ν1 = �ν2 = �ν = 0 and
(b) the driving frequency hitting the center of the Zeeman energy
differences, �ν1 = −�ν2 = �ν = 2. The energy axis is extended in
(c) to show |S(0, 2)〉. The colors of the lines show the percentage
of each state. The dark blue shows the |S(0, 2)〉, blue is |S(1, 1)〉,
yellow is |T0,ρ〉, brown is |T+,ρ〉, and orange is |T−,ρ〉. The black
arrows show the path of initialization, either crossing the anticrossing
[in both (a) and (b)] or avoiding it [only in (b)]. The initialization
sequence is shown in (d) with time on the vertical axis, and detuning
on the horizontal. This shows a positive ε, starting as |S(0, 2)〉,
followed by ramping ε for a particular ramp time, finally measuring
the state probability at a negative ε. This state probability against the
ramp time is plotted for (e) �ν1 = �ν2 = 0 (dashed line) showing
|S(1, 1)〉 initialization and �ν1 = −�ν2 (solid line) showing |T−,ρ〉
initialization. Values used: tc = 1 GHz, �R1 = �R2 = 10 MHz, and
ramping range from ε = 50 → 1500 GHz.

system, so it follows similar dynamics to the rotating bare spin
case [37].

V. SINGLE QUBIT GATES

For universal quantum computation, controllable rotations
of the qubit system about two axes must be attainable. For the
dressed qubit, single qubit gates can be achieved by pulsing
the amplitude of �ν [22]. In this section, we look at two
different methods of pulsing �ν: frequency-shift keying and
FM resonance. We begin by studying frequency-shift keying,
considering the single qubit subspace in Eq. (3). Frequency-
shift keying is a FM scheme where changes to the frequency
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FIG. 4. Bloch sphere representation of single qubit control of
the dressed qubit. The precession about the x − y plane according
to (a) the Rabi frequency and the difference between the Rabi fre-
quency and the nutating frequency fN. (b) The frequency-shift keying
method for single qubit control. The purple lines show the keying
pulses of �ν for x and y control. The Bloch spheres to the right of the
plot show the

√
X and

√
Y rotations of the dressed qubit following

the black line, where the initial state of the qubit is along |zρ〉. The
pink arrow shows the direction of �R. The FM resonance method
(c) in the rotating frame. The purple lines show

√
X and

√
Y gate

pulses on �ν. The Bloch spheres are in the rotating frame and show
the

√
X and

√
Y dressed qubit control where the initial state of the

qubit is along |zρ〉.

are discrete. In other words, �ν is modulated with a square
pulse.

To see how two-axes control arises from frequency-shift
keying, the qubit state should be described from a frame that
is nutating at a frequency slightly higher or lower than the
Rabi frequency. The Bloch spheres in Fig. 4(a) demonstrate
this transformation; the top plot and Bloch sphere shows
the Rabi frequency and the second plot and Bloch sphere
shows the difference between the Rabi and frame nutation
frequencies chosen. This transformation adds a time depen-
dence to �ν, such that the square pulses can be timed to be at
specific relative phases with respect to each other, leading to

235411-6



QUANTUM COMPUTATION PROTOCOL FOR DRESSED … PHYSICAL REVIEW B 104, 235411 (2021)

a
√

X or
√

Y gate. The gate pulses are shown by the purple
lines in Fig. 4(b), as well as the Bloch spheres showing the
dressed spin performing π/2 gates. Note that tracking phases
and modulating synchronously the microwave and the qubit
frequencies does not demand fast control since these modula-
tions occur in the easily accessible radio-frequency range.

Returning to the rotating frame, we discuss FM resonance.
In this case, �ν is modulated using a sinusoidal shape. The
frequency with which the modulation should take place is �R,
causing a resonance with regard to the dressed qubit quantiza-
tion set by the driving field. With a sine modulation, rotations
occur about the x axis as shown in the top plot in Fig. 4(c). A
phase can be added to the modulation so the amplitude of �ν

follows a cosine wave, performing a rotation about y as shown
in the bottom plot in Fig. 4(c). One constraint of using this
method is that when �ν > �R, the dressed qubit rotates at a
faster rate than �R, breaking the rotating wave approximation
and becoming sensitive to Bloch-Siegert shifts [38,39]. To
avoid this, the amplitude of the modulation should satisfy
�ν 
 �R, resulting in a pulse time that is long compared
to 1/�R. Otherwise, the control pulse needs to be especially
engineered to account for the Bloch-Siegert oscillations.

Both control methods can lead to high-fidelity single-qubit
gates. The choice of method depends on the controllability of
�ν for the particular qubit system and how the amplitude of
this control compares with the Rabi frequency.

Since we are in the dressed picture, there is a constant
echoing of background noise due to the constant on-resonance
field. In the regime where �ν > �R, the resonance effects be-
come weak and noise reduction advantage of the dressed qubit
is degraded. The ideal condition for single qubit operations is
therefore where �ν < �R. Thus, a sinusoidal modulation of
�ν is the preferred control method in most scenarios. While
the frequency-shift keying method is fast, it is only operable
in the nonideal case of �ν > �R.

VI. TWO-QUBIT GATES

It is important to understand the origin of two-qubit gates
for universal quantum computing in the dressed picture. The
intrinsic gates discussed here are the SWAP and CPHASE
gates, both implemented by controllable exchange coupling
between spins. In the rotating bare spin case, these gates have
been discussed in detail [40] but there is no treatment of these
gates for dressed qubits. Here, we focus on how the gradual
change in the pulse ramp times leads to a shift from the SWAP
to CPHASE gate by observing the evolution from Heisenberg
exchange to Ising coupling. Following a similar analysis as in
Ref. [40] (see the Appendix for details), the Hamiltonian of
the dressed qubit in the {|zρ z̄ρ〉 , |z̄ρzρ〉} subspace is described
in terms of a Schrieffer-Wolff transformation as

HSW = h

2

(
−A(tc) + �ν2

1 −�ν2
2

4�R
A(tc)

A(tc) −A(tc) + −�ν2
1 +�ν2

2
4�R

)
, (9)

A(tc) = t2
c U

U 2 − ε2
. (10)

Here we have introduced U as the cost in energy for both elec-
trons to be in the same dot (Hubbard U ). The Schrieffer-Wolff

FIG. 5. Two-qubit gate operations in the dressed basis. The com-
parison of eigenbasis from the Hamiltonian in Eq. (9) when the
system parameters are adjusted. (a) The transition of the SWAP
regime into the CPHASE regime determined by the eigenbasis along
the vertical axis. The horizontal axis is the detuning frequency dif-
ference (�ν1 − �ν2) over the Rabi frequency of both qubits �R.
Three curves are plotted, each for a different tc, where tc = 0.04, 0.4
and 4 GHz from left to right. A S-T Bloch sphere representation of
the (b) SWAP gate and (c) the CPHASE gate, where the bold arrow
shows the axis of rotation.

approximation requires tc < U ± ε and we have assumed
�R1 = �R2 = �R.

Denoting the relative frequencies as �ν1 − �ν2, a plot
of the polar angle θ that defines the rotation axis on the
singlet-triplet Bloch sphere as a function of (�ν1 − �ν2)/�R

is shown in Fig. 5(a). The difference in detuning frequen-
cies over the Rabi frequency ratio is chosen because, for
the dressed qubit to keep its echoing advantages, the detun-
ings should not be larger than �R, meaning the ratio should
be small (typically less than 0.1). The figure shows that
when the ratio (�ν1 − �ν2)/�R is small, A(tc) is the dom-
inating term in the Hamiltonian, resulting in the eigenbasis
{|S(1, 1)〉 , |T0,ρ〉}, when θ = 0. It follows that oscillations
between |zρ z̄ρ〉 and |z̄ρzρ〉 occur, allowing for a SWAP gate. A
singlet-triplet Bloch sphere in Fig. 5(b) shows the rotation axis
along |S〉 − |T0,ρ〉 in this case (precession). For larger (�ν1 −
�ν2)/�R, the eigenbasis shifts to {|zρ z̄ρ〉 , |z̄ρzρ〉} (nutation).
For sufficiently large differences in qubit frequencies, θ =
π/2 giving a CPHASE gate, shown in Fig. 5(c). It should
be noted that when tc is increased or decreased, the region
where the crossover between the two regimes occurs shifts to
a higher or lower (�ν1 − �ν2)/�R, respectively.

The tunnel rates between spin qubits in quantum dots are
typically tunable in the range 0.01–100 GHz, with larger
values of tc shifting the crossover point in Fig. 5(a) to a
larger value of frequency differences. In other words, the
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FIG. 6. Conditional NOT gate decomposition where, if the con-
trol qubit is (a) |1〉, the target qubit is operated on by X. If the
control is (b) (|0〉 + |1〉)/

√
2, the target qubit is rotated by X, and

if the control qubit is (c) (|0〉 + i |1〉)/
√

2, the target qubit is rotated
by Y.

transition from a SWAP gate to a CPHASE gate occurs at
a larger (�ν1 − �ν2)/�R ratio. As mentioned before, the
ratio (�ν1 − �ν2)/�R should not exceed 0.1 because the
dressed qubit noise resilience is a consequence of �R > �ν.
If a qubits is far detuned from the microwave frequency then
the qubit is no longer dressed. As a result of the large tun-
nel coupling, the SWAP gate is the native two-qubit gate of
the dressed qubit, since this gate lies in the region where
(�ν1 − �ν2)/�R < 0.1 for tunnel couplings of the order of
1 GHz.

The particular choice of elementary two-qubit gate can
also be customised depending on the particular application.
A typical example would be the choice of gates for quantum
error correction (QEC) within the surface code [10]. The sta-
bilizer measurements in surface codes utilize the conditional
NOT (CNOT) gate. Many qubit architectures have the native
two-qubit gate as the CPHASE gate, making implementing
CNOT gates natural. With SWAP being the native two-qubit
gate for the dressed qubit, the CNOT gate has to be be com-
posed using

√
SWAP and single qubit operations, shown in

Fig. 6(a). Other conditional gates include CNOTX and CYY,
which flip the target qubit conditional on the superposition
states (|0〉 + |1〉)/

√
2 and (|0〉 + i |1〉)/

√
2, respectively. The

notation for CNOTX is chosen because the gate is a con-
ditional bit-flip gate (NOT) operation on the logical basis,
but the condition is that the control qubit state is along x;
meanwhile, CYY is chosen because the conditional rotation
is, instead, about Y, and the condition is that the state is along

y. These gates are shown in Figs. 6(b) and 6(c). It is clear from
the figure that the CNOTX and CYY have shorter circuit depth,
which potentially leads to less errors in its implementation.
A necessary condition for stabilizer measurements is that the
syndromes commute with each other and that they measure
orthogonal axes [41–43]. Since the CNOTX and CYY gates
(when decomposed) are shorter, it is advantageous to have the
x and y axes stabilized, constructing them from CNOTX and
CYY gates.

VII. SCALABILITY

The main challenge for the scalability of a dressed qubit
architecture is the ability to simultaneously drive all spins,
which depends on the material-specific range of qubit fre-
quency variability. We take the example of electron spins in
silicon to discuss scalability.

In that case, the proposed method to shift �ν is through the
electrical control of the spin-orbit interactions of the electron.
The two mechanisms responsible for spin-orbit interactions in
silicon quantum dots are Rashba [44] and Dresselhaus [45]
effects, originated by the reduction in crystal symmetry at the
interface caused by the atomic scale disorder. Because of this,
small variations in the structure (e.g., lattice imperfections,
surface roughness) surrounding the quantum dots cause vari-
ations in the spin-orbit interactions, leading to differences in
the g factors.

The external magnetic field angle can be tuned to align
with the [100] direction of the silicon lattice and reduce the
spin-orbit effects [24]. This minimizes the Dresselhaus terms,
leaving only a Rashba contribution. The magnetic field angle
can also be tuned such that the difference in Dresselhaus and
Rashba terms between dots cancel each other. However, this is
only effective for two-dot systems since the relative strength
of the two terms is different for each dot. Larger arrays of
dots would mean that each dot sees a different environment
such that canceling the two effects in all dots simultaneously
is impossible, hence a difference in g factors is inevitable.
For this proposal, differences in g factors only become an
issue if the spread of qubit frequencies caused by the g-factor
variability is broader than the dressing field line width set by
the Rabi frequency.

Note that the electrical controllability of the Dresselhaus
term is larger than the Rashba term [25], which means that
the logical gates can be implemented faster if the Dressel-
haus spin-orbit coupling is not completely suppressed. The
ideal angle of the magnetic field for a range of quantum dots
to have good compromise between large controllability and
small variability is left for future investigation, including an
analysis of the microscopic sources of interface disorder.

At present, examples of differences in qubit frequencies
�ν of spin qubits in Si/SiO2 devices are measured as 9.3 MHz
[46], 48.4 MHz [16], and 7.0 MHz [24], with a magnetic field
magnitude of 1 T. In these devices, the external magnetic field
along the [110] direction of the silicon lattice gives the most
variability in �ν [24,47]. Significant reduction in frequency
variability can be obtained with a magnetic field along [100],
which suppresses the Dresselhaus effect due to the interface.
Example values of �ν in Si/SiGe are 2.2 GHz [48], 2.9 GHz
[49], and 2.0 GHz [50], where the direction of the external
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magnetic field with respect to the silicon lattice is not stated
and the magnitude is 1 T. For the case of Si/SiGe qubits
shown here, micromagnets are used to impose a magnetic
field gradient, intentionally resulting in larger �ν values. For
global control schemes, these large frequency differences are
not ideal and micromagnets may need to be engineered in
an arrangement that minimizes the gradient along the line of
qubits.

With the magnetic field along the [100] direction, one
would still observe qubit frequency variability [47], albeit
reduced compared to the [110] field direction. The tolerance
to variability is set by the power-broadened linewidth obtained
with the global field. In purified silicon, the dominant source
of frequency variability is the spread in g factors among
different quantum dots, which we define as the change in
�ν per Tesla. From literature, values can be found from ap-
proximately 4 MHz/T [24] to approximately 12 MHz/T [37].
This means that, at lower magnetic fields, the resulting spread
in qubit frequencies is reduced. From an engineering point
of view, at smaller magnetic fields the microwave resonant
frequency is lower, which typically results in better transmis-
sion and lower attenuation from the lines, improving the Rabi
frequency or, in other words, creating a larger linewidth to
accommodate the qubit frequencies. Recent work has demon-
strated qubit control at B0 = 241.55 mT [51], where the
device used is the same as in Ref. [37], resulting in a �ν

spread of 3 MHz with a linewidth of 2 MHz. While a 2 MHz
linewidth encapsulates a lot of qubits, there is work to be done
in optimizing the magnetic field source to ensure qubits are
controllable as well as maximizing the linewidth. Another op-
tion is to explore the angle of the B0 magnetic field to find the
trade-off between the best g-factor variability and magnitude
of the Stark shifts. The goal would be to find an angle where
the Stark shift is large enough to tune out-of-resonance spins
into resonance, while also having a small enough variability to
ensure most qubits are in the dressing linewidth. Finally, the
specific range of tolerable qubit frequencies can be improved
if pulse-engineered methods are used to further decouple a
qubit from noise and create an effective broader band for
the driving field than what is achievable with a continuous
wave [52].

VIII. SUMMARY

In this paper, we have proposed the use of a continuous
on-resonance global field for a large spin qubit array, suitable
for universal quantum computation. The implementation was
compared to the rotating bare multispin qubit system with and

without an off-resonance global field. From this, it was clear
that the dressed qubit system has the advantage of controlling
a large number of qubits as well as being robust against noise.
With the logical states being encoded as dressed spins, the
Pauli spin blockade remains active due to the rotational sym-
metry of singlet states, which allows for both initialization and
readout. The protocol for performing single- and two-qubit
operations has been shown, confirming that dressed spins are
a suitable platform for scaling to large numbers of qubits.
The effects of inhomogeneity between the g factors of the
qubits was discussed, concluding that the spread of g factors
should be within the linewidth set by the driving magnetic
field. This constraint can be relaxed further by employing
pulse engineering methods [52].

Finally, the adoption of dressed qubits has a few implica-
tions for QEC. First, the echoing properties of the always-on
field decouple the qubit from time-correlated, non-Markovian
noise. This is important because QEC codes deal better with
Markovian noise. Another implication is that the native two-
qubit gate is the SWAP gate for the dressed qubits; in the
context of QEC, the two-qubit entangling gates have a signifi-
cant impact. We have discussed the impact of the native SWAP
gate, concluding that CNOTX and CYY should be utilized in
QEC with dressed spins to reduce circuit depth.
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APPENDIX: SCHRIEFFER-WOLFF TRANSFORMATION,
FINDING THE REDUCED HAMILTONIAN

Using the Schrieffer-Wolff transformation as demonstrated
in Ref. [53], assuming tc < U ± ε, an effective Hamilto-
nian can be found describing the {|zρ z̄ρ〉 , |z̄ρzρ〉} subspace.
To begin, the Hamiltonian describing the whole space
{|zρ z̄ρ〉 , |z̄ρzρ〉 , |T−,ρ〉 , |T+,ρ〉 , |S(0, 2)〉 , |S(2, 0)〉}

H = h

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 �ν2 �ν1 −√
2tc −√

2tc
0 0 �ν1 �ν2

√
2tc

√
2tc

�ν2 �ν1 −2�R 0 0 0
�ν1 �ν2 0 2�R 0 0

−√
2tc

√
2tc 0 0 2(U − ε) 0

−√
2tc

√
2tc 0 0 0 2(U + ε)

⎞
⎟⎟⎟⎟⎟⎟⎠

(A1)
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is split into H = H0 + H1 + H2 such that H0 includes the diagonal elements, H1 the off-diagonal elements between the subspace
of interest and the subspace to be removed, and H2 the off-diagonal elements within these subspaces:

H0 = h

2

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 −2�R 0 0 0
0 0 0 2�R 0 0
0 0 0 0 2(U − ε) 0
0 0 0 0 0 2(U + ε)

⎞
⎟⎟⎟⎟⎟⎠, (A2)

H1 = h

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 �ν2 �ν1 −√
2tc −√

2tc
0 0 �ν1 �ν2

√
2tc

√
2tc

�ν2 �ν1 0 0 0 0
�ν1 �ν2 0 0 0 0

−√
2tc

√
2tc 0 0 0 0

−√
2tc

√
2tc 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A3)

H2 = 0. (A4)

Setting H ′ = H1 + H2 and denoting H0 with H0, the reduced Hamiltonian can be found from

Hmm′ = H0
mm′ + H ′

mm′ + H ′
ml H

′
lm′

1

2

∑
l

(
1

Em − El
+ 1

E ′
m − El

)
, (A5)

where E are the eigenvalues of H0, the indices m, m′ refer to the elements from the subspace {|
sym〉 , |T−,ρ〉}, and l, l ′ from the
rest of the elements. Following Eq. (A5), the reduced Hamiltonian (9) is found:

HSW = h

2

(
− t2

c U
U 2−ε2 + �ν2

1 −�ν2
2

4�

t2
c U

U 2−ε2

t2
c U

U 2−ε2 − t2
c U

U 2−ε2 + −�ν2
1 +�ν2

2
4�

)
. (A6)
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