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Making an artificial px,y-orbital honeycomb electron lattice on a metal surface
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We theoretically demonstrate that the desired px,y-orbital honeycomb electron lattice can be readily realized
by arranging CO molecules into a hexagonal lattice on a Cu(111) surface with scanning tunneling microscopy
(STM). The electronic structure of the Cu surface states in the presence of CO molecules is calculated with
various methods, i.e., density functional theory (DFT) simulations, the muffin-tin potential model, and the
tight-binding model. Our calculations indicate that, by measuring the local density of states (LDOS) pattern using
STM, the p-orbital surface bands can be immediately identified in experiment. We also give an analytic interpre-
tation of the p-orbital LDOS pattern with the k · p method. Meanwhile, different from the case of graphene, the
p-orbital honeycomb lattice has two kinds of edge states, which can also be directly observed in STM experiment.
Our work points out a feasible way to construct a px,y-orbital honeycomb electron lattice in a real system, which
may have exotic properties, such as Wigner crystal, ferromagnetism, f -wave superconductivity, and the quantum
anomalous Hall effect. Furthermore, we also propose a simple way to calculate and identify the modified Cu
surface bands in the Cu/CO systems with the DFT simulations. Considering the recent works about a p-orbital
square lattice in similar systems [M. R. Slot et al., Nat. Phys. 13, 672 (2017); L. Ma et al., Phys. Rev. B 99,
205403 (2019)], our work once again illustrates that the artificial electron lattice on a metal surface is an ideal
platform to study the orbital physics in a controllable way.
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I. INTRODUCTION

Orbital is an independent degree of freedom of electrons in
a solid in addition to their charge and spin. In many transition
metal oxides, orbital physics plays an important role, and
the interplay between the orbital, spin, and charge degree of
freedom can induce many exotic phenomena, such as colos-
sal magnetoresistance [1–4], superconductivity [5–8], and the
metal-insulator transition [9–11]. Although orbital physics is
important, the study of the influence of an orbital degree of
freedom in real materials is still a big challenge, because an
orbital is always coupled with other degrees of freedom, such
as charge, spin, or crystal field. Artificial lattice systems, e.g.,
cold atoms in an optical lattice [12] or a photonic lattice [13],
offer ideal platforms to investigate orbital physics due to their
unprecedented controllability. In the past decade, great efforts
have been made to simulate orbital physics in optical lattices
[14,15]. In experiment, bosons in a p-band optical lattice have
been realized and studied intensively [16–18].

Interestingly, some exotic orbital-related quantum states,
which do not exist in real materials, can be realized in artificial
lattice systems. An intriguing example is the px,y-orbital hon-
eycomb lattice, which was proposed by Wu and co-workers
in 2007 [19,20]. Different from graphene, in an optical lattice
the energy of an s-orbital is rather largely separated away from
the p-orbital, so that a p-orbital honeycomb lattice can be con-
structed without sp hybridization. The p-orbital honeycomb
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lattice has a unique band structure. It has four p-bands, where
two of them are flat bands and the other two give rise to a Dirac
cone at the K points in the Brillouin zone. Due to the quenched
kinetic energy of flat bands, strong correlation effects, such
as Wigner crystal [19] or ferromagnetism [21], may appear.
Meanwhile, the band structure can be tuned into a topological
nontrivial state [22,23], e.g., the quantum anomalous Hall
(QAH) effect [24–28] and the quantum spin Hall (QSH) ef-
fect [29,30]. It also enables unconventional f -wave Cooper
pairing with a conventional attractive interaction [31]. Beyond
the bulk properties, this px,y-orbital honeycomb lattice has two
kinds of edge states, which are distinct from that of graphene.
One is zero-energy edge states, which have a similar origin to
the conventional edge states in graphene. The other is novel
dispersive edge states. Both of them have been observed in a
photonic lattice in a recent experiment [13].

However, fermions in a p-orbital honeycomb lattice, which
have been intensively studied in theory, have not been reported
in experiment. Very recently, it was also theoretically pro-
posed that the px,y-orbital honeycomb lattice can be found in
some special materials [32–37], but these proposals have not
been confirmed in experiment so far. To the best of our knowl-
edge, experimental realization of this interesting p-orbital
honeycomb lattice has only been reported in a photonic lattice
of coupled micropillars [13,38]. Recently, we proposed that
p-orbital bands can be realized in the artificial electron lattice
on a metal surface [39], where the metal surface electrons are
transformed into an electron lattice by periodically arranged
adatoms. And the p-band features on a square and Lieb elec-
tron lattice have already been observed in a recent scanning
tunneling microscopy (STM) experiment [39,40].
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FIG. 1. (a),(b) Schematic of the px,y-orbital honeycomb lattice on
the Cu(111) surface. CO molecules are denoted as black balls, while
blue circles represent the repulsive muffin-tin potential applied by
CO molecules. d is the diameter of the muffin-tin potential, and a0

is the lattice constant of this artificial honeycomb lattice. Red disks
denote the s orbitals. In (a), green lobes represent the px,y orbitals. In
(b), we use green lobes to illustrate the σ bonds formed by p orbitals.
(c),(d) Schematic of the TB model of this px,y-orbital honeycomb
lattice. In (d), t‖ is the hopping between the projected p-orbitals on
neighboring sites parallel to the bond direction; t⊥ is the hopping
between the projected p-orbitals perpendicular to the bond direction.

In this work, we illustrate that the interesting px,y-orbital
honeycomb electron lattice can be readily constructed on a
metal surface with the same technique by designing a proper
adatom pattern. It actually has been realized in experiment
[41,42], but further measurement is needed to provide con-
firmation. The scheme is illustrated in Fig. 1. Here, the CO
molecules are periodically deposited on a Cu(111) surface
with the help of the STM tip. This Cu/CO system has
been successfully used to construct the artificial honeycomb
[41–43], square [40], and Lieb electron lattices [40] on a
metal surface. In Fig. 1(a), CO molecules are represented
by black balls, where each applies a repulsive potential on a
metal surface. The repulsive potential can be approximately
described as a muffin-tin potential, which is denoted as the
blue circles in Fig. 1(a). As pointed out in Refs. [41–43], if the
CO molecules are arranged into a hexagonal lattice (Fig. 1),
the Cu surface states can be forced into a honeycomb electron
lattice because of the repulsive potential applied by the CO
molecules. Former works [41–43] only consider the lowest
two energy bands, which correspond to the s-orbital and have
a graphenelike band structure. We would like to point out that,
in the same system, the higher bands are from the artificial
p-orbitals, which is just the desired px,y-orbital honeycomb
electron lattice [Figs. 1(a) and 1(c)]. As shown in Figs. 1(b)
and 1(d), the px,y-orbitals will form σ -bonds parallel to the
bond direction, and π -bonds perpendicular to the bond direc-
tion as well [19,20]. The local density of states (LDOS) of the
p-orbitals can be directly observed by STM. We use density
functional theory (DFT) simulations, the muffin-tin potential
model, the tight-binding (TB) model, and the k · p method to

FIG. 2. (a) Schematic of the muffin-tin potential model for this
artificial honeycomb electron lattice. The repulsive potential of each
CO molecule is represented as a black disk, which is UCO > 0 inside
the disk and zero elsewhere, and d is its diameter. The lattice sites
of the honeycomb lattice are denoted as the orange disks, and a0

is the lattice constant. Instead of the muffin-tin potential model, we
can equivalently use a cylindrical potential well (orange disk, L is
its diameter) to describe the “artificial atom,” by which the surface
electrons are confined around the lattice sites. (b) Each CO adatom
can be replaced by a CO cluster with a different size in order to apply
a stronger potential on the Cu surface states.

interpret this p-orbital picture. We also illustrate that the two
kinds of edge states of this p-orbital honeycomb lattice could
be directly observed in this artificial electron lattice system.

To calculate the modified Cu(111) surface bands in the
presence of CO adatoms, the muffin-tin model is the most
common method, while the DFT simulations have not worked
well so far [44,45]. The reason is that, in DFT simulations, we
have to consider a large supercell, including a thick Cu slab
and CO adatoms, in which the surface bands and the Cu bulk
bands are heavily folded and thoroughly mixed together. Thus,
the major obstacle for the DFT simulations is to distinguish
the modified surface bands from massive bulk bands. Here, we
illustrate that the modified Cu surface bands can be identified
by proper layer-resolved band-structure projections, so that
now the desired Cu surface bands in the Cu/CO systems can
be directly calculated using the DFT simulations. It should
be a general method to calculate the adatom modified metal
surface states via DFT simulations.

The outline of this paper is as follows: In Sec. II, we give
the models and methods used in the calculations; in Sec. III,
we show the numerical results and the corresponding discus-
sions; finally, a short summary is given in Sec. IV.

II. MODEL AND METHODS

Here, we introduce the theoretical methods, i.e., the
muffin-tin potential model, the tight-binding model, and DFT
simulations, which we used here to calculate the modified Cu
surface bands in the Cu/CO systems.

A. Muffin-tin potential model

As mentioned above, the Cu surface states in the Cu/CO
system can be intuitively described by a muffin-tin poten-
tial model. We illustrate this muffin-tin potential model in
Fig. 2(a). Here, CO molecules can be approximately viewed
as a repulsive muffin-tin potential U (r) (black disks), which
is UCO > 0 inside the black disks and zero elsewhere. Thus,
the surface electrons are confined into the regions in between
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CO molecules, which actually gives rise to a honeycomb lat-
tice. The sites of the honeycomb lattice are represented by the
orange disks in Fig. 2(a). The Hamiltonian of the muffin-tin
model is

HCu = − h̄2

2m∗ ∇2 + U (r). (1)

This Hamiltonian can be solved with the plane-wave method
to get the energy bands of Cu surface states in the presence
of CO molecules [43,46,47]. Here, m∗ = 0.38m0 is the ef-
fective mass of Cu surface states, where m0 is the electron
mass [41]. The parameters of the muffin-tin potential U (r)
for the Cu/CO system are UCO = 0.8 eV and the diameter
d = 0.5 nm, which are obtained by fitting the DFT results, as
will be shown later.

The muffin-tin potential of a single CO adatom has a fixed
value. However, we can obtain a stronger effective potential
applied on the Cu surface by replacing the single CO adatom
with a CO cluster [48]. For example, several kinds of CO
clusters with different sizes are plotted in Fig. 2(b). We use
cluster-l to label the CO cluster where the side length of the
hexagon is l times the length of the Cu-Cu distance. Note that
the larger the cluster size is, the stronger is the influence of the
effective potential.

The LDOS can be obtained by

LDOS(r, ε) =
∑
mkσ

|φmkσ (r)|2δ(ε − εmkσ ). (2)

We will show that the low-energy bands obtained by the
muffin-tin potential model can be well-interpreted as the s and
p bands of a honeycomb lattice.

B. Orbitals in an artificial atom

We then discuss the concept of orbitals in the artificial
electron lattice. It should be noted that each site (orange disk)
of this honeycomb lattice in Fig. 2(a) actually can be viewed
as an artificial atom. In each artificial atom, the electrons are
confined in the region enclosed by the adjacent CO molecules.
Considering this potential confinement, the eigenstates of an
isolated artificial atom are discrete, and they are very similar
to the orbitals of a real atom. Then, through hopping between
these artificial orbitals, we get the energy bands of this artifi-
cial electron lattice.

However, this orbital picture (and TB model) does not
always work. This is because the confinement potential is
finite. If the electron kinetic energy is large enough, surface
electrons cannot be confined. Thus, the surface states should
be described by the nearly-free-electron model instead of the
TB model. In this situation, the concept of artificial orbitals is
invalid.

We can roughly use a cylindrical potential well Uatom

to describe this two-dimensional artificial atom. Hatom =
− h̄2

2m∗ ∇2 + Uatom(r), where

Uatom(r) =
{−U0, |r| � L

2 ,

0, |r| > L
2 .

(3)

U0 and L are the value and diameter of the potential well,
respectively. One artificial atom corresponds to one cylindri-
cal potential well, which is represented by one orange disk in

Fig. 2(a). The electrons trapped in Uatom form the orbitals, and
the hopping between orbitals gives rise to TB bands.

The orbitals can be obtained by calculating the bound states
in the potential well. The eigenfunction of Hatom is

φ(r, θ ) = R(r)Y(θ ), (4)

where r is the radial coordinate and θ is the polar angle.
We have

d2Y(θ )

dθ2
= −n2Y(θ ), n = 0, 1, 2, . . . , (5)

where Yn(θ ) = an cos(nθ ) + bn sin(nθ ) for n > 0, and
Y0(θ ) = 1/

√
2π . Here, an and bn are the coefficients, which

can take on any value (but the wave function should be
normalized). The equations of the radial part are

r2 d2R(r)

dr2
+ r

dR(r)

dr
+ (λ1r2 − n2)R(r) = 0, r � L

2
,

r2 d2R(r)

dr2
+ r

dR(r)

dr
− (λ2r2 + n2)R(r) = 0, r >

L

2
,

(6)

where λ1 = 2m(ε+U0 )
h̄2 , λ2 = − 2mε

h̄2 . At the boundary r0 = L
2 , the

continuity of the wave function and its derivative should be
satisfied,

c1Jn(
√

λ1r0) = c2Kn(
√

λ2r0),

c1J ′
n(

√
λ1r0)

√
λ1 = c2K ′

n(
√

λ2r0)
√

λ2,

|c1|2
∫ r0

0
rJn

2(
√

λ1r)dr + |c2|2
∫ ∞

r0

rKn
2(

√
λ2r)dr = 1.

(7)

Here, the last equation is the requirement of wave-function
normalization, and c1 and c2 are two coefficients to be deter-
mined. Jn (Kn) is the Bessel (Hankel) function. Together with
this boundary condition, we can obtain the eigenvalues and
eigenfunctions of the bound states in this potential well.

For example, in the case of U0 = 0.9 eV and L = 1.8 nm,
there is one bound state with n = 0, i.e., the s orbital. With
n = 1, the allowed p orbitals are

φpx (r, θ ) = 1√
π

R(r) cos θ,

φpy (r, θ ) = 1√
π

R(r) sin θ, (8)

where

R(r) =
{

c1J1(
√

λ1r), r � L
2 ,

c2K1(
√

λ2r), r > L
2 .

(9)

The coefficients are c1 ≈ 2.20, c2 ≈ 1.16, and the energy
of the px,y-orbitals is εpx = εpy = ε ≈ −0.074 eV. However,
no solution exists for n > 1, which implies that only s- and
p-orbitals are valid in this situation. Note that the larger U0 is,
the more artificial orbitals are allowed.

The value of Uatom for the Cu/CO system can be estimated
by fitting the bands calculated from the muffin-tin model.
For the case in the experiment [41], a reasonable Uatom is
U0 = 0.9 eV, L = 1.8 nm, which is just the above example.
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So, we argue that only s- and p-orbitals are valid in such
Cu/CO systems.

We illustrate the artificial orbitals in the honeycomb lattice
in Fig. 1(a). Red disks represent the s-orbitals, and green
lobes denote the px,y-orbitals. Different from graphene, the
s-orbitals are far away from the p-orbitals in energy, so that
there is no sp hybridization here. The s-orbitals give rise to an
artificial graphene, which has already been observed in exper-
iment [41,42]. In the following, we focus on the p-orbitals.
Note that in a two-dimensional electron system, there are
only px,y-orbitals, and no pz-orbital. Thus, we actually get a
px,y-orbital honeycomb lattice, which is illustrated in
Figs. 1(a) and 1(c). The honeycomb lattice has two sublattices,
A and B. So, we have four p-bands above the two s-bands in
this artificial honeycomb lattice.

Note that the cylindrical potential well is a rough approxi-
mation of the confinement potential applied by CO molecules,
which is just used to illustrate the concept of artificial orbitals.
As shown in Fig. 2(a), the regions where the surface electrons
are confined are actually anisotropic and have threefold rota-
tional symmetry. Such anisotropy of the confinement potential
is not included in the cylindrical (TB) model. This does not
obviously influence the s-bands, but it will give rise to a differ-
ence between the cylindrical (TB) band structure of p-orbitals
and that obtained from the muffin-tin model.

C. Tight-binding model

The tight-binding model of a px,y-orbital honeycomb lat-
tice is given in Ref. [20]. Here, we give a short introduction
to this TB model. First, we define three vectors 
l1,2,3 [see
Fig. 1(c)], which point from the A site to three nearest-
neighbor B sites, i.e., the directions of bonds. a0 is the lattice
constant [see Fig. 1(a)]. Considering the lattice geometry,
px,y-orbitals are projected to directions parallel to 
li=1,2,3

forming the projected orbital pi = (px
ex + py
ey) ·
√

3
li
a0

, where

ex (
ey) is the unit vector along the x (y) direction [20]. We
also define p′

i=1,2,3 as the projected p-orbitals perpendicular

to 
li=1,2,3. Note that here only two of pi- or p′
i-orbitals are

linearly independent. Bonds exist between these projected
orbitals. There are two kinds of bonds between the p-orbitals
on neighboring sites, i.e., σ - and π -bonds. As shown in
Fig. 1(d), the σ -bond corresponds to the hopping between
pi-orbitals (“head to tail”), and the π -bond corresponds to
the hopping between pi-orbitals (“shoulder by shoulder”). The
Hamiltonian is H = Hσ + Hπ , where

Hσ = t‖
∑

r∈A,i

{p†

r,i p
r+l̂i,i

+ H.c.}, (10)

Hπ = −t⊥
∑

r∈A,i

{p′†

r,i p

′

r+l̂i,i

+ H.c.}. (11)

Here, t‖ (t⊥) is the hopping of the σ -bond (π -bond). The
Hamiltonian can be viewed as the summation of all σ - and
π -bonds.

It is convenient to use the basis [pA
x , pA

y , pB
x , pB

y ]. The cor-
responding Hamiltonian matrix is

H (k) = t‖

(
0 H‖

H+
‖ 0

)
− t⊥

(
0 H⊥

H+
⊥ 0

)
, (12)

where

H‖ =
(

3
4 (eikl1 + eikl2 )

√
3

4 (eikl1 − eikl2 )
√

3
4 (eikl1 − eikl2 ) 1

4 (eikl1 + eikl2 ) + eikl3

)
, (13)

H⊥ =
(

1
4 (eikl1 + eikl2 ) + eikl3

√
3

4 (eikl2 − eikl1 )
√

3
4 (eikl2 − eikl1 ) 3

4 (eikl1 + eikl2 )

)
. (14)

The same expression can be obtained if we apply the
Slater-Koster formalism [49] to px,y orbitals. Diagonalizing
H (k), we can obtain the TB energy bands and wave functions.
Using the p-orbital basis in Eq. (8), we can further calculate
the LDOS based on the TB model. The details to calculate the
LDOS are given in Sec. III C. Meanwhile, we can also obtain
the edge states by calculating the bands of the ribbon structure
based on this TB model [13].

D. DFT simulations

To give more information about the experiment, DFT sim-
ulations can be done where more details of the Cu/CO system
are included [39,44,45]. As will be shown later, our DFT
simulations are also in good agreement with the muffin-tin
potential model, which means that the muffin-tin potential
model captures the essential features of the experimental ob-
servations.

The DFT simulations use the Vienna Ab-initio Simula-
tion Package (VASP), where the projector-augmented wave
method and a plane-wave basis set are used [50]. We select
the Perdew-Burke-Ernzerhof (PBE) version of the generalized
gradient approximation [51]. The plane-wave cutoff energy is
400 eV and the k-point mesh is 9 × 9 × 1. We use a Cu slab
to mimic the Cu(111) surface; see Fig. 1. The lattice constant
a0 is the distance between two adjacent CO molecules. Here,
a0 is eight times the length of the Cu-Cu distance (about
2.04 nm), i.e., an 8 × 8 supercell is used. To avoid the in-
teraction between nearest cells, we set the intercell vacuum
space to be 22 Å. CO molecules are adsorbed on the top of
Cu atoms, and the Cu-C and C-O distances are set to be 1.85
and 1.155 Å, respectively. We only optimize the positions
of C and O atoms and the Cu atoms closest to C atoms.
The convergence criteria for force acting on each atom is
0.02 eV/Å. This has been shown to be accurate enough to
capture the physics discussed here [39].

We first calculate the energy bands of the Cu/CO sys-
tems, and then we identify the modified surface bands via
proper layer-resolved band projections. We also simulate the
LDOS of the surface states and the corresponding STM image
with the Tersoff-Hamann scheme [52]. Finally, we calculate
the charge difference caused by CO adsorption using the
VASPKIT code [53] in order to study the effect of charge trans-
fer between CO molecules and the Cu slab.

III. RESULTS AND DISCUSSIONS

A. Energy bands

Various theoretical methods, i.e., DFT simulations, the
muffin-tin model, and the TB model, are used to calculate
the modified Cu surface bands in the Cu/CO systems. The
muffin-tin model and the TB model can give an intuitive
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FIG. 3. Energy bands obtained by DFT simulations and the corresponding orbital projections of Cu atoms in the top two layers. Parts
(a) and (b) are the energy bands of a pure Cu slab in an unfolded Brillouin zone. (a) A 51-layer Cu slab. (b) An 8-layer Cu slab. Parts (c) and
(e) are the energy bands of an 8-layer slab in a folded Brillouin zone when an 8 × 8 supercell is used. (c) Without CO adsorption. (e) With
CO adsorption. (d) and (f) Fitting the lower energy surface band selected from (c) and (e) with the muffin-tin band. The fitting parameters are
m∗ = 0.50m0, UCO = 0.8 eV, and d = 0.5 nm. Note that in order to save calculation resources, we only calculate 10 points in each k-path in
(c) and (d). Other results are calculated with 30 points in each k-path.

picture about the p-bands, which clearly interpret the results
of DFT simulations. Meanwhile, the parameters of the muffin-
tin model and the TB model can be obtained by fitting the
results of DFT simulations.

1. DFT simulations

We first discuss how to calculate the Cu surface bands
via DFT simulations. Here, we use a Cu slab to mimic the
Cu surface. As mentioned above, the challenge here is to
distinguish the surface bands from the bulk bands of the Cu
slab. In the following, we use three steps to illustrate the Cu
surface bands in the Cu/CO system.

In the first step, we illustrate how to identify the Shockley
surface bands of a Cu slab in the DFT simulations. In Fig. 3(a),
we plot the energy bands of a 51-layer-thick pure Cu slab,
in which the surface bands are well known in the literature
[54–59]. As we see here, in such a Cu slab, the surface bands
are mixed up with the bulk bands. To identify the surface
bands, we project all the bands of the Cu slab into the sur-
face layers by layer-resolved band-structure projections. The
most important finding is that the Shockley surface states are
mainly composed of the pz orbitals of surface layers, i.e., Cu
pz orbitals of the top two layers; see the red dotted lines in
Fig. 3(a). Note that the red dotted lines here are just the surface

bands reported in the literature [54–59], and these states are
strongly localized at the surface layers [see Figs. 11(h) and
11(i) in Appendix]. The effective mass of the surface bands
is about m∗ = 0.45m0 (the blue solid line is the fitted k2

dispersion). Thus, we can use this property to identify the
surface bands in the DFT simulations.

A key fact here is that the Cu slab has two surfaces, which
give rise to two degenerate surface bands in the DFT simula-
tions. If the thickness of a Cu slab is largely reduced, the two
degenerate surface bands will be split due to the finite-size
effect. In Fig. 3(b), we plot the bands of an 8-layer-thick pure
Cu slab. With the same method, we get two split surface bands
instead (red dotted lines), due to the coupling between the top
and bottom surface states. The band split is about 0.2 eV. Such
a surface band split is unreal and does not exist in reality,
since the sample of the Cu(111) surface is thick enough. In
principle, it can be avoided by using a thick Cu slab in the
calculations. However, when we consider the CO adatoms, a
very large supercell is needed for the Cu slab, so that the thick-
ness of the Cu slab in the DFT simulations should be limited.
For example, if we use an 8 × 8 supercell (a0 = 2.04 nm)
and an 8-layer-thick Cu(111) slab, we have 512 Cu atoms
in one supercell which has already reached the limit of our
calculation resource. Fortunately, except for the band split,
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such coupling only slightly changes the effective mass of the
surface bands in this situation (m∗ = 0.5m0, and the blue solid
line is the fitted k2 dispersion). It can still be viewed as the
free-electron band with k2 dispersion. Therefore, in order to
compare with experiment, a reasonable and feasible way is
to choose an 8-layer-thick Cu slab (maximally allowable in
our DFT simulations), and artificially select one of the two
calculated surface bands.

In the second step, we show the folded surface bands where
a supercell of the Cu slab is considered. The surface band
of the Cu(111) surface has a k2 dispersion near the 	 point,
which can be approximately viewed as a free-electron gas.
But if the CO molecules are periodically adsorbed, a supercell
of the Cu slab has to be used as illustrated in Fig. 1(a). In
this situation, the surface bands are folded into a small BZ
defined by the supercell. For example, Fig. 3(c) gives the
folded surface bands (red dots) of the 8-layer-thick Cu slab
with an 8 × 8 supercell. Note that here we only consider
a pure Cu(111) surface, and CO molecules have not been
included yet. Since the 8-layer-thick Cu slab has two surface
bands, we have two sets of folded surface bands here, which
have an energy split about 0.2 eV. We select one set of the
folded surface bands (low-energy one); see the red solid lines
in Fig. 3(c). Such a folded surface band calculated by DFT
simulations can be well understood by the muffin-tin model
in Eq. (1). Here, we set UCO = 0 in the muffin-tin model,
since CO molecules have not been adsorbed yet. Thus, the
muffin-tin model gives the folded free-electron bands here.
In Fig. 3(d), the red dots are the replotted folded surface
bands obtained by DFT simulations, i.e., the red solid lines
in Fig. 3(c), and the blue solid lines are the folded surface
bands obtained by the muffin-tin model (m∗ = 0.50m0 and
UCO = 0). We see that they coincide well with each other,
especially in the low-energy region. We argue that the small
discrepancy is because that the assumption of k2 dispersion is
invalid for the DFT surface bands at high energy, as shown in
Figs. 3(a) and 3(b).

At the last step, we calculate the modified Cu surface
bands in the presence of CO adatoms via DFT simulations. In
Fig. 3(e), we show the bands of the Cu/CO system, where an
8 × 8 supercell is used and CO adatoms are included as shown
in Fig. 1(a). Here, the red dots are the calculated surface bands
via the layer projection method. Similarly, we select one of
the two sets of surface bands, which are replotted in Fig. 3(f).
The blue lines are the surface bands calculated by the muffin-
tin model with UCO = 0.8 eV. The consistency of the DFT
bands and that obtained from the muffin-tin model clearly
indicates that the muffin-tin model gives a rather good de-
scription of the surface bands of the Cu/CO system. Here we
also obtain the value of muffin-tin potential parameters, i.e.,
UCO = 0.8 eV and d = 0.5 nm, by fitting the DFT bands. The
influence of the CO adatoms can be clearly seen by comparing
Figs. 3(f)–3(d). In Fig. 3(f), the CO potential lifts the band
degeneracy along some high-symmetry lines, and a Dirac
point at the lowest two bands emerges at the K point [43,60],
denoted by the blue circle. Actually, the lowest two bands here
are just the s-bands of the honeycomb lattice, which give rise
to an artificial graphene. Above the lowest two bands, there
is another Dirac point at the K point, also denoted by a blue
circle. As will be shown later, these high-energy bands above

FIG. 4. (a) Energy bands calculated by the muffin-tin potential
model of the single-CO case in Fig. 1(a). UCO = 9 eV, d = 0.5 nm,
a0 = 2.04 nm. Cyan lines are s-bands, blue lines are p-bands. (b) Fit-
ting of the p-bands in (a) with the p-orbital TB model. Red dashed
lines are the TB bands. The fitting parameters are t‖ = 0.49 eV, t⊥ =
0.15 eV, εp = 1.2 eV. (c) Energy bands calculated by the muffin-
tin potential model in the extreme case of Fig. 1(a). UCO = 9 eV,
d = 1.6 nm, a0 = 2.04 nm. Black lines here correspond to new
s-orbitals. (d) Fitting of the p-bands in (c) with the TB model. The
fitting parameters are t‖ = 0.477 eV, t⊥ = 0 eV, and εp = 1.82 eV.

the s-bands, as well as the Dirac point, just result from the
px,y-orbitals of the honeycomb lattice.

2. Muffin-tin and TB models

Through DFT simulations, we have shown that the mod-
ified Cu surface bands in Cu/CO systems can be well
described by the muffin-tin model. Here, based on the muffin-
tin and TB models, we then illustrate that such Cu/CO
systems do host a px,y honeycomb electron lattice.

The surface bands calculated by the muffin-tin model are
plotted in Fig. 4(a). Here, to demonstrate, we use an ideal
set of parameters for the muffin-tin model, UCO = 9 eV and
d = 0.5 nm. As discussed in the literature [39,48], the lowest
two bands (cyan lines) are from the s-orbitals, which are
similar to the bands of graphene. This is why this artificial
structure is named “artificial graphene” [43]. We are interested
in the upper four bands (blue lines). Actually, the four bands
here are from the px,y-orbitals on the honeycomb lattice. To
prove this point, we use the TB model in Eq. (12) to fit the p-
orbital energy bands in Fig. 4(b). The red dashed lines are the
results of the TB model, and we also replot the p-bands from
the muffin-tin potential model (blue lines) as a comparison.
We see that the p-bands obtained from the TB model coincide
well with that from the muffin-tin potential model in the
low-energy region. The fitted parameters of the TB model are
t‖ = 0.49 eV, t⊥ = 0.15 eV, and εp = 1.2 eV. At high energy,
there is an obvious discrepancy. There are two reasons for this.
One is due to the anisotropy of the confinement potential as
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mentioned in the preceding section, which has been ignored
in the TB model. It does not obviously influence the s-bands,
but it cannot be completely ignored for the p-bands. The other
is due to hybridization between the p-orbitals and the states
with higher energy. Since the confinement potential is finite,
the surface states at higher energy here are more like that of
nearly free electrons, for which the orbital picture and the TB
model do not work.

To make the p-orbital picture clearer, we consider an
extreme case with UCO = 9 eV, d = 1.6 nm. In this case,
the confinement potential is extremely large. Thus, more or-
bitals appear and these orbitals are well separated in energy.
We plot the bands in this extreme case in Figs. 4(c) and
4(d). The lowest two bands are from s-orbitals. The upper
four bands are just from the px,y-orbitals. Now, we see that
there are two nearly flat bands and a Dirac point at the K
point, which are the characteristics of the bands of the px,y-
orbital honeycomb lattice [19]. We also give a fitting with the
TB model, as shown in Fig. 4(d). Now, there is no hybridiza-
tion with higher bands, and the discrepancy of the band
structure at high energy should only result from the influence
of the anisotropy of the confinement potential.

Interestingly, in Fig. 4(c), the two bands above the p-bands
are similar to the lowest two s-bands (black lines). Actually,
they correspond to a new s-orbital of the artificial atom, which
appears due to the very large repulsive (confinement) potential
in this extreme case. So, we get another two graphenelike
s-bands at high energy. However, they have distinct LDOS
patterns, which will be shown later.

For the Cu/CO system, we obtain UCO = 0.8 eV by fitting
the DFT bands. However, the muffin-tin model shows that
such a repulsive potential is not strong enough to completely
separate the p-bands from the s-bands in energy, and may not
give a clear signal of the p-band in experiment. In Fig. 5(a), we
plot the muffin-tin bands calculated with UCO = 0.8 eV (green
solid lines) and UCO = 9 eV (red dashed lines), respectively.
We see that, with a weak repulsive potential, e.g., UCO =
0.8 eV, the lowest p-band is badly bent, and obviously deviates
from the typical shape of the p-band. This implies that, with a
single CO adatom, the p-band features in experiment are not
quite evident. A better way is to use a CO cluster instead of
a single CO adatom, as shown in Fig. 2(b), which has been
successfully utilized in experiment [48]. The reason is that
the CO cluster is essentially equivalent to a stronger effective
potential in the muffin-tin model. In Fig. 5(a), we also plot
the muffin-tin bands calculated with the cluster-1 of CO; see
the blue solid lines. It obviously demonstrates that, with a
CO cluster, we can get the same surface band structures as
that from a strong repulsive potential (i.e., a single adatom
with UCO = 9 eV). So, in order to give a more clear p-band
characteristic, unless specified otherwise, we use the cluster-1
of CO in the muffin-tin model instead of a single CO adatom.
This should be a more appropriate experimental design to
observe the p-orbital bands in the Cu/CO system. We em-
phasize that the physical picture of the p-orbital remains the
same no matter whether a single CO adatom or a CO cluster
is used.

In Fig. 5(b), we use the TB model to fit the muffin-tin bands
of the cluster-1 case. The red (green) dashed lines are the TB
bands of the p-orbital (s-orbital).

FIG. 5. (a) Energy bands calculated by the muffin-tin potential
model. Blue lines are the muffin-tin bands of cluster-1 with UCO =
0.8 eV, d = 0.5 nm. Red dotted lines are the muffin-tin bands in
Fig. 4(a). Green lines are the muffin-tin bands of the single-CO
case in Fig. 1(a) with UCO = 0.8 eV, d = 0.5 nm. (b) Fitting of
the bands (cluster-1) in (a) with the TB model. Green dashed lines
are the s-orbital TB bands with fitting parameters: ts = −0.12 eV,
εs = −0.124 eV; red dashed lines are the p-orbital TB bands with
fitting parameters: t‖ = 0.49 eV, t⊥ = 0.15 eV, εp = 1.248 eV.

B. LDOS pattern: Numerical results

Now, we discuss the LDOS pattern in this artificial honey-
comb lattice, which can be directly measured using STM. The
observed LDOS pattern can be used to identify the p-bands in
experiment.

Figures 6(a)–6(e) are the LDOS calculated with the TB
model at E − E f = −0.05, 0.36, 0.66, 1.59, and 1.79 eV,
respectively. The corresponding TB bands have been given
in Fig. 5(b), and the energy of the LDOS is denoted by red
arrows. In Fig. 6(a), the LDOS corresponds to an energy at the
s-band (E − E f = −0.05 eV). It clearly shows a honeycomb
lattice pattern [41,43], in which the disk at each site represents
an on-site s-orbital. Figures 6(b) and 6(c) are the LDOS of the
bottom p-orbital flat band. Note that the flat band here is not
exactly flat, so the LDOS at different energies of this band
will show distinct features. For example, Fig. 6(b) gives the
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FIG. 6. (a)–(e) LDOS patterns calculated with TB model at E − Ef = −0.05, 0.36, 0.66, 1.59, and 1.79 eV, respectively. Other parameters
of this model are the same as that of TB bands in Fig. 5(b). (f)–(j) LDOS patterns calculated with muffin-tin model at E − Ef = −0.05, 0.36,
0.66, 0.84, and 0.98 eV, respectively. Other parameters of this model are the same as that of muffin-tin bands in Fig. 5(b).

LDOS at the energy around the K point, while Fig. 6(c) is
around the 	 point. Near the 	 point, the pattern shows a
bonding state feature, in which the electron density mainly
distributes in between the two lattice sites and is tiny near the
center of the artificial atom. In contrast, near the K point, the
distribution becomes more complex and nonlocal, as shown in
Fig. 6(b). As for the middle two p-bands, we find two different
kinds of LDOS patterns. At lower energy, the LDOS shows a
bonding state feature quite like that in Fig. 6(c). At higher
energy, the LDOS has an antibonding state feature, which has
a node in the middle of the bond, as shown in Fig. 6(d). The
LDOS of the top flat band has a stronger antibonding state
feature, as shown in Fig. 6(e), in which the electron density
inside of the bond is pushed to the opposite directions outside
of the bond. We will give a further analysis of the above LDOS
patterns with the k · p method later in Sec. III C.

Figures 6(f)–6(j) are the LDOS calculated with the muffin-
tin potential model at E − E f = −0.05, 0.36, 0.66, 0.84, and
0.98 eV, respectively. The corresponding band structures are
also given in Fig. 5(b), and the energy of the LDOS is denoted
by blue arrows. Note that the s-bands and the bottom p-orbital
flat band coincide well with that from the TB model. At higher
energy, the p-bands have a discrepancy with that from the
TB model, as shown in Fig. 5(b). So it is reasonable to expect
that the muffin-tin LDOS patterns have similar shapes to the
TB LDOS patterns at low energy, while they are different at
high energy. Figure 6(f) shows the LDOS of the s-bands, and
Figs. 6(g)–6(h) show the LDOS of the bottom p-orbital flat
band near the K point and the 	 point. They are qualitatively
in agreement with the TB results. When we move to the mid-
dle p-bands, only the antibonding features can be observed, as
shown in Figs. 6(i)–6(j). We think that the muffin-tin potential
model is more realistic. We expect that the LDOS patterns
observed in experiment should be more like that from the
muffin-tin potential model.

The LDOS in Fig. 6 is for the Cu/CO system. As a com-
parison, if the muffin-tin potential is extremely large (e.g.,
UCO = 9 eV, d = 1.6 nm), it is possible to get a standard band
structure of a px,y-orbital honeycomb lattice; see Figs. 4(c)

and 4(d). We then plot the LDOS of this extreme case in Fig. 7.
The corresponding band structure is shown in Figs. 4(c) and
4(d), and the energy of the LDOS is denoted by blue arrows.
Figure 7(a) is the LDOS of the bottom p-orbital flat band. The
flat band now is exactly flat, so that the LDOS of this band
only shows a bonding state feature. As for the middle two
p-bands, the LDOS in Figs. 7(b) and 7(c) shows bonding and
antibonding state features, respectively, which are similar to
the TB LDOS in Figs. 6(c) and 6(d). The LDOS of the top
flat band has a stronger antibonding state feature, much more
obvious than that in Fig. 7(c).

An interesting case is the new s-bands above the p-bands
in Fig. 4(c). Though a similar graphenelike band structure
is found [black lines in Fig. 4(c)], the new s-bands have a
different LDOS pattern, as shown in Fig. 7(d). This is because

FIG. 7. LDOS patterns in the artificial honeycomb lattice cal-
culated with the muffin-tin potential model for the extreme
case in Fig. 4(c). (a) E − Ef = 1.11 eV, (b) E − Ef = 1.32 eV,
(c) E − Ef = 2.47 eV, and (d) E − Ef = 3.82 eV. Other parameters
are the same as in Fig. 4(c).
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the s-bands correspond to a new s-orbital with a node in the
radial part of the wave function, which can be obtained by
solving Eqs. (5) and (6).

The LDOS can also be calculated with the DFT simula-
tions. However, due to the finite thickness of the Cu slab (an
8-layer-thick Cu slab) in the DFT simulations, the calculated
LDOS contains contributions from bulk states. This implies
that the LDOSs calculated with the DFT simulations are not
the pure p-band LDOSs as required. The muffin-tin model
should be a better way. We give the results and discussions
about the LDOS from DFT simulations in Appendix.

Finally, we argue that the above p-band LDOS can also
be observed in other similar artificial honeycomb lattice sys-
tems, e.g., a nanopatterned semiconductor heterostructure
[38,60–62].

C. LDOS pattern: The k · p method

After diagonalizing the pxy-orbital tight-binding
Hamiltonian Eq. (12), we have coefficients cA

px
(mk),

cA
py

(mk), cB
px

(mk), and cB
py

(mk) for Bloch wave functions
{ψA

px
(k, r), ψA

py
(k, r), ψB

px
(k, r), ψB

py
(k, r)}, which are the

bases of the TB Hamiltonian. Here, m is the band index. The
bases are

ψA,B
px,y

(k, r) = 1√
N

∑
RA,B

φA,B
px,y

(r − RA,B)eikRA,B , (15)

where φA,B
px,y

(r − RA,B) are just the wave functions of p-orbitals
given in Eq. (8). Then, the eigenfunction of the mth p-band is

�mk(r) = cA
px

(mk)ψA
px

(k, r) + cA
py

(mk)ψA
py

(k, r)

+ cB
px

(mk)ψB
px

(k, r) + cB
py

(mk)ψB
py

(k, r). (16)

So, the TB LDOS can be obtained with

LDOS(ε, r) =
∑
mkσ

|�mkσ (r)|2δ(ε − εmkσ ). (17)

Here, we show how to understand the bonding and anti-
bonding features of the LDOS shown in Fig. 6 by analyzing
the wave functions. The wave function in Eq. (16) can be
divided into the components from the A and B sites,

�mk(r) =
∑
RA

eikRA

√
N

{
cA

px
(mk)φA

px
+ cA

py
(mk)φA

py

}

+
∑
RB

eikRB

√
N

{
cB

px
(mk)φB

px
+ cB

py
(mk)φB

py

}
, (18)

where the expression in the curly brackets in the first (second)
line is from the A (B) site. Near the 	 point, the coefficients
cA,B

px,y
(mk) can be obtained by the k · p method [20]. For ex-

ample, the wave function of the bottom p-orbital flat band
(m = 1) near the 	 point can be written as

�1k(r) =
∑
RA

eikRA

√
2N |k|

{ − (
kyφ

A
px

− kxφ
A
py

)}

+
∑
RB

eikRB

√
2N |k|

{ + (
kyφ

B
px

− kxφ
B
py

)}
. (19)

We can see that the p-orbitals at the A and B sites differ in a
minus sign. This implies that the two p-orbitals are antiparal-
lel (head to head), so that the LDOS in between the A and B
sites is amplified, i.e., the bonding state feature, as shown in
Figs. 6(c) and 6(h).

The wave functions of the other three p-bands near the
	 point can be written as

�2k(r) =
∑
RA

eikRA

√
2N |k|

{ + (
kxφ

A
px

+ kyφ
A
py

)}

+
∑
RB

eikRB

√
2N |k|

{ − (
kxφ

B
px

+ kyφ
B
py

)}
, (20)

�3k(r) =
∑
RA

eikRA

√
2N |k|

{ + (
kxφ

A
px

+ kyφ
A
py

)}

+
∑
RB

eikRB

√
2N |k|

{ + (
kxφ

B
px

+ kyφ
B
py

)}
, (21)

�4k(r) =
∑
RA

eikRA

√
2N |k|

{ − (
kyφ

A
px

− kxφ
A
py

)}

+
∑
RB

eikRB

√
2N |k|

{ − (
kyφ

B
px

− kxφ
B
py

)}
. (22)

Similarly, the second p-band of Eq. (20) also has a bonding
state feature, while for the upper two p-bands (m = 3 and 4),
the p-orbitals at the A and B sites are parallel (head to tail), as
shown in Eqs. (21) and (22). Thus the LDOS in between the
A and B sites is canceled, i.e., the antibonding state feature, as
shown in Figs. 6(d) and 6(e).

But for the LDOS near the K point, the wave functions
of the A and B sites do not have such a special relation as that
near the 	 point [20]. Thus, we cannot observe a clear bonding
or antibonding state feature, as shown in Figs. 6(b) and 6(g).

D. Edge states

It is pointed out that the px,y-orbital honeycomb lattice
has two kinds of edge states, which have been observed in
a photonic lattice system [13]. Meanwhile, a recent STM ex-
periment has detected the s-orbital edge states of the artificial
graphene on the Cu surface [42]. Thus, it should be possible
to measure the edge states of the px,y-orbital honeycomb lat-
tice in this Cu/CO system. We first calculate the bands of a
zigzag ribbon of the px,y-orbital honeycomb lattice with the
TB model. The width of the zigzag ribbon is about 34 nm.
The calculated bands are given in Fig. 8. Here, the green
lines are the zero-energy edge states, and the red lines are
the dispersive edge states. These results are all in agreement
with former work [13]. Note that, in order to compare with
Fig. 5(b), we set εpx = εpy = 1.248 eV in the TB model for
the ribbon calculation.

In Fig. 9, we plot the LDOS of the zigzag ribbon near a
zigzag edge, whose energy is denoted by red arrows in Fig. 8.
Figures 9(a) and 9(c) are the LDOSs plotted at E − E f = 0.55
and 0.95 eV, respectively. These LDOS patterns correspond
to bulk states, as shown in Fig. 8. So, the electron density
distributes all over the bulk. At E − E f = 0.67 eV, the states
are mainly the dispersive edge states (red lines in Fig. 8), but
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FIG. 8. The p-orbital energy bands of a zigzag ribbon of a hon-
eycomb lattice. The width of the ribbon is 29a0/

√
3. We use the TB

model; the parameters and the Fermi level are the same as that of the
TB bands in Fig. 5(b). Blue lines are bulk states, green lines are two
zero-energy edge states, and red lines are two dispersive edge states.

there are also some bulk states. So in Fig. 9(b), we see that
the intensity of the LDOS is extremely large near the edge,
which results from the dispersive edge states. Meanwhile,
some bulk states can also be found in Fig. 9(b). In Fig. 9(d),

FIG. 9. LDOS patterns near the edge of a zigzag ribbon at
(a) E − Ef = 0.55 eV, (b) E − Ef = 0.67 eV, (c) E − Ef = 0.95 eV,
and (d) E − Ef = 1.248 eV. Other parameters and the Fermi level are
the same as that of ribbon bands in Fig. 8.

we plot the LDOS at E − E f = 1.248 eV. As shown in Fig. 8,
there are only zero-energy edge states at E − E f = 1.248 eV.
Thus, we see that the LDOS becomes nearly zero away from
the zigzag edge. Our calculations indicate that we can distin-
guish different kinds of edge states by measuring the LDOS
with STM.

E. Position of the Fermi level

In STM experiment, to access the p-orbitals, the Fermi
level should be close to the p-bands. In the Cu/CO system,
the position of the Fermi level relative to the surface bands
depends on CO-CO (cluster-cluster) spacing a0 [39,46,47].
In each unit cell of this artificial honeycomb lattice,
the number of surface electrons is S0Ne, where S0 = √

3a2
0/2

is the area of the unit cell, and Ne ≈ 0.72 nm−2 is the
electron density of Cu surface states. The surface bands can
be obtained by the muffin-tin model. We know that the total
number of surface electrons is just the summation of all the
surface states below the Fermi level. With this relation, we
can calculate the position of the Fermi level relative to the
surface bands, as a function of the CO-CO spacing.

Based on the above-mentioned principle, we give a simple
relation to estimate the required CO-CO spacing, with which
one can let the Fermi level cross the mth surface band. We
know that a filled band corresponds to two electrons per unit
cell (including spin-up and spin-down). Thus, if the Fermi
level crosses the mth surface band, we have S0Ne � 2m <

S0Ne + 2. To let the Fermi level cross the p-bands, the relation
above gives a rough estimation about a0, 2.5 < a0 < 4.4 nm,
which is our suggested value of the further experiment. Note
that, with different values of a0, the surface band shape is
similar, and only the bandwidth is changed. This method
to predict the Fermi level was used in our previous work
[39,47], and is in good agreement with the experimental
observation [40].

Here, we point out that the DFT method we used here
cannot correctly predict the position of the Fermi level, though
the modified surface bands can be well achieved. For a pure
Cu(111) surface, the STM and angle-resolved photoemission
spectroscopy experiments indicate that the Fermi level rel-
ative to the bottom of the surface band E f − E0 is about
0.40–0.45 eV [57–59]. However, DFT simulations with dif-
ferent methods give different values of the Fermi level. For
example, a full-potential linearized augmented plane-wave
(FLAPW) method gives E f − E0 = 0.526 eV [54]; the DA-
CAPO code using the ultrasoft pseudopotential plane-wave
method gives E f − E0 = 0.443 eV [55]; the WIEN97 code
using the relativistic self-consistent FLAPW method gives
E f − E0 = 0.40 eV [56]; the VASP package we used here
based on the projector-augmented wave method gives E f −
E0 = 0.55 eV [Fig. 3(a)]. From these studies, we can see that
the calculated E f − E0 has an error range about 150 meV,
which is comparable to the width of s-bands [about 430 meV;
see Fig. 3(f)]. Thus, we argue that it is quite hard to predict
whether the Fermi level crosses the s- or p-bands in such
a Cu/CO system by DFT simulations. Furthermore, when a
thin slab is used in the DFT simulations, there is an artificial
shift of surface bands (about 150 meV) resulting from the
finite-size effect; see Fig. 3(b). It makes the prediction of E f

even worse.
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FIG. 10. (a) Charge difference caused by CO adsorption ob-
tained by DFT simulations with different CO-CO spacing. Other
parameters are the same as that used in Fig. 3(e). The results shown
are the values obtained by integrating over the xy-plane (parallel to
the Cu surface) in one supercell. The horizontal axis represents the
z-direction perpendicular to the Cu surface. The black dashed line
represents the Cu/CO interface. (b) The DOS of Cu/CO systems
with different CO-CO spacing.

We assume above that the number of Cu (111) surface
electrons is fixed even if CO molecules are adsorbed. This
is reasonable because we cannot expect 100 CO molecules
to significantly change the Fermi level of Cu bulk. To further
illustrate this point, we calculate the CO adsorption-induced
charge difference per supercell with different CO spacing.
The results are plotted in Fig. 10(a). Here, the z-direction is
perpendicular to the Cu surface, and the positions of the Cu, C,
and O atoms are denoted in the figure. We see that the charge
difference only occurs at the top two Cu surface layers. The
integral of the charge difference along the z-direction gives a
charge transfer of 0.04 e− per supercell from the Cu slab to the
CO molecules for all the CO spacing used in the calculation.
This value is very tiny, considering the large number of bulk
states in each supercell of the Cu slab. Thus, it indicates that
the charge transfer here cannot influence the absolute position
of the bulk Fermi level. We also calculate the DOS for various

cases, with or without CO adatoms, in Fig. 10(b). There is
almost no change of DOS whether the CO molecules are
adsorbed or not, and the Fermi level is always at the same
position of the DOS. All these calculation results suggest that
the influence of charge transfer on the Fermi level can be
safely ignored.

IV. SUMMARY

In summary, we illustrate that the desired px,y-orbital
honeycomb electron lattice can be realized on the Cu surface
by depositing CO molecules into a hexagonal lattice with an
STM tip. By DFT simulations, we get the modified surface
bands and the effective muffin-tin parameters, which gives a
direct support to the muffin-tin model. Based on these model
parameters, we argue that using a CO cluster instead of a
single CO adatom may be a more suitable experimental design
to observe the p-band features in further experiment. Then,
we use the muffin-tin and TB model to illustrate that such
Cu/CO systems do give rise to a px,y-orbital honeycomb
electron lattice. We further calculate the LDOS patterns of the
p-bands and then give an analytic interpretation with the k · p
method. The LDOSs of p-bands have some unique patterns,
which can be used to identify the p-bands in additional STM
experiments. Finally, we point out that the two kinds of edge
states, i.e., zero energy and dispersive edge states, can be
readily observed in this p-orbital honeycomb electron lattice.
We expect that these two kinds of edge states can be confirmed
in further STM experiments.

A further suggestion for the experiment is the lattice con-
stant a0, namely the distance between adjacent CO atoms.
To detect the p-bands, the Fermi level should be across the
p-bands. In the Cu/CO systems, the position of the Fermi
level depends on a0. Our analysis suggests that an appropriate
region is 2.5 < a0 < 4.4 nm.

Note added. During the revision of our previous manuscript
[63], we noted that Gardenier and collaborators also studied
the p-orbitals in an artificial honeycomb lattice in an STM
experiment [64].
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APPENDIX: DFT SIMULATIONS OF THE LDOS

By DFT simulations, we also calculate the LDOS around
the Cu surface (Cu/CO system with an 8 × 8 supercell).
Figures 11(a)–11(e) are the LDOS obtained by DFT sim-
ulations with bias voltage in regions [−0.70 V, −0.69 V],
[−0.29 V,−0.28 V], [0.01 V, 0.02 V], [0.19 V, 0.20 V], and
[0.33 V, 0.34 V], respectively. Note that the energy intervals
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FIG. 11. (a)–(e) LDOS patterns obtained by DFT simulations with bias voltage in regions [−0.70 V, −0.69 V], [−0.29 V,−0.28 V],
[0.01 V, 0.02 V], [0.19 V, 0.20 V], and [0.33 V, 0.34 V], respectively. In DFT simulations, the Fermi level is set to be zero. The system is the
same as that of modified surface bands in Fig. 3(f). (f)–(i) Energy bands of a pure Cu slab in a primitive cell obtained by DFT simulations
with projections of surface or medium layers. (f) Bands of a 51-layer slab with projections of surface two layers. (g) Bands of an 8-layer slab
with projections of surface two layers. (h) Bands of a 51-layer slab with projections of medium 47 layers. (i) Bands of an 8-layer slab with
projections of medium 4 layers.

above all belong to the energy region of the s- and p-bands in
Fig. 3(f).

Here, we first would like to discuss the relation between
the LDOS calculated with the DFT simulations and that with
the muffin-tin potential model. The muffin-tin potential model
deals with a 2D electron system, so that the unit of LDOS ρ2D

s f

obtained by Eq. (2) is eV−1 nm−2. As for the DFT simula-
tions, we use a 3D Cu slab to mimic the surface states. The
corresponding LDOS is actually the 3D partial charge density
at the Cu surface in a specified energy interval E , namely
ρ3D

s f , so that the unit is e/Å3. We have a simple relation

lim
E→0

ρ3D
s f × h

E
= ρ2D

s f , (A1)

where h is the thickness of the surface states and is a con-
stant. When we calculate the LDOS at the Cu surface with
DFT simulations, we choose very small E , in which the
2D surface states dominate if the slab is thick enough, so
ρ3D

s f ∝ ρ2D
s f . In this case, the obtained DFT results indeed

reflect the LDOS of surface-state electrons, and they are qual-
itatively in agreement with that from the muffin-tin potential
model.

In principle, near the surface, the LDOS in the energy
region of surface bands should only result from the Cu surface
states. However, in the DFT simulations, if the thickness of
the Cu slab is finite, the contribution of the bulk bands cannot
be completely ignored. To illustrate this point, we project all
the bands of a pure Cu slab into the surface layers (top and
bottom two) in order to see their contributions to the surface
LDOS. Note that, in Fig. 3, we project the bands to a special
orbital of the top two surface layers so as to identify the
surface bands. But here in Fig. 11 we need to project to all

the orbitals of surface layers, since that LDOS contains all
the surface orbitals. In Fig. 11(f), we plot the results of a
51-layer-thick Cu slab, where the surface bands in this case
are in Fig. 3(a). We see that, in the energy region of the surface
bands, no other bands contribute to the surface layers except
the surface bands. Figure 11(g) gives the same projection for
an 8-layer-thick Cu slab, where the corresponding surface
bands are plotted in Fig. 3(b). We see that, except for the
surface bands, other bulk bands also have distribution in the
surface layers. This implies that the surface LDOS obtained
from the DFT simulations in Figs. 11(a)–11(e) contains some
contributions from bulk bands, which is different from the real
situation. Therefore, compared with the DFT simulations, the
muffin-tin model can give a more reliable description about
the p-band LDOS patterns of the Cu/CO systems.

Fortunately, despite the interference from the bulk bands,
the LDOSs obtained by DFT simulations in Figs. 11(a)–11(e)
are still qualitatively in agreement with that from the muffin-
tin model; see Figs. 6(f)–6(j). When we increase the energy
from the bottom of the surface band, all the typical LDOSs of
the p bands in Fig. 3(f) are found in the DFT simulations.

Finally, we show that, even in the 8-layer-thick Cu slab,
the surface bands identified in Fig. 3 are indeed localized at
the surface layers. Our way is also the layer-resolved band
projection. Here, we project all the bands of a Cu slab to
the bulk part of the Cu slab. For example, in Fig. 11(h), we
consider the case of a 51-layer-thick Cu slab, where we project
the bands into the inner 47 layers. We see that the surface
bands here have almost no contribution to the bulk layers;
see the blue box. This indicates that in this case the surface
bands are strongly localized at the Cu surface. The situation
is similar in the case of an 8-layer-thick Cu slab, as shown in
Fig. 11(i).
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