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Many advances in reflective metasurfaces have been made during the last few years, implementing efficient
manipulations of wave fronts, especially for plane waves. Despite numerous solutions that have been developed
throughout the years, a practical method to obtain subwavelength focusing without the generation of additional
undesired scattering is a challenge to this day. In this paper, we introduce and discuss lossless reflectors for
focusing incident waves into a point. The solution is based on the so-called power-flow conformal surfaces that
allow theoretically arbitrary shaping of reflected waves. The metamirror shape is adapted to the power flow of
the sum of the incident and reflected waves, allowing a local description of the reflector surface based on the
surface impedance. In particular, we present a study of two scenarios. First, we study the scenario when the
field is emitted by a point source and focused at an image point (in the considered example, with the λ/20
resolution). Second, we analyze a metasurface capable of focusing the power of an illuminating plane wave.
This work provides a feasible strategy for various applications, including detecting biological signals near the
skin, sensitive power focusing for cancer therapy, and point-to-point power transfer.
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I. INTRODUCTION

The development of lenses and focusing reflectors as op-
tical tools started in ancient times. Enabling and improving
the vision of small objects intrigued the human mind and
led to the invention of many optical instruments. However,
the wave nature of light limits the quality of focusing, as
was explained by Abbe in 1873 [1,2]. In astronomy, the
diffraction-limited angular resolution of a telescopic lens
is inversely proportional to the diameter of the aperture,
D, and proportional to the wavelength of the light being
observed, λ, as 1.22λ/D [3,4]. In microscopy, this limit
impedes the resolution of imaging roughly around half-
wavelength [5]. It also limits the ability to focus waves into
a small spot (hot spot), which is important, in particular, for
photolithography [6].

In the modern era, methods for focusing and concentration
of electromagnetic energy in small subwavelength regions
are crucial in a variety of applications including therapy [7],
energy harvesting [8], wireless power transfer [9], and parti-
cle manipulation [10]. The problem arises because scattered
waves from an object that carry components with high spatial
frequencies correspond to evanescent waves that exponen-
tially decay in space. There are several known approaches
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for realizing subwavelength focusing in the far zone. Let us
briefly mention the main methods.

One is based on the use of artificial materials (meta-
materials) with simultaneously negative permittivity and
permeability, discussed by Veselago in 1968 [11]. Later,
in 2000, Pendry showed that a double-negative material
slab theoretically functions as a perfect lens [12]. How-
ever, limitations due to material losses and discrete structure
of metamaterials do not allow practical realizations; see,
e.g., [13–15]. Using silver as a natural near-field opti-
cal superlens for evanescent modes only, the diffraction
limit can be reduced down to approximately λ/6; how-
ever, due to dissipative losses, power is highly attenuated
[16–19].

Another approach is the use of extremely anisotropic ma-
terials, which allow conversion of evanescent modes into
propagating ones and this way transporting images with
subwavelength resolution to electrically long distances. For
this purpose, wire media [20–22] and hyperbolic materials
[23–26] have been used.

Alternative solutions have been proposed using meta-
surfaces, a two-dimensional version of metamaterials. One
possibility is to use a double array of small resonant par-
ticles. Resonant oscillations in two parallel arrays that are
strongly coupled realize the same effect of resonant ampli-
fication of evanescent waves as in the Veselago-Pendry lens
based on bulk double-negative materials [27–30]. Using non-
linear metasurfaces, focusing and light concentration can be in
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principle realized reversing the phase of the propagating wave
spectrum [31–33].

Furthermore, there are works on the use of zone plates
for evanescent modes [34,35] and near-field plates [36,37].
These structures, however, can be used only if the object is
located in the vicinity of the plate (much smaller than the
wavelength). This disadvantage can be overcome with the use
of super-oscillations [38–40], but at the cost of scattering most
of the incident power into parasitic propagating modes.

Despite the broad variety of methods known to allow sub-
wavelength field concentration and focusing, all of them have
their specific limitations and disadvantages, and it is important
to explore other possibilities that may offer complementary
advantages and further develop our understanding of these
phenomena.

In this work, we are interested in forming subwavelength
focal spots in free space or in the presence of a small re-
ceiver (drain) using reflectors. We explore subwavelength
focusing possibilities offered by recently introduced power-
flow conformal metamirrors. Power-flow conformal reflectors
have been recently proposed and applied to realize anomalous
reflection and beam splitting [41,42] and for the design of
refractive focusing devices [43]. The main operating principle
of power-flow conformal metamirrors is to define the surface
profile of the metamirror to be tangential to the power flow of
the desired field distribution. When the reflector is shaped so
that the power flow is at every point tangential to the surface,
wave power flow does not cross the metasurface boundary
and, consequently, we can locally define the properties of the
metamirror as a lossless impedance boundary. In this case, the
response of the metamirror can be modeled by local surface
impedance Zs (the ratio between the tangential components
of the electric and magnetic fields at the surface) and this
value is purely imaginary (Re[Zs] = 0) at every point of the
reflector. In practice, this simplifies the design and implemen-
tation, because the response is local and each element of the
metamirror can be designed by appropriately controlling the
phase reflection between 0 and 2π [41,42].

In this paper, we study two-dimensional power-flow con-
formal metamirrors for subwavelength focusing. In particular,
we assume that the desired field structure is the sum of the
incident field and a cylindrical wave that converges to a point
focus. We study two different focusing scenarios. First, we
study the scenario when the field emitted by a point source
propagates in space and focuses at the image point with
theoretically perfect resolution. Second, we analyze a meta-
surface capable of focusing the power from an illuminating
plane wave. In both cases, the proposed methodology is eval-
uated through full-wave simulations, using the finite-element
method in COMSOL Multiphysics. The results show an ex-
ample of subwavelength focusing with half-power beam width
(HPBW) or hot-spot size as λ/20. Also, almost all of the
incident power is concentrated at the focal point.

II. FROM POWER-FLOW CONFORMAL ANOMALOUS
REFLECTORS TO FOCUSING MIRRORS

Before starting with the design of focusing mirrors, let us
recall the general operating principle of power-flow conformal
metamirrors by analyzing the anomalous reflector scenario.

(a)

(b) (c)

FIG. 1. Power-flow conformal anomalous reflectors.
(a) Schematic representation of the problem. (b) A flat anomalous
reflector is implemented by an “active-lossy” metamirror.
(c) Lossless power-flow conformal anomalous reflectors.

Anomalous reflectors capable of reflecting the energy of an
impinging plane wave into arbitrary directions have been in-
tensively studied during the past years [41,42,44–47]. Based
on the uniqueness theorem, an impedance boundary condition
is enough to define the desired power flow in front of a reflec-
tor. Thus, by engineering the surface impedance of a boundary
we can enable desired functionalities. To understand the de-
sign and realization challenges, we can analyze an anomalous
reflector that transforms a normally incident plane wave into
a plane wave propagating in an oblique direction defined by
the angle θr. We can form the desired field distribution as-
suming that the reflected plane wave is generated by a virtual
source placed behind the reflector plane [see Fig. 1(a)] whose
amplitude is defined to warrant the power conservation (the
component of the Poynting vector normal to the reference
plane is the same for the incident and reflected waves). As
has been shown in [41,42,44–46], if we define a flat sur-
face as the reflector plane, the required surface impedance is
defined as

Et = Zsn̂ × Ht, (1)

where Et and Ht are the total electric and magnetic fields (Et

only has a z component), n̂ is the normal unit vector pointing
toward the incident wave source, and surface impedance Zs is
a complex quantity whose real part takes positive and negative
values. This is because the two plane waves of the desired
field structure (the incident and reflected one) interfere. The
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(a) (b) (c)

FIG. 2. Fields of a point source located at rs = (5λ, 0) propagate and focus at the image point, located at rd = (−5λ, 0). (a) The
total electric field in the xy plane when the current source amplitude is I0 = 4/kη. Black arrows represent the power emerging from the
source and entering into the image point. The green and magenta lines represent two different surfaces for implementing the metamirror.
(b) Electromagnetic properties of a flat metamirror along the y direction located at x = −6λ. The upper panel shows the surface impedance
at the flat surface. The bottom panel shows the local power entering and emerging from the metamirror. (c) Electromagnetic properties of a
circular metamirror with the radius 6λ, centered at the coordinate origin. The upper panel shows the surface impedance. The bottom panel
shows the local power entering and emerging from the metamirror.

real part of the complex surface impedance represents power
being absorbed when it is positive and power emerging from
the surface when it is negative. This scenario is illustrated
in Fig. 1(b). At this point, it is important to mention that,
because the amplitude of the virtual source generating the
reflected field has been adjusted to satisfy power conservation,
the averaged power crossing the surface is zero, meaning that
the metamirror is overall lossless. One of the possibilities to
realize perfect anomalous reflectors is to engineer the shape
of the metamirror in such a way that the surface is always
tangential to the spatial power flow generated by the two
plane waves [41,42]; see Fig. 1(c). In this case, the surface
impedance of the metamirror is purely imaginary at all points,
and the surface can be implemented using simple lossless
meta-atoms. In what follows, we will apply this methodology
to the design of focusing devices.

Now, let us consider the case of a cylindrical wave emitted
from a line source (a point source in 2D space) that propagates
in air (vacuum) and focuses on the image line with theoreti-
cally perfect resolution. We assume that the current line source
is infinite along the z direction, and therefore we only need to
consider the wave propagation on the x-y plane. For such a
line source, the electric field of the emitted cylindrical wave
only has a z component, and the fields can be written as

Es = −ηkI0

4
H (2)

0 (krs)ẑ, Hs = j

ηk
∇ × Es, (2)

where the subscript s denotes source fields, η is the free-
space impedance, k is the vacuum wave number at the
operation frequency, I0 is the amplitude of the source cur-
rent, H (2)

0 is the zeroth-order Hankel function of the second
kind with rs = |r − rs| =

√
(x − xs )2 + (y − ys)2 being the

distance from the observation point r = (x, y) to the current
location rs = (xs, ys ), and ẑ is the unit vector in the z direction.
The harmonic time dependence in form exp( jωt ) is assumed.

For perfect focusing, we desire the same amount of energy
converging at a drain line. Thus, the desired field distribution
in space is the sum of the incident cylindrical wave (2) and a
converging cylindrical wave

Ed = ηkI0

4
H (1)

0 (krd )ẑ, Hd = j

ηk
∇ × Ed, (3)

where subscript d denotes the desired reflected fields and H (1)
0

is the zeroth-order Hankel function of the first kind with rd =
|r − rd| being the distance from the observation point to the
drain location rd = (xd, yd ). The total fields read

Et = Es + Ed, Ht = Hs + Hd, (4)

and the Poynting vector of the total field is

S = Sxx̂ + Syŷ = 1

2
Re[Et × H∗

t ]. (5)

As an example, Fig. 2(a) represents the field generated by the
current line located at (5λ, 0) with the amplitude I0 = 4/kη

that is focused at point (−5λ, 0). Black arrows represent the
power flow emerging from the source and converging into the
focal point.

For the design of a metamirror capable of performing this
transformation, one can consider a flat surface along the y
direction. Following the same example presented in Fig. 2(a),
we can define a flat surface located at x = −6λ, e.g., the ver-
tical green line, and calculate the required surface impedance.
As shown in Fig. 2(b), the surface impedance is a complex
value whose real part takes positive and negative values,
meaning that the metamirror locally produces losses or gain.
The local gain/loss introduced by the metamirror can be evalu-
ated using the normal component of the Poynting vector to the
surface. Specifically, the vectorial components of the Poynting
vector Sx and Sy can be expressed in terms of the total fields
as in Eq. (5). In this particular example of a flat surface along
the y direction located at x = −6λ, the local power density
crossing the surface in the x direction is represented by Sx in
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Fig. 2(b). If we calculate the net power (average of the normal
component of the Poynting vector along the surface) we can
see that, for finite-size metasurfaces, the metamirror is active
and contributes to the power collected into the drain. Only in
the limit case when the metasurface is infinite losses and gains
compensated are the structure is overall lossless, and this is the
case for any open surface.

An overall lossless metamirror can be constructed if it is
placed on a closed surface enclosing both the source and
the drain (which is a virtual source generating the reflected
fields). As an example, we analyze a circular metamirror with
the radius 6λ and centered at the origin of the coordinate
system [see the magenta circle in Fig. 2(a)]. To find the
required surface impedance, it is necessary to calculate the
tangential components of the magnetic field at each point of
the surface. To this end, we define the normal vector of the
metamirror as n̂ = nxx̂ + nyŷ = − cos θ x̂ − sin θ ŷ. The tan-
gential component of the magnetic field reads Ht = n̂ × Ht =
Htotynx − Htotxny. The surface impedance of the metamirror
calculated with Eq. (1) is represented in Fig. 2(c). In this
case, the surface impedance is also a complex number with
a nonzero real part, meaning that the metamirror is locally
“active-lossy.” Figure 2(c) shows the normal component of the
Poynting vector S⊥ = Sxnx + Syny at each point of the surface
where we can see that the average value of the power crossing
the surface is zero. Because any close boundary enclosing
both the source and drain is overall lossless, we can apply
the principles of power-flow conformal metamirrors to find
a shape of a closed boundary that locally produces lossless
behavior.

However, preceding the study of the applicability of power-
flow conformal metamirrors for focusing, it is important to
discuss the role of the virtual source generating the reflected
fields. Mathematically, the virtual source is a time-reversed
version of the actual source whose role is to extract the en-
ergy introduced in the system by the actual source. In other
words, the virtual source acts as a drain that totally absorbs all
incident radiation without reflections. For its implementation,
one may consider an active, phase-retarded perfect drain that
coincides with an inward monopole wave and is designed to
cancel input signals [48,49]. Even though active drains can
be in principle realized, their implementation requires well-
controlled temporal and spatial synchronization [50]. The
conditions for passive perfect drains have been discussed in
the literature where we can find solutions based on engineer-
ing the complex permittivity of nonmagnetic materials [51]
or the use of loaded coaxial cables [52]. It is important to
mention that, as happens in the case of Maxwell’s fish-eye
lens bounded by a perfectly conducting (PEC) boundary, the
focusing functionality with super-resolution is only achieved
in the presence of the drain, so it is important to extend the
analysis and understanding of this singular point.

We start the analysis of the drain by considering a cylin-
drical surface surrounding the singular line (point in 2D
space) [see Fig. 3(a)]. The boundary conditions at this cylin-
drical boundary can be defined by the surface impedance.
Figure 3(b) represents both the real and imaginary parts of the
surface impedance for three different surfaces with different
radii: r′ = 0.5λ, 0.1λ, 0.01λ. We can see that in these three
cases the real part of the surface impedance is positive, as the

(a)

(b)

FIG. 3. Numerical simulation of a cavity metamirror that focused
the fields generated by a point source into an image point inside the
cavity volume. (a) The total electric field and Poynting vector (rep-
resented by the black arrows). (b) The required surface impedance to
implement a perfect drain with different radii.

drain behaves as a perfectly matched absorber. The variation
of the surface impedance around the cylindrical surface of the
drain is reduced when the radius of the drain is reduced, which
is due to the weaker variation of the incident field in a smaller
circle: very close to the focus point the total field is dominated
by the field of the converging cylindrical wave, which depends
only on the distance from the focal point.

We can see that both real and imaginary parts of the surface
impedance tend to zero when the radius of the drain tends
to zero. However, in the limit of zero radius, the physical
meaning of the surface impedance loses its sense, as the two-
dimensional cylindrical surface shrinks to a one-dimensional
line. In this limit, we should use the model of an impedance
wire whose parameter is the impedance per unit length. This
impedance is defined as the ratio of the longitudinal compo-
nent of the electric field at the wire surface to the total current
flowing along the wire which is equal to the circulation of the
magnetic field around the wire. Because in the very vicinity of
the sink the field is very close to that of the sink in free space,
we can find this impedance directly from Eq. (3):

Zpul = η
k

4
+ jη

k

2π

(
1 + ln

γ krd

2

)
. (6)

Here we have used the small-argument approximation of the
Hankel function, H (1)

0 (x) ≈ 1 + j 2
π

(1 + ln γ x
2 ), where γ ≈

0.5772 is the Euler constant. Alternatively, we can calculate
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the wire impedance per unit length as

Zpul = lim
rd→0

Ez

2πrdHφ

, (7)

which gives the same result. Indeed, the amplitude of the
φ component of the magnetic field reads, from (3), Hφ =
jI0

k
4 H (1)

1 (krd ). Using the small-argument approximation
H (1)

1 (x) ≈ x
2 − j 2

πx we arrive at the same result (6). Note that
the real part of this impedance equals the radiation resistance
(per unit length) of a radiating current line, as it should. The
wire reactance is capacitive (because krd � 1), and it is the
negative of the inductive reactance per unit length of a thin
conducting wire acting as a power source, indicating a kind of
resonant condition of the whole structure.

Figure 3(a) shows the results of numerical simulations of
a cylindrical metamirror cavity whose radius is 6λ [surface
impedance for this boundary, Zsc1, is represented in Fig. 2(c)].
The radius of the drain is r′ = 0.1λ. Here we can see how the
metamirror cavity is able to produce a converging cylindrical
wave at the position of the drain. Black arrows represent the
total Poynting vector and show how the energy is emerging
from the source and converging into the drain.

An alternative possibility is to place the drain outside of the
closed surface, as shown in Fig. 4. As an example, Fig. 4(a)
shows the results of numerical simulations of a cylindrical
cavity with the radius 6λ when the source is located at rs =
(5λ, 0) and the drain is defined at rd = (−6.1λ, 0) (outside
of the cylindrical cavity). The surface impedance required
to implement the cavity with this configuration is shown in
Fig. 4(b). As in the previous example, the surface impedance
is “active-lossy.” However, in this scenario, the overall re-
sponse of the metamirror is not lossless. The metamirror itself
is acting as a drain and absorbs the energy introduced in the
system by the source. This behavior can be seen in the plot
of the local power entering and emerging from the metamirror
[bottom panel in Fig. 4(b)], where we can see how the loss and
gain are distributed along the metamirror. This result demon-
strates that the drain (power receiver) can be implemented as
an independent element inside the cavity or integrated into the
surface of the cavity.

Now we are ready to consider the possibility of deforming
the surface into a power-conformal shape so that the surface
will be lossless at all points. To this end, we define a vector
perpendicular to the Poynting vector as N = −Syx̂ + Sxŷ and,
using the properties of the gradient, we look for a function
g(x, y) such that ∇g(x, y) = N. This expression resembles the
well-known formula for the electric potential in electrostatics,
E = −∇V . Using this mathematical analogy, we calculate
g(x, y) using an electrostatic solver in COMSOL. By defining
the electric displacement field to be proportional to vector N
we solve the electric potential that is equivalent to the function
g(x, y) [see Fig. 5(a)]. Finally, the profile of the metamirror
can be defined as an equipotential surface. There are infinitely
many surfaces tangential to the power flow, and each of them
defines a different metamirror with different electromagnetic
responses. The black lines in Fig. 5(a) graphically represent a
set of conformal surfaces which are tangential to the Poynt-
ing vector of the desired field distribution. It is important to
notice that, in order to calculate the electric potential, the

(a)

(b)

FIG. 4. Numerical simulation of a cavity metamirror that fo-
cuses the fields generated by a point source into an image point
outside of the cavity volume. (a) The total electric field and Poynting
vector (represented by the black arrows). (b) The required surface
impedance to implement the cavity and the normal component of the
Poynting vector at the cavity surface.

singularities associated with the source and the drain have to
be excluded from the simulation domain; that is, we do not
obtain a closed surface. The definition of the electromagnetic
properties around these singular points will be discussed later.

To engineer a metamirror based on this analysis, we se-
lect one of the conformal lines and calculate the surface
impedance defined by Eq. (1). Figure 5(b) shows the sur-
face impedance for the highlighted conformal surface (green
color). The surface impedance is represented for one section,
as it is symmetric with respect to the y axis. The real part
of the surface impedance is zero, indicating the local and
lossless response of the metamirror. The imaginary part of the
impedance shows the rapid fluctuation of the reactance, re-
sponsible for wave-front engineering. The peaks of Im[Zs/η]
theoretically reach infinity at points where Ht = 0. However,
in actual implementations, these very high and diverging
values are not essential. This is because when the surface
impedance is very high, the corresponding induced current is
very low. Thus, fine tuning of the phase for this very weak
current is not necessary. It is enough to fill the high-impedance
regions with resonant inclusions (e.g., quarter-wave grooves).
Our simulations show that with the impedance truncated at
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FIG. 5. (a) Electrostatic study to find the shape of power-conformal surfaces. Black lines represent a set of conformal surfaces which
are tangential to the Poynting vector. (b) Normalized surface impedance for the highlighted conformal surface (green color) in (a). (c) Open
boundaries are closed with lossy arcs (the part of a circle with radius r = 0.01λ). Solid lines are power conformal, and dashed lines are lossy
boundaries. (d) Simulation results of the subwavelength focusing by the conformal cavity closed with circular arcs.

5η the performance is still almost perfect, as is shown in
Fig. 5(b). The width of the impedance peaks (the distance
between the neighboring peaks) is location-dependent, as it
is determined by the points where the tangential magnetic
field is zero at the selected power-flow conformal surface.
As we can see from Fig. 5(b), the peak widths on the two
sides (close to the source or drain) are about λ/2, and the
widths are increasing when the location is far away from the
source or drain (the middle of the plot). These peak widths
will affect the implementation of the metamirror with lumped
elements or unit cells, as they will determine the size and the
distance between the lumped elements. Taking these issues
into consideration, the required smallest unit cell size and the
distances between the units are estimated to be about λ/10.
We note that in the regions where the impedance level is
moderate, the variation of the impedance over the surface is
relatively smooth.

As we have mentioned, the system has two field singular-
ities at the source and focal points. Therefore, close vicinity
areas were excluded from the electrostatic analysis, so the
equipotential lines do not build closed surfaces. This leaves
the boundary open around both singularities. Although open
boundaries are very small, in proximity to the source and
the drain nearly all the power crosses these boundaries. In
our approach, we complete the surface with circular arcs [see
Fig. 5(c)]. These active or lossy surfaces are shown by dashed
arcs with the radius r = 0.01λ in Fig. 5(c). Normalized sur-
face impedances of the corresponding circular arc boundaries
are drawn in the same picture. In both cases, the real parts of
the surface impedance are positive indicating the presence of
loss. So, one can realize this surface impedance with passive
elements. In the current scenario, the source is inside the
simulation domain and the focal point is excluded from the
cavity domain, so the metasurface is overall lossy and all
the losses are concentrated in the closing arcs. This scenario
corresponds to placing the receiver just at the mirror surface.

Figure 5(d) shows the results of a numerical simulation of
the conformal cavity closed by circular arcs. This simulation
shows the total field generated by the point source, which is in
excellent agreement with the theoretical results. We also show
the absolute value of the reflected power Pr = 1

2η
|Er |2 W/m2

from the metamirror. The power distribution shows that al-

most all of the input power is focused at the focal point. In this
particular design, we observe subwavelength focusing with
the hot-spot size HPBW = λ/20, and it is limited only by the
excluding circular arc r = 0.01λ. In theory, this is the proof
of concept for perfect focusing, because by implementing a
smaller arc it is possible to further reduce the hot-spot size.

We note that the above discussions will not change when
we choose another radius of the drain when designing the
surface using the “electrostatic” study. This is because the
design is only determined by the Poynting vector distribution
in space. When the source and drain positions are fixed, the
spatial distribution of the Poynting vector is fixed and does not
change with changing the radius of the drain. In actual imple-
mentations, the size of the unit cell will affect the achievable
resolution (the ultimate size of the hot spot).

III. OPEN METAMIRRORS FOR SUBWAVELENGTH
FOCUSING

In this section, we use the same methodology for studying
open metamirrors to focus the field of an impinging plane
wave. In this case, the incident fields can be expressed as

Es = E0e− jk(sin θix−cos θiy)ẑ, Hs = j

ηk
∇ × Es, (8)

where θi is the angle of incidence. The field of the virtual
source generating the reflected fields is defined, as in the
previous example, by Eq. (3). In this case, the amplitude
of the virtual source has to be adjusted to make sure that
the total reflected power equals the incident power. If we
assume that the reflection plane is normal to the y direction,
and the incident wave propagates along the normal direction
(θi = 0), the power introduced in the system can be calculated
as Ppw = 1

2η
DE2

0 with D being the aperture of the metamir-
ror. Then, the virtual source defines the reflected power as
Pd = 1

2 Re(Zpul )I2
0 . Equating these two values we obtain the

amplitude of the current in the virtual source as a function of
the amplitude of the plane wave and the effective aperture of
the metamirror as

I0 = 2

η
E0

√
D

k
. (9)
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FIG. 6. (a) Electrostatic study to find power-conformal surfaces when the amplitude of the incident plane wave is E0 = 1 V/m, the aperture
of the reflector is D = 40λ, and the position of the virtual source is rd = (0, 10λ). The green line represents a conformal surface that is
tangential to the Poynting vector. (b) Normalized surface impedance for the highlighted conformal surface (green color) in (a). (c) Normalized
surface impedance for implementing a prefect drain by a circular surface with the radius r′ = 0.1λ. (d) Numerical simulation of the reflected
field scattered by the conformal metamirror with a total length L = 91λ. (e) Numerical simulation of the field reflected by the conformal
metamirror with the total length L = 20λ. The real part of the electric fields around the focal point is represented in (d) and (e).

Following a similar approach to that in Sec. II, the first
step is to perform the electrostatic study and find the shape of
power-conformal surfaces. In particular, we will consider an
incident plane wave with the amplitude E0 = 1 V/m, a reflec-
tor with the aperture D = 40λ, and the position of the virtual
source at rd = (0, 10λ). Defining the electric displacement to
be proportional to the vector N (a vector perpendicular to the
Poynting vector), we obtain the electric potential represented
in Fig. 6(a). In this calculation, we exclude a small domain
near the drain and exploit the symmetry of the problem with
respect to the y axis. As has been discussed, the profile of
the power-flow conformal metamirror can be defined as an
equipotential surface. In this case, among all the possible
surfaces, we are interested in a surface that closes behind
the drain (shown in green color). Notice that this solution is
unique and other surfaces will converge into the source or
diverge to infinity.

It is interesting to see how the surface of the conformal
metamirror becomes more vertical and tends to the aperture
of the metamirror D defined in the design process. This shape
of the conformal surface ensures that the energy entering the
system is in agreement with the power balance stipulated
by the design conditions. Next, in order to implement the
metamirror, we need to calculate the surface impedance on
this conformal surface. Figure 6(b) represents the normalized
surface impedance where we can see that, as expected, the
surface impedance is purely imaginary at all points. As in the

previous section, the peaks of Im[Zs/η] can reach to infinity.
However, because the corresponding current is very low, we
can truncate the impedance at 5η and still preserve the nearly
perfect performance. In this example, the smallest width of
the impedance peaks is about 4λ.

To verify the properties of the designed surface, we nu-
merically calculate the scattered fields. In this calculation,
we implement the drain as a lossy surface impedance on a
circular surface around the drain point, with the radius r′ =
0.1λ. The surface impedance of the drain is represented in
Fig. 6(c). Before we start with the analysis, it is important
to mention that the power-conformal surface obtained from
the analysis of the power flow is infinite and, in a practical
scenario, we need to truncate it and define a finite length, L.
Obviously, the scattering properties of the metamirror will
depend on the mirror length, and we will study this effect
by studying two examples. The first example is a metamirror
with the total length of L = 91λ. In this case, the aperture of
the metamirror is D ≈ 37λ (close to the design conditions).
The reflected field near the drain is shown in Fig. 6(d) where
we can see that the reflected field focuses on the drain posi-
tion. The pattern of the cylindrical wave is perturbed due to
parasitic reflections caused by the finite size of the reflector.
For comparison, we simulate a metamirror with the same
configuration but with a length L = 20λ. The reflected fields
are shown Fig. 6(e). In this example, we can see how the
waves still focus on the drain, but there is a deterioration of

235409-7



HAMIDREZA TAGHVAEE et al. PHYSICAL REVIEW B 104, 235409 (2021)

(a) (b)

(c) (d)

FIG. 7. Effect of the drain in the power localization. (a) The
absolute value of the time-averaged power when the conformal
metamirror has the total length L = 91λ and the prefect drain is
implemented by a circular surface with the radius r′ = 0.1λ. (b) The
absolute value of the time-averaged power when the conformal
metamirror has the total length L = 91λ without a drain. (c) The
absolute value of the time-averaged power when the conformal
metamirror has the total length L = 20λ and the prefect drain is
implemented by a circular surface with the radius r′ = 0.1λ. (d) The
absolute value of the time-averaged power when the conformal
metamirror has the total length L = 20λ without a drain. Black lines
represent the power flow.

the cylindrical pattern as a consequence of a smaller reflector
size.

Further analysis is required to understand the role of the
drain on power localization. Using the same examples shown
in Fig. 6, we study the power localization in the presence and
in the absence of the drain. First, we study the metamirror
with the total length L = 91λ and a perfect drain implemented
by a circular surface with the radius r′ = 0.1λ. Figure 7(a)
shows the time-averaged power flow near the drain where we
can see how the drain acts as a sink and collects the power.
In this case, the size of the focusing spot depends on the
physical size of the drain. Figure 7(b) shows the power flow
for the same metamirror without a drain. We can see that
there is strong localization at the focal point. However, in the
absence of a drain, the energy of the converging cylindrical
wave is scattered back (to satisfy the energy conservation),
and the field strength at the focal point is reduced. In the
ideal case of an infinite large metamirror that produced a
perfectly converging cylindrical wave, without a drain, there
would be no power localization. Figure 7(c) shows the power
localization produced by a metamirror with the total length
L = 20λ and a perfect drain implemented by a circular surface
with the radius r′ = 0.1λ. Here, we can see how the energy
converges to the drain but the distortion of the cylindrical

(a)

(b)

(c)

FIG. 8. Comparison between a parabolic reflector and a power-
conformal metamirror without a passive drain. (a) The surface of a
parabolic reflector and the conformal metamirror. (c), (d) Compari-
son of the normalized electric field scattered by the two structures in
the x plane (b) and y plane (c) at the focal point.

pattern as a consequence of the parasitic reflections creates an
asymmetric distribution of the power around the drain (most
of the power is absorbed from the bottom side of the drain).
The results for the same structure without the drain are shown
in Figure 7(d). In this case, the power localization is stronger
than in Fig. 7(b), but the size of the focal spot is limited by
diffraction.

To finalize this study, we compare the conformal metamir-
ror without a drain and a conventional parabolic reflector.
The surface profiles for the two structures are presented in
Fig. 8(a). To compare the results for both structures, we study
the electric field distribution in two orthogonal planes in the
vicinity of the focal point. Figures 8(b) and 8(c) represent
the field distribution in the x plane and y plane, respectively.
Notice that the amplitude of the electric field is normalized
to the maximum value at the focal point. We can see that in
the absence of a passive drain (power receiver) the power-
conformal mirror offers a focusing performance similar to that
of a conventional parabolic mirror. However, it is important
to stress that the aperture of the power-conformal metamir-
ror is significantly smaller than that of the corresponding
parabolic mirror.
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IV. CONCLUSION

Based on the power-flow analysis, we have established a
method to engineer metamirrors for point-to-point subwave-
length focusing. Compared to genuine geometry designs such
as a flat reflector or a circular cavity, introduced metamirrors
are shaped along with the power flow of the desired power
distribution. They can be implemented by lossless elements.
To deplete the input power of the impinging waves out of
the system, lossy elements at or around the focal point are
required. We have analyzed the impact of the drain whether it
is inside or outside the cavity and found the corresponding
surface impedance. We have shown that when the drain is
outside the cavity, the surface is no longer lossless, but the
power absorption can be concentrated at an arbitrarily small
area of the surface. In this case, the radius of the drain arc
defines the hot-spot size of the focusing device. For instance,
with the radius r = 0.01λ, we have achieved subwavelength
focusing with HPBW = λ/20. This is a theoretical proof of
the concept for perfect focusing, as it is possible to obtain even
smaller hot-spot sizes within the limit of smaller drains.

Using the same approach, we designed open metamir-
rors to focus incident plane waves. With the presence of a
drain at the focal point, we have shown subwavelength fo-
cusing also for open power-conformal reflectors. Compared
to a parabolic reflector in the absence of a drain, engineered
power-conformal metamirrors can provide the same quality of
focusing with much smaller apertures. The proposed method-
ology is general and applicable for any isotropic media as the
host, and most of the results are given in the normalized form.
Only the recalculation of the Poynting vectors and the electro-
static study are required for engineering the new metamirror
for a different background medium. We hope that the results
of this work pave the way for developing applications that
require subwavelength focusing.
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