
PHYSICAL REVIEW B 104, 235406 (2021)

Effect of the Dirac-cone tilt on the disorder-broadened Landau levels
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By means of the kernel polynomial method (KPM), a numerically exact theoretical approach, we calculate
the density of states (DOS) and diagonal conductivity of a two-dimensional Dirac nodal system in the presence
of a high magnetic field. The effect of Dirac cone tilt on the profiles of disorder-broadened Landau level (LL)
peaks in both the DOS and diagonal conductivity spectra is our main concern. Our numerical results show that
the profile of an isolated LL peak in DOS, especially the n = 0 one, is tilt independent. On the other hand, the
Dirac cone tilt enhances/reduces the diagonal conductivity peaks in the direction perpendicular/parallel to the
cone tilt direction (y direction). In particular, at the Dirac point, i.e., zero energy, the ratio of the former to the
latter is σxx (0)/σyy(0) = 1/(1 − β2), with β being the tilt parameter. In addition, in comparison with the results
obtained by KPM, we check the validity of the self-consistent Born approximation (SCBA) which has thus far
been widely exploited for studying the DOS and quantum transport properties of Dirac or Weyl systems with
disorder. We find that the SCBA fails to describe the detail of the LL peak around zero energy. At zero energy,
the KPM result of the diagonal conductivity increases with the disorder strength before saturation, rather than a
disorder-independent constant as reported previously by SCBA.
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I. INTRODUCTION

In recent years, two-dimensional (2D) topological
semimetal materials have attracted intense research interest
due to their peculiar band structures and potential applications
in nanoelectronics. As a paragon of 2D topological
semimetals, graphene’s conduction and valence bands exhibit
an almost perfect cone shape near the Dirac point [1,2],
which is called a Dirac cone. The massless Dirac fermion
nature remarkably manifests itself in the high magnetic field,
where the Dirac cone is quantized into a set of nonequidistant
Landau levels (LLs) given by En = sgn(n)

√
2eh̄v2

F |n|B,
where e is electron charge, h̄ is the Planck’s constant, vF

is the Fermi velocity, n = 0,±1,±2 · · · is the LL index,
and B is the magnetic field strength. This emblematic LL
spectrum and its characteristic zero energy (n = 0) LL are
directly related to the half-integer quantum Hall effect in
graphene [3]. Many efforts have been made to determine
the electronic properties of the disorder-broadened LLs. In
previous works [4,5], Zhu et al. exactly calculated the density
of states (DOS) of graphene under a high magnetic field and
white-noise random potential using the Lanczos recursive
method. The results show that the zero-energy LL peak in the
DOS spectrum has a Gaussian shape, which is similar to the
Gaussian-like shape for the lowest LL for the conventional 2D
Schrodinger electrons [6], and the broadening width � of the
LL peak depends on both the magnetic field and the disorder.
Specifically, � is proportional to the random potential
variance and the square root of the magnetic field strength
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[4,5]. According to such characteristics of the zero-energy LL
peak in DOS, it is deduced that the diagonal conductivity at
zero energy (Dirac point) in graphene does not depend on the
magnetic field strength and is only disorder dependent in high
magnetic field environments [4]. Later, Ortmann and Roche
further proved that the zero-energy diagonal conductivity
in disordered graphene is saturated in high magnetic field
when disorder strength increases to a certain extent through
rigorous numerical simulation for Kubo conductivity [7].

In fact, in many realistic Dirac materials, the Dirac cone
is more or less distorted. It is known that tilted Dirac cones
appear in a number of materials, including graphene under
uniaxial strain [8], partially hydrogenated graphene [9], lay-
ered organic conductor a-(BEDT -T T F )2I3 [10–13], 8-Pmmn
borophene [14–17], and the surface of topological crystalline
insulators [18,19]. Recent studies have revealed that the tilt
of the Dirac cone brings some observable effects, such as
unconventional Klein tunneling [20,21], anisotropic Friedel
oscillations [22], anisotropic optical conductivity [23], and
enhanced frequency of Weiss oscillation [17]. So far, how
the Dirac cone tilt affects the disorder-broadened LL peaks
in both the DOS and diagonal conductivity spectra of a disor-
dered 2D Dirac nodal system has not been explored, which is
the focus of this paper.

In this paper, using the kernel polynomial method (KPM), a
numerically exact theoretical approach, we calculate the DOS
and diagonal conductivity of a 2D Dirac system model that
hosts two Dirac cones with adjustable tilt under high magnetic
field and random on-site disorder. Our numerical results on
DOS show that the tilt of the Dirac cone squeezes the LL
spectrum and densifies the LL peaks, which drives the sys-
tem to leave the quantum Hall regime under relatively weak
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disorder. However, in the quantum Hall regime, the broaden-
ing of the isolated zero-energy LL peak is tilt independent.
As a result, its features are similar to that of graphene. To
study the relationship between the diagonal conductivity and
Dirac cone tilt, the diagonal conductivities parallel and per-
pendicular to the cone tilt direction are calculated numerically.
As expected, the diagonal conductivity exhibits tilt-dependent
anisotropy. The tilt of the Dirac cone enhances the diagonal
conductivity in the direction perpendicular to the cone tilt
but reduces the diagonal conductivity parallel to the cone tilt
direction. At zero energy, the ratio of the former to the latter
is 1/(1 − β2), with β being the tilt parameter. By comparison,
the anisotropy of the diagonal conductivity in the energy range
of nonzero LLs is relatively weak. In addition, based on the
results obtained by using KPM, we test the validity of the
self-consistent Born approximation (SCBA), which has thus
far been widely exploited for studying the DOS and quantum
transport properties of Dirac or Weyl systems with disorder
[24–31] and has been found to fail to give accurate results for
physics near the Dirac point in the absence of magnetic field
[32]. We find that the SCBA fails to describe the details of the
LL peak around zero energy in the presence of magnetic field.

This paper is organized as follows. In Sec. II, the contin-
uous and lattice Hamiltonian of a 2D Dirac system model
with two tilted Dirac cones are specified and a theoretical
analysis of the anisotropy of diagonal conductivity in the clean
system is given. In Sec. III, we show and discuss the numerical
results of the DOS and diagonal conductivity spectra, where
the results within SCBA are also presented in comparison with
those from KPM. Finally, we summarize our main outcomes
in Sec. IV. To understand the anisotropy of the diagonal
conductivity, the eigensolutions of the effective Hamiltonian
in the presence of a magnetic field and the matrix elements
of the velocity operator in the eigenrepresentation are pre-
sented in Appendix A. The KPM to determine the DOS and
diagonal conductivity is elaborated in Appendix B, while the
expressions of these two quantities within SCBA are given in
Appendix C.

II. MODEL AND METHODS

We start from the model Hamiltonian that hosts two Dirac
cones. The model Hamiltonian is constructed on a 2D square
lattice with two orbitals on each site. Taking the lattice con-
stant a0 as unit length, the Hamiltonian reads

H0(k) = 2t (cos kxσx + sin kyσy)

+ m0(1 − cos ky)σx + 2ty sin kyσ0, (1)

where t is the hopping parameter between the nearest-
neighbor sites, the Pauli matrices σx, σy and identity matrix σ0

act on the orbital space, the mass term m0 is introduced to open
a finite energy window so as to avoid the band overlapping,
and the last term with ty denotes the tilt of the spectrum. The
two Dirac cones are located at Kη = (ηπ/2, 0) with η = ±. In
the absence of the tilt term, this model preserves the inversion
symmetry H0(k) = σxH0(−k)σx. The introduction of the tilt
term makes the two Dirac cones anisotropic and breaks the
inversion symmetry. The Dirac cones are set to tilt in the ky

direction, perpendicular to the line connecting the two Dirac

nodes. Such a tilt ensures that the two Dirac cones do not
overlap each other until they are tipped over. Around the
Dirac node Kη, H0(k) can be expanded to yield an effective
low-energy description,

H0η (̃k) = γ (−ηk̃xσx + k̃yσy + β k̃yσ0), (2)

with γ = 2t , β = ty/t being the tilt parameter and (̃kx, k̃y )
being the effective wave vector with the origin at the Dirac
node Kη. According to literature [13,17], the effective tilt
parameters in 8-Pmmn borophene and a-(BEDT -T T F )2I3

materials can reach 0.41 and 0.76, respectively.
In the presence of a magnetic field, it is difficult to solve

the eigenequation of the H0η (̃k) with an introduced magnetic
vector potential due to the existence of the tilt term. Fortu-
nately, there is a Lorentz boost method which can solve this
problem strictly [33]. By means of this method, we obtain the
eigensolutions and show them in Appendix A. The LLs are
εn = sgn(n)

√
2|n|γ (1 − β2)3/4l−1

B with n = 0,±1,±2... be-
ing Landau index and lB = √

h̄/eB being the magnetic length.
Compared with the LLs of graphene, this result reveals that
the tilt of the Dirac cone has an effect of squeezing the LL
spectrum, as one can see from the factor (1 − β2)3/4 < 1. As
β evolves from 0 to 1, the LL spectrum becomes gradually
denser. When β → 1, i.e., the Dirac cone is tipped over, the
whole quantized LL spectrum collapses, regardless of the
magnetic field strength. As a note, the LL solution above is
valid only for β � 1. For β > 1, i.e., the dispersion becomes
type II, the Hamiltonian given in Eq. (2) has no quantized
eigenenergies in the presence of magnetic field, because its
energy dispersion in the zero field gives an open Fermi sur-
face, on which the closed semiclassical cyclotron orbit cannot
be formed. If we adopt an improved model for a Hamiltonian
with a closed Fermi surface, such as Eq. (1), it can be seen
that the quantized LLs still exist even in the case of β > 1,
although they may be very dense. Just like the LLs with
kz = 0 of the 3D Weyl system reported in Refs. [34,35], they
are characterized by the eight-shaped semiclassical cyclotron
orbit jointly provided by the electron pocket and hole pocket.
Considering the fact that the type-II Dirac cone has not been
observed in 2D materials, we mainly discuss the case of β < 1
in this paper.

To simulate the disordered sample, we express the
Hamiltonian in the lattice space. On a 2D square lattice
with finite size Nx × Ny and the periodic boundary condition,
H0(k), as given by Eq. (1), is discretized as

H0 =
∑
r,s,s′

{[
C†

r+x̂,stσ
x
ss′Cr,s′

+ C†
r+ŷ,s

(
− itσ y

ss′ − m0

2
σ x

ss′ − ityσ
0
ss′

)
Cr,s′

]

+ h.c. + C†
r,sm0σ

x
ss′Cr,s′

}
, (3)

where r = (x, y) is the coordinate on the square lattice, x̂
and ŷ are the lattice vectors along the x and y directions,
respectively. The magnetic field is incorporated by means of
Peierls substitution in the hopping parameter as t → teiφ(r),
where φ(r) = e/h̄

∫ r+x̂/ŷ
r A · dr′. Under the Landau gauge

of the vector potential A = (−yB, 0, 0), only the hopping
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FIG. 1. The DOS spectra of the 2D Dirac system with typical cone tilt given by Eq. (1) in the absence of the magnetic field (a) and in
the presence of the magnetic field (b). In (a), the analytical results derived from the effective Hamiltonian given by Eq. (2) are also shown for
comparison, which is ρ(ε) = ε/8πt2(1 − β2)3/2.

parameter t along the x direction is replaced by te−ieyBa0/h̄. To
be commensurate with the lattice structure, the magnetic field
is commonly written as B = 2π/Ny, with the unit of h̄/ea2

0.
We consider the random on-site disorder potential as

Hd =
∑
r,s

εr,sC
†
r,sCr,s, (4)

where εr,s is randomly distributed in the range of
[−w/2,w/2], w gives the disorder strength. Such a disorder
is widely adopted in Dirac and Weyl systems [4,31,36,37].

Based on the lattice Hamiltonian, we prepare to numeri-
cally simulate the system’s DOS and diagonal conductivity
σαα with α = x, y using the Kubo-Greenwood formula. The
DOS is given by

ρ(ε) = 1

N
〈Tr[δ(ε − H )]〉, (5)

where 〈〉 means the average of disordered samples, H =
H0 + Hd , and N = 2NxNy is the dimension of the system. The
diagonal conductivity is written in the form

σαα (ε) = π h̄e2

S
〈Tr[vαδ(ε − H )vαδ(ε − H )]〉, (6)

where S is the area of the system and vα = [α, H]/ih̄ denotes
the α component of the velocity operator. In Appendix B,
we elaborate on the numerical recipe to obtain these two
quantities within KPM [38,39], while their expressions within
SCBA are given in Appendix C.

Before performing the numerical simulation, it makes
sense for us to analyze the anisotropy of diagonal conductivity
caused by the tilt of the Dirac cone in a clean system. To
do this, we start with the effective Hamiltonian given by
Eq. (2), whose eigenfunctions in the presence of a magnetic
field are shown in Eqs. (A4)–(A7) in Appendix A. Using
these eigenfunctions as a basis set, the diagonal conductivity is
expressed as

σαα (ε) = π h̄e2

S

∑
n,n′,ky

〈nky|vα|n′ky〉

× δ(ε − εn′ )〈n′ky|vα|nky〉δ(ε − εn), (7)

where n(n′) denotes the Landau index, ky denotes the momen-
tum along y direction which is conserved under the Landau
gauge, and δ(ε − εn) = η/π [(ε − εn)2 + η2] with η → 0+.
When the Fermi energy is at the nth LL,

σαα (εn) = h̄e2

πS

∑
n′ �=n,ky

|〈nky|vα|n′ky〉|2
[(εn − εn′ )2 + η2]

, (8)

where the n′ = n term is removed from the summation be-
cause the expectation value of the velocity operator at a LL
is always zero. The matrix elements of the velocity opera-
tor 〈nky|vα|n′ky〉 with α = x and y are given in Eqs. (A8)
and (A9) in Appendix A, respectively. It is not difficult
to find that both σxx(εn) and σyy(εn) are β dependent and
σxx(εn) �= σyy(εn). As can be seen from Eqs. (A8) and (A9),
|〈0ky|vx|n′ky〉|2/|〈0ky|vy|n′ky〉|2 = 1/(1 − β2) always holds
for n′ �= 0. As a result, one has σxx(0)/σyy(0) = 1/(1 − β2).
In contrast, if n �= 0 and sgn(nn′) > 0, we can readily find
the following constraint: |〈nky|vx|n′ky〉|2/|〈nky|vy|n′ky〉|2 <

1/(1 − β2). According to the denominator (εn − εn′ )2 + η2 in
Eq. (8) and the velocity matrix element formula Eqs. (A8) and
(A9), the diagonal conductivity at a LL is mainly contributed
by the nearest LL. Consequently, we get σxx(εn)/σyy(εn) <

1/(1 − β2) for n �= 0.

III. RESULTS AND DISCUSSIONS

A. DOS

First, let us show the numerical result of the DOS spectrum
of the 2D Dirac system model without disorder. Figure 1(a)
shows the DOS spectra of three systems with tilt parameters
β = 0, 0.4, and 0.8 in the absence of magnetic field. Here,
the analytical results derived from the effective Hamiltonian
given by Eq. (2) are also shown for comparison, which is
ρ(ε) = ε/8πt2(1 − β2)3/2. It can be seen that the numerical
results from KPM still have a slight Gibbs oscillation after
introducing the Lorentz kernel. When β increases from 0 to
0.8, the DOS near zero energy increases gradually, which can
be attributed to the increase of the area of the isoenergetic
cross section caused by the tilt of the Dirac cone. Meanwhile,
the energy range of the linear dispersion of the model is
reduced. Especially for β = 0.8, the linear dispersion is only
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FIG. 2. (a)–(c) The evolution of the LL peaks with the disorder strength w at B = 2π/500. (a)–(c) correspond to the systems with β = 0,
0.4, and 0.8, respectively. (d), (e) A comparison of the zero-energy LL peaks of three systems in the cases of w = 0.5t and 1.0t , respectively.

maintained in the (−0.2t, 0.2t ) energy range. When a strong
magnetic field is present, the DOS of these three systems
exhibit the quantized LL spectra, as shown in Fig. 1(b). Here,
the nonzero width of each LL is due to the truncation of
the Chebyshev polynomial mentioned above. As expected,
the larger the tilt, that is, the larger β, the denser the LLs.
However, for the system with β = 0.8, the LL peaks away
from zero energy are significantly overlapped with each other
because they are too dense. Especially, in the vicinity of the
van Hove singularity ε = ±0.4t , the LL peaks are indistin-
guishable due to the excessive overlap, resulting in a similar
DOS profile as that in the case without magnetic field.

Now we focus on the feature of the disorder-broadened
LL peak in the DOS spectrum. Figure 2 shows the evolution
of the LL peak with the disorder strength w at B = 2π/500,
where Figs. 2(a)–2(c) correspond to the systems with β = 0,
0.4, and 0.8, respectively. As can be seen from Fig. 2(a), each
LL peak is gradually broadened as w increases from 0.2t
to 2.0t . Meanwhile, the peak height is reduced because the
total number of states in each LL remains constant. When w

increases to 2.0t , the LL peak of n = 1 starts to overlap with
the next LL peak, and only the LL peak of n = 0 is isolated. In
addition to the broadening in width, all the LL peaks except
the n = 0 one move toward zero energy, which is called the
redshift of the LL peak and was also observed in graphene [4].
The redshift increases with w. Results presented in Fig. 2(b)
are similar to those in Fig. 2(a), except that the LL peaks are
denser. In contrast, in Fig. 2(c), in the cases of small w, such as
w � 1.0t , the LL peaks away from zero energy overlap with
the nearest LL peaks significantly, resulting in very different
LL peak profiles. Because the LL peak of n = 0 is relatively
far away from its nearest LL peaks, it remains isolated. When
w increases to 2.0t , the DOS shows a continuous energy
spectrum, which means that the tilt of the Dirac cone drives
the system away from the quantum Hall regime. Notice that
in the quantum Hall regime, the isolated zero energy LL peak
in Fig. 2(c) is the same as those in Figs. 2(a) and 2(b) for a
given w. As a verification, in Figs. 2(d) and 2(e), we compare
the zero-energy LL peaks of these three systems in the cases
of w = 0.5t and 1.0t , respectively. As shown in these two
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FIG. 3. (a), (b) The zero-energy LL peak in the system with β = 0 in the cases of w = 1.0t and 2.0t , respectively. In both cases, the profile
of the LL peak is well fitted by the Gaussian function C exp(−ε2/2�2)/� with C and � being fitting parameters. (c), (d) The LL peak of n = 1
in the cases of w = 1.0t and 2.0t , respectively. Here, the red dots is the Gaussian fitting of the zero-energy LL peak which is shifted to the
position of LL peak of n = 1.

figures, the three curves are nearly identical except that the
result of β = 0.8 shows a slightly cocked tail at the end of the
LL peak due to the overlap of the next LL peak. To sum up,
we can say that the profile of the isolated LL peak in the DOS
spectrum does not depend on the tilt of the Dirac cone.

Next, we pay attention to the shape of the isolated LL peak
in the DOS spectrum. Since the profile of the zero-energy LL
peak is tilt independent, we choose the system with β = 0 to
check the shape of the LL peak. Figures 3(a) and 3(b) show
the zero-energy LL peak in the cases of w = 1.0t and 2.0t ,
respectively. As shown by the red dots, the profile of the LL
peak can be well fitted by a Gaussian function in both cases.
Such a shape of the zero-energy LL peak is consistent with
that of graphene calculated by the Lanczos recursive method
[4]. Furthermore, we show the LL peak of n = 1 in these two
cases in Figs. 3(c) and 3(d) to check whether they follow the
same feature as the zero-energy LL peak. We can see that
the profile of the LL peak of n = 1 is slightly deviated from
the Gaussian fitting curve of the zero-energy LL peak in both
cases, which indicates that the profile of the nonzero LL peak
is not exactly the same as that of the zero-energy LL peak
due to the influence of the next LL peak. Therefore, it can
be predicted that the tilt of the Dirac cone will aggravate the
deviation between shapes of the nonzero LL peak and
the zero-energy LL peak because of the stronger influence of
the nearest LL peak.

We now test the validity of SCBA in determining the DOS
of a 2D Dirac system under magnetic field and disorder. To
compare with the results from KPM, we set the infinitesimal
η in Green’s function to be η = 4 × 10−3t in SCBA, which
gives the same artificial width of LL peak in clean system
as in KPM. In Fig. 4(a), we compare the DOS of the system
with β = 0 computed by the two methods for various w. We
can see that for all the considered w’s, in which cases the
system is in the quantum Hall regime, the two sets of data
are in agreement in terms of the broadenings and the redshifts
of the LL peaks. Even in the w = 4.0t case, in which the
system leaves the quantum Hall regime, the DOS from SCBA
deviates slightly from the result from KPM which occur in the
energy regions near ±0.1t and far away from zero energy. If
we take care of the details of each LL peak, the two kinds of
result show differences to some extent. To show this clearly,
we compare the zero-energy LL peaks from the two methods
in the cases of w = 1.0t and 2.0t in Fig. 4(b). The zero-energy
LL peak from SCBA is close to a semielliptical type rather
than Gaussian type as in KPM. The semielliptical shape of LL
peak is a well-known conclusion within SCBA [24]. Due to
the difference in shape, the DOS at zero energy from SCBA is
always smaller than that from KPM. However, the difference
between the two kinds of results degrades at higher energies,
as seen in Fig. 4(a). Therefore, SCBA is not competent to
describe the shape of the zero-energy LL peak in detail. For
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FIG. 4. (a) A comparison of the DOS computed by KPM and SCBA with β = 0 and B = 2π/500. (b) Enlarged views of the LL peaks of
n = 0 for the cases of w = 0.1t and 2.0t in (a). Here, the numerical results from SCBA are fitted by a semielliptical function C

√
1 − ε2/�2/�.

nonzero LL peaks, their profiles are not exactly the same as
those of the zero-energy LL peak due to the influence of the
nearest LL peaks, but the results from the two methods are
consistent.

In Fig. 5(a), we compare the DOS spectra of the three
systems with β = 0, 0.4, and 0.8 at w = 1.0t computed by the
two methods. It can be seen that even for the system with tilt,
the DOS spectra from the two methods are still in agreement.
To see clearly the details near zero energy, we show enlarged
views of the zero-energy LL peaks in Fig. 5(b). Because the
KPM result of the LL peak is β-independent, only the KPM
result of the system with β = 0 is shown here. It can be seen
that under SCBA, the LL peak of the system with β = 0 and
0.4 is nearly identical, but the LL peak of the system with
β = 0.8 is slightly higher than them. By comparison, at zero
energy, the SCBA result of the system with β = 0.8 is closer
to the KPM result.

B. Diagonal conductivity

As discussed in Sec. II, the tilt of the Dirac cone results in a
tilt-dependent and anisotropic diagonal conductivity in a clean
system. Accordingly, one may wonder to know the anisotropy
of the diagonal conductivity in a disordered system. With
such a purpose, we calculate σxx and σyy of the disordered
systems with various tilts. Figures 6(a) and 6(b) show the

calculated σxx and σyy as functions of Fermi energy ε for the
three systems with β = 0, 0.4, and 0.8, respectively. Here,
the disorder strength and magnetic field are fixed at w = 1.0t
and B = 2π/500, respectively. As can be seen in Fig. 6(a),
σxx(ε) of each system presents a set of disorder-broadened LL
peaks. Compared with σxx(ε) of the systems with β = 0 and
0.4, σxx(ε) of the system with β = 0.8 shows that the nonzero
LL peak overlaps with the adjacent LL peaks remarkably,
which is consistent with the behavior of the LL peaks in
the DOS spectrum in Fig. 2(c). We notice that the height
of the conductivity peak is β dependent. For example, for
σxx peak of n = 0, the peak height increases gradually as β

increases from 0 to 0.8. This is different from the DOS peak
which is β independent, as shown in Figs. 2(d) and 2(e). In
addition, the conductivity peak is anisotropic. For example,
σxx(0) increases gradually as β increases from 0 to 0.8, while
σyy(0) in Fig. 6(b) decreases gradually as β increases from 0
to 0.8. To see the quantitative dependence of the heights of
σxx and σyy peaks on β, we plot their peak values of n = 0,
1, and 2 as functions of β in Fig. 6(c). It is obvious that with
the increase of β, σxx(0) increases but σyy(0) diminishes. σxx

peaks of n = 1 and 2 are less dependent on β in the range
of β � 0.6. In contrast, the correspond σyy peaks decrease
nontrivially with β. According to the data in Fig. 6(c), we get
σxx(0)/σyy(0) � 1/(1 − β2), while σxx(εn)/σyy(εn) < 1/(1 −
β2) for n = 1 and 2, which are shown in Fig. 6(d). Such a

FIG. 5. (a) A comparison of the DOS of the systems with typical cone tilt computed by using KPM and SCBA. (b) Enlarged views of the
zero energy peaks in (a).
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FIG. 6. The DC spectra σxx (ε) (a) and σyy(ε) (b) of the three systems with β = 0, 0.4, and 0.8. (c) The DC peaks σxx (̃εn) and σyy (̃εn) of
n = 0, 1 and 2 as functions of β. It should be noted that ε̃n is the energy position of the redshifted LL peak, not the LL εn of the clean system.
(d) the ratio σxx (̃εn)/σyy (̃εn) of n = 0, 1, and 2 as functions of β. Here, the disorder strength and magnetic field are fixed at w = 1.0t and
B = 2π/500, respectively.

result is the same as that of a clean system, which means that
the anisotropy of diagonal conductivity caused by the cone tilt
is retained in the presence of disorder, at least for the disorder
with the strength smaller than w = 1.0t .

Next, we examine the effect of the disorder strength on
diagonal conductivity. We choose the system with β = 0 to
calculate σxx(ε) with different w. The magnetic-field strength

is still fixed at B = 2π/500. Figure 7(a) shows σxx(ε) in the
cases of w = 1.0t and 2.0t . Here, the results from SCBA are
also shown for comparison. First, let us look at the results
from KPM, which are shown by the red and blue solid lines
in Fig. 7(a). It can be seen that the stronger the disorder, the
wider the σxx peaks and the larger the redshifts of the σxx

peaks, which are similar to the behavior of the LL peaks in

FIG. 7. (a) The DC spectra σxx (ε) of the system with β = 0 in the cases of w = 0.1t and 2.0t . The results from SCBA are also shown
for comparison. (b) Enlarged views of the zero energy σxx peaks in (a). Here, the σxx peaks form KPM are fitted well by a Gaussian function
C exp(−ε2/2�2)/�, while the σxx peaks form SCBA are fitted well by the function C(1 − ε2/�2).
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FIG. 8. The zero energy σxx peaks of the system with β = 0.4
computed by using KPM and SCBA. Here, the σxx peaks form KPM
are still fitted well by a Gaussian function c exp(−ε2/2�2)/�, and
the σxx peaks form SCBA are still fitted well by the function c(1 −
ε2/�2).

the DOS spectrum shown in Fig. 2(a). However, unlike the
LL peaks in DOS whose heights decrease with the increase
of w, the heights of the σxx peaks do not change significantly
with the increase of w from 1.0t to 2.0t . Moreover, it is seen
that σxx(0) with w = 2.0t is slightly higher than that with
w = 1.0t . We verify that the σxx peaks around zero energy are
a Gaussian type, the same type as the DOS peaks, as shown
by the black dashed line in Fig. 7(b). Now let us compare the
results from SCBA and KPM. As one can see in Fig. 7(a), the
two sets of data are in agreement in terms of the broadenings
and redshifts of the σxx peaks in both cases of w = 1.0t and
2.0t . The remarkable difference between the two sets of data
occurs near zero energy, similar to that in the DOS spectrum.
However, the difference in the σxx spectrum is more signif-
icant, which can be seen in Fig. 7(b). One may notice that
the heights of the σxx peaks from SCBA are w independent
and σxx(0) = 0.636e2/h, which is equal to the zero-energy
conductivity of graphene reported by SCBA [24]. In view of
this, SCBA is not competent to describe the dependence of
zero-energy conductivity on disorder. One may also notice
that the σxx peaks under SCBA are neither a Gaussian type
nor a semielliptical type like the DOS peaks, but are well
fitted by a function C(1 − ε2/�2) with C and � being fitting
parameters. Therefore, just like the case in the DOS spectrum,
SCBA also fails to describe the shape of the zero-energy
conductivity peak.

Furthermore, we numerically simulate the σxx(ε) of the
system with β = 0.4 in the cases of w = 1.0t and 2.0t by
KPM and SCBA. The σxx(ε) around zero energy are shown
in Fig. 8. They are similar to those in Fig. 7(b). The σxx(ε)
from SCBA deviate significantly from those from KPM at
zero energy. In the presence of the tilt of Dirac cone, the
σxx peaks from SCBA can still be fitted by the function
C(1 − ε2/�2), and the σxx peaks from KPM are still well fitted
by Gaussian function. Compared with the SCBA results of
the system with β = 0 in Fig. 7(b), the SCBA results of the
system with β = 0.4 show that σxx(0) = 0.695e2/h is larger.
Therefore, the SCBA results also show that the tilt of the
Dirac cone leads to the increase of the σxx peak. In addition,
different from the KPM results of the system with β = 0,

whose σxx(0) is w dependent and increases with w, the KPM
results of the system with β = 0.4 show that the σxx(0) takes
almost the same value in both cases of w = 1.0 and 2.0t . This
implies that the σxx(0) for the system with β = 0.4 is saturated
when disorder strength reaches 1.0t , while the σxx(0) for the
system with β = 0 has not reached saturation at w = 1.0t .
In other words, the tilt of Dirac cone makes the zero energy
conductivity reach saturation under relatively weak disorder
strength.

Above, we have calculated the diagonal conductivities as
functions of Fermi energy with a fixed magnetic field strength
B to show the tilt effect of Dirac cone in the conductivity
spectrum. It is convenient for theoretical study. However, in
magnetotransport measurements, tuning the Fermi energy is
not easy. Instead, the magnetic field is controllable when
the number of the carrier is fixed. Therefore, the spectrum
of the conductivity σαα versus 1/B is usually provided in
experiments. We would like to say that the two alternatives,
σαα versus Fermi energy in theory and σαα versus 1/B from
experimental measure, can well uncover the basic features
of quantum magnetotransport in the 2D system, namely,
when the quantized LLs pass through the Fermi surface in
a one-by-one way, the conductivity exhibits discrete peaks
(in the quantum Hall regime) or Shubnikov-de Haas (SdH)
oscillation. However, the profile details of the two kinds of
conductivity spectra can be different, for example, the con-
ductivity peaks in σαα (εF ) are not equidistant, which reflects
the LL spectrum, while the conductivity peaks in σαα (1/B)
are equidistant. In experiments, with the increase of 1/B (the
magnetic field gets weaker), the system transforms from quan-
tum Hall to SdH oscillation regime. In the SdH oscillation
regime, the overlap between the adjacent LL peaks occurs
due to the disorder broadening. It is obvious that the cone tilt
makes the SdH oscillation to occur early, i.e., in a relatively
strong magnetic field range. This is because the cone tilt can
squeeze the LL spectrum efficiently. As a result, the overlap
between the adjacent LL peaks occurs even in a relatively
weak disorder, in contrast with the case without cone tilt.
However, the cone tilt does not affect the oscillation period,
which is determined by the area of the Fermi surface. For a
fixed number of carriers, the Fermi energy of the tilted system
is lower than that of the nontilted system but the areas of the
Fermi surfaces of the two systems are still the same and so
the oscillation periods are the same. Besides, it is a reasonable
prediction that the conductivity anisotropy arising from the
cone tilt as discussed above can be observed in the SdH regime
of the experimental σαα versus 1/B spectrum.

IV. CONCLUSIONS

In summary, we investigate the effects of Dirac cone tilt
on the disorder-broadened LLs in a 2D Dirac system. For this
purpose, based on a lattice model of a 2D Dirac system that
hosts two Dirac cones with adjustable tilt and with random
on-site disorder, and by means of KPM which is a numerically
exact theoretical approach, we calculate the DOS and diagonal
conductivity as a function of Fermi energy in the presence
of a high magnetic field. Our numerical results show that the
tilt of the Dirac cone squeezes the LL spectrum and makes
the LL peaks become denser, which drives the system to
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leave the quantum Hall regime under relatively weak disorder.
However, in the quantum Hall regime, the broadening of an
isolated LL peak in the DOS spectrum is tilt independent. As
a result, the features of the isolated LL peak are the same as
those of graphene. The diagonal conductivity is tilt dependent
and anisotropic. The Dirac cone tilt enhances the diagonal
conductivity peaks in the direction perpendicular to the tilt but
reduces the diagonal conductivity peaks in the direction paral-
lel to the tilt. For the zero-energy LL, the ratio of the former to
the latter is σxx(0)/σyy(0) = 1/(1 − β2), with β being the tilt
parameter. This means that the anisotropy of diagonal conduc-
tivity increases with β. In contrast, for the nonzero LL peaks,
such a ratio is relatively small, σxx(εn)/σyy(εn) < 1/(1 − β2).

In addition, in comparison with the results obtained by
KPM, we check the validity of SCBA which has thus far
been widely exploited for studying the DOS and quantum
transport properties of Dirac and Weyl systems with disor-
der. Our numerical results indicate that though at first sight
the global DOS and diagonal conductivity spectra composed
of multiple LL peaks given by SCBA agree with those ob-
tained by KPM as far as the broadenings and redshifts of the
disorder-broadened LL peaks are concerned, but SCBA fails
to describe the details of the LL peaks around zero energy in
both the DOS and diagonal conductivity spectra. The results
obtained by KPM show that the zero-energy LL peaks in
both the DOS and diagonal conductivity spectra are Gaussian
types, while the results under SCBA show that the LL peak
in the DOS spectrum is a semiellipse type and the LL peak
in the conductivity spectrum is neither a Gaussian type nor a
semiellipse type, but is well fitted by a function C(1 − ε2/�2).
What is more, at zero energy, the KPM result of the diagonal
conductivity increases with the disorder strength before satu-
ration rather than a disorder-independent constant as reported
previously by SCBA.

Before ending this paper, we would like to make a com-
parison of the Landau quantization between the 3D and 2D
Dirac nodal systems, focusing on the cone tilt effect. The
LL spectra of clean 3D Weyl or Dirac nodal systems with
type-I and type-II cone tilts were reported in previous liter-
ature [34,35,40,41]. In the presence of a magnetic field, the
electronic eigenenergy spectra of these 3D systems reduce to
1D Landau subbands with the residual dispersion paralleling
to the magnetic-field direction (set as z direction), and by
fixing kz = 0 these 1D Landau subbands just reduce to the
discrete LLs of 2D Dirac nodal systems with the same tilt. Due
to such a 1D Landau subband structure, the DOS and diagonal
conductivity spectra of 3D Weyl or Dirac nodal systems have
different aspects in the profile from the case of 2D Dirac nodal
system studied in this paper [27]. First, both the DOS peak
and conductivity peak around zero energy are missing due
to the chirality of the n = 0 Landau subband. Besides, the
shapes of other DOS and conductivity peaks are also different
from their counterparts in 2D system. Despite these profile
differences, the DOS and conductivity peaks in either the 2D
or 3D system suffer from the same squeezing effects by the
cone tilt perpendicular to the magnetic field [35]. In addition,
the unique eight-shaped cyclotron resonance orbital and the
magnetic breakdown between the electron and hole pockets
caused by type-II tilt are also the common phenomena for 3D
and 2D systems. According to the theoretical results for 3D

systems [31,42,43], it can be found that with the increase of
cone tilt, the peak heights of the conductivity perpendicular
to the tilt direction increase, whereas the peak heights of the
conductivity parallel to the tilt direction decrease. Such an
effect is similar to that in the 2D system discussed above.
However, it should be pointed out that the theoretical results
of the 3D system reported previously were limited to the
case that the magnetic field is parallel to the tilt direction,
while the 2D system we consider is subject to an out-of-plane
magnetic field. Thus, the magnetic field is perpendicular to
the tilt direction, so both σxx and σyy refer to the transverse
conductivity (relative to the magnetic-field direction). As far
as we know, the anisotropy of two transverse conductivities
in a 3D system with a magnetic field perpendicular to the tilt
direction has not been reported in literature.
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APPENDIX A: THE LLs OF H0η(k) IN THE PRESENCE
OF A MAGNETIC FIELD

We take H0−(k) as the representative to show the eigen-
solution of LLs of a Dirac cone with tilt. The effective
Hamiltonian reads

H0−(k) = γ (kxσx + kyσy + βkyσ0). (A1)

In the presence of a magnetic field B = (0, 0, B), we make
the usual Peierls substitution k → k + eA/h̄ and choose the
Landau gauge A = (0, Bx, 0). Then, only ky remains as a good
quantum number, the above Hamiltonian turns to

HB = γ
[̂
kxσx + (

ky + l−2
B x

)
σy + βl−2

B xσ0 + βkyσ0
]
, (A2)

with k̂x = −i∂x and lB = √
h̄/eB being the magnetic length,

which is reminiscent of an effective 2D Dirac system with
a translation term in energy γ βky under a magnetic field
B = (0, 0, B) and an effective electric field Eeff = γ βl−2

B êx.
When β < 1, the effective electric field can be eliminated by
a Lorentz boost [33]. By means of the Lorentz boost method,
we obtain the exact eigensolution of HB. The LLs are

εn = sgn(n)
√

2|n|γ l−1
B (1 − β2)3/4 (A3)

where n = 0,±1,±2... is Landau index. The corresponding
eigenfunctions are given by

�nky (r) = Cn√
L

exp(ikyy) exp(−σyθ/2)

(
sgn(n)ϕ|n|−1(ξ )

iϕ|n|(ξ )

)
,

(A4)
with

Cn =
⎧⎨
⎩

1√
cosh2(θ/2)+sinh2(θ/2)

(n = 0)
1√

2[cosh2(θ/2)+sinh2(θ/2)]
(n �= 0),

(A5)

exp(−σyθ/2) = cosh(θ/2) − σy sinh(θ/2), (A6)
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and

sgn(n) =
⎧⎨
⎩

1 (n > 0)
0 (n = 0)

−1 (n < 0),
(A7)

where tanh(θ ) = β, so cosh2(θ/2) + sinh2(θ/2) =
1/

√
1 − β2, ϕ|n|−1(ξ ) and ϕ|n|(ξ ) are the harmonic

oscillator eigenfunctions but the scaled x coordinate
ξ = (1 − β2)1/4(x + l2

Bky)l−1
B + sgn(n)

√
2|n|β is dependent

on Landau index n. From Eqs.(A4)–(A7), we find that
compared with the case without tilt, that is, β = 0, the tilt of
the Dirac cone brings about three properties: an introduced
Hermitian matrix exp(−σyθ/2), β-dependent normalization
coefficient Cn, and n-dependent local center of ϕ|n|−1(ξ ) and
ϕ|n|(ξ ) in Eq. (A4).

To understand the anisotropy of the diagonal conductiv-
ity caused by Dirac cone tilt, we next calculate the matrix
elements of the velocity operators vx and vy in the eigen-
representation. According to v = [r, HB]/ih̄, we can get vx =
γ σx/h̄ and vy = γ (σy + βσ0)/h̄. Let |nky〉 represent the eigen-
state of HB, i.e., 〈r|nky〉 = �nky (r), it is easy to check that
〈nky|vx/y|n′k′

y〉 = 〈nky|vx/y|n′ky〉δky,k′
y
(1 − δn,n′ ), that is, the di-

agonal elements of the velocity operator are all zero. Other off
diagonal elements are calculated as follows:

〈nky|vx|n′ky〉= iγ

h̄
CnCn′ [sgn(n)W|n|−1,|n′ | − sgn(n′)W|n|,|n′ |−1]

(A8)
and

〈nky|vy|n′ky〉 = γ
√

1 − β2

h̄
CnCn′[sgn(n)W|n|−1,|n′|

+ sgn(n′)W|n|,|n′|−1], (A9)

with Wk,l = ∫
ϕk (ξ )ϕl (ξ ′)dx. It is worth noting that in this

integral, the variables ξ and ξ ′ of ϕk (ξ ) and ϕl (ξ ′) are
different, they depend on Landau index n and n′, respectively.
Thus, Wk,l does not represent the orthogonal or normalization
formula of the harmonic oscillator eigenfunction. In other
words, one has Wk,l �= 0 if k �= l and Wk,l �= 1 if k = l .
Therefore, in Eqs. (A8) and (A9), both W|n|−1,|n′| and W|n|,|n′|−1

are nonzero, which is different from the case without
tilt, in which at most one of the two terms is nonzero.
We check that both W|n|−1,|n′| and W|n|,|n′|−1 are always
greater than zero for any n and n′. So it is easy to find that
when n = 0 or n′ = 0, |〈nky|vx|n′ky〉|2/|〈nky|vy|n′ky〉|2 =
1/(1 − β2), while when n, n′ �= 0 and sgn(nn′) > 0,
|〈nky|vx|n′ky〉|2/|〈nky|vy|n′ky〉|2 < 1/(1 − β2). Such a result
indicates that the tilt of Dirac cone results in a tilt-dependent
and anisotropic diagonal conductivity, as discussed in Sec. II.

APPENDIX B: KPM

KPM works by expanding the delta operator in Eqs. (5) and
(6) in terms of the Chebyshev polynomials of the first kind,
Tn(x) = cos[n arccos(x)]. For this purpose, the Hamiltonian
needs to be rescaled so the corresponding energy spectrum
is dimensionless and stays in the range of [−1, 1]. For a
lattice Hamiltonian, the eigenenergy is distributed in the range
of [εmin, εmax]. We rescale the Hamiltonian and the Fermi
energy as H̃ = (H − B)/W and ε̃ = (ε − B)/W , where W =

(εmax − εmin)/2 and B = (εmax + εmin)/2. Then, the rescaled
delta operator in Eqs. (5) and (6) can be expanded in terms of
the Chebyshew polynomials as

δ (̃ε − H̃ ) � 2

π
√

1 − ε̃2

M−1∑
n=0

gn
Tn (̃ε)

δn,0 + 1
Tn(H̃ ). (B1)

In Eq. (B1), the approximately equal sign appears because
the Chebyshev polynomials is truncated at a finite M-term
series. This truncation often leads to Gibbs oscillation. For this
reason, a kernel gn is introduced to smear out the oscillation.
Among several alternative kernels, we choose the Lorentz ker-
nel in this paper, i.e., gn = sinh[λ(1 − n/M )]/sinh λ, where λ

is an empirical parameter in the range of 3 ∼ 5. In addition,
this truncation also introduces an artificial width to the ex-
panded delta function, which is determined by η � λ/M. In
our calculation, we set λ = 3 and M = 6000, so the artificial
width η is about 4 × 10−3t after considering the rescaling of
energy.

Substituting Eq. (B1) into Eqs. (5) and (6), we obtain

ρ (̃ε) � 2

πNW
√

1 − ε̃2

M−1∑
n=0

gn

δn,0 + 1
μnTn (̃ε), (B2)

σαα (̃ε) � 4e2 h̄

πS

1

1 − ε̃2

M−1∑
n,m=0

gngm

(δn,0 + 1)(δm,0 + 1)

× μαα
nmTn (̃ε)Tm (̃ε), (B3)

where μn = Tr[Tn(H̃ )] and μαα
nm = Tr[̃vαTn(H̃ )̃vαTm(H̃ )]. The

first two Chebyshev polynomials are T0(H̃ ) = 1 and T1(H̃ ) =
H̃ , and for n � 2, we have the recursive relation: Tn(H̃ ) =
2H̃Tn−1(H̃ ) − Tn−2(H̃ ). The computations of μn and μαα

nm are
the most time-consuming parts in Eqs. (B2) and (B3), respec-
tively.

For a disordered system, using a random phase state can
significantly improve the efficiency of evaluating the traces
such as μn and μαα

nm. The random phase state is defined as

|ψ j〉 = ∑N
k=1 e2π iγ j

k |rk〉/
√

N with γ
j

k being a set of random
numbers uniformly distributed in the region of [0,1] and |rk〉
being the base vector in the tight-binding model [38,39]. For
a given disordered sample, we use NR random phase states to
evaluate the traces Tr[· · ·] = N

∑NR
j=1〈ψ j | · · · |ψ j〉/NR. And

then we also need to average over Ns different disorder sam-
ples. Because of the self-average property of the random phase
states, NR × Ns could be much less than the dimension of
the system N . In our simulation, N = 5 × 105, however, we
only actually calculate NR × Ns different matrix elements to
simulate these two traces for the system with a given w. For
the calculation of DOS, the results are well convergent when
NR × Ns > 150 in all cases considered in this paper. For the
calculation of the diagonal conductivity, a slightly larger NR ×
Ns is required to bring about a convergent result, especially in
the case of large w. For example, convergence is reached when
NR × Ns > 300 in the case of w = 1.0t , whereas convergence
requires NR × Ns > 700 in the case of w = 2.0t .

APPENDIX C: SCBA

Within the framework of SCBA, we need to introduce
the disorder-averaged Green’s function to express the delta
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operator function in Eqs. (5) and (6). The Green’s function
is defined as

G
R

(ε) =
〈

1

ε − H0 − Hd + iη

〉
= 1

ε − H0 − �(ε) + iη
,

(C1)

where 〈〉 means the average over the disorder configurations,
�(ε) is the average self-energy, and η is an artificial infinites-
imal. To compare with the results from KPM, we set the η

to be the same as that in KPM. Under SCBA, the average
self-energy is calculated by the self-consistency equation

�(ε) =
∫ w

2
− w

2
ε2dε

w
〈ris|GR

(ε)|ris〉

= w2

12

∫
MBZ

dk
(2π )2/Ny

〈
nis

∣∣ḠR
k (ε)

∣∣nis
〉

(C2)

where |ris〉 denotes a lattice state at any site ri and orbital
s on the square lattice, |nis〉 denotes a lattice state in the

magnetic suppercell, ḠR
k (ε) = [ε − Hk − �(ε) + iη]−1 with

Hk is the Hamiltonian of the clean system with the magnetic
supercell as the primitive cell, and the integration being per-
formed over the magnetic Brillouin zone (MBZ). Although
the translational symmetry is broken by the magnetic field
in real space, it is restored by the Peierls substitution within
the magnetic supercell. Thus, in Eq. (C2), the dimension
of the Green’s function can be reduced from the dimension
of the system to the dimension of the magnetic supercell.
With the retard Green’s function ḠR

k (ε) and the corresponding
advanced Green’s function ḠA

k (ε) = [ḠR
k (ε)]†, the DOS and

diagonal conductivity can be expressed as

ρ(ε) = −
∫

MBZ

dk
(2π )3

Tr
[
Im

(
GR

k − GA
k

)]
, (C3)

σαα (ε) = e2h̄

4πS

∑
k

Tr
[
vαIm

(
GR

k − GA
k

)
vαIm

(
GR

k − GA
k

)]
.

(C4)
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