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Anisotropic magneto-optical absorption and linear dichroism in two-dimensional
semi-Dirac electron systems
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We present a theoretical study on the Landau levels (LLs) and magneto-optical absorption of a two-
dimensional semi-Dirac electron system under a perpendicular magnetic field. Based on an effective k·p
Hamiltonian, we find that the LLs are proportional to the two-thirds power law of the magnetic field and level
index, which can be understood as a hybridization of the LL of Schrödinger and Dirac electrons with new
features. With the help of the Kubo formula, we find the selection rule for interband (intraband) magneto-optical
transition is anisotropic (isotropic). Specifically, the selection rules for interband magneto-optical transitions
are �n = 0, ±2 (±2, ±4) for linearly polarized light along the linear (parabolic) dispersion direction, while
the selection rules for the intraband transition are �n = ±1, ±3 regardless of the polarization direction of the
light. Further, the magneto-optical conductivity for interband (intraband) transition excited by linearly polarized
light along the linear dispersion direction is two (one) orders of magnitude larger than that along the parabolic
dispersion direction. This anisotropic magneto-optical absorption spectrum clearly reflects the structure of the
LLs, and results in a strong linear dichroism. Importantly, a perfect linear dichroism with magnetic-field tunable
wavelength can be achieved by using the interband transition between the two lowest LLs, i.e., from Ev0 to Ec0.
Our results shed light on the magneto-optical property of the two-dimensional semi-Dirac electron systems and
pave the way to design magnetically controlled optical devices.
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I. INTRODUCTION

In the past decade, the study on the Dirac-Weyl fermions
in condensed matter systems has attracted intensive attention
on account of both rich physics therein and promising appli-
cations [1,2]. The two-dimensional (2D) semi-Dirac material
is a new kind of highly anisotropic electron system, of which
the low-energy dispersion is linear along one direction and
parabolic along the perpendicular direction [3–5]. Owing to
the unique dispersion, a semi-Dirac material has the properties
of both Dirac materials and conventional semimetals or semi-
conductors [3–5]. Various systems are predicted to host 2D
semi-Dirac electrons such as the anisotropic strain modulated
graphene [3,4], the multilayer (TiO2)n/(VO2)m nanostruc-
tures [5–7], and the strained or electric field-modulated
few-layer black phosphorus [8–12]. Recently, the semi-Dirac
electron has been observed experimentally in potassium-
doped and strained few-layer phosphorene [13,14].

Although the low-energy dispersion of a semi-Dirac
material is a hybridization of that in Dirac materials and con-
ventional semimetals, it still exhibits unique features which
cannot be fully understood by combing the existing results of
the two typical materials. Those features include the unusual
Landau levels (LLs) [3–5], the optical conductivity [15,16],
the anisotropic plasmon [17], the Fano factor in ballistic trans-
port [18], the power-law decay indexes in the quasiparticle
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interference spectrum [19], and so on. In particular, the LLs
of the 2D semi-Dirac electron system are proportional to the
two-thirds power law of the magnetic field and level index,
i.e., En ∝ [(n + 1/2)B]2/3 [4], which has been verified by
the magnetotransport experiment [14]. This is different from
the linear dependence on the magnetic field and the level
index in conventional semimetals or semiconductors [20,21]
and the square root power dependence in pure Dirac mate-
rials [22–24]. The LL structure is an important fundamental
issue for electron material systems because it dominates
the magneto-properties, such as the quantum Hall effect,
magneto-optical and magneto-resonance features of the mate-
rial [20–24]. In turn, magneto-measurement is also a powerful
tool to detect the structure of the LLs [21–29]. Further, the
band parameters such as the effective masses and the Fermi
velocity can be extracted from the measured LL spectrum,
which has been successfully applied in graphene [22–26],
the surface states of three-dimensional topological insulators
[27,28], and 2D black phosphorus [29]. To date, there are
already several theoretical works on the LLs of the semi-Dirac
electron system [3–5] and also a magneto-transport measure-
ment on it [14]. However, the magneto-optical property of the
2D semi-Dirac electron system still remains elusive.

In this work, we theoretically investigate the LLs and
magneto-optical properties of a 2D semi-Dirac electron sys-
tem under a perpendicular magnetic field. Using the formula
given by the Sommerfeld quantization to fit the numerical
calculations, we find that the LLs are proportional to the 2/3
power of the magnetic field and the level index, which is
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different from that in the conventional semimetals or semi-
conductors [20,21] and the massless Dirac materials [22–24].
There is a band gap in the LL spectrum, and the LL spacings
decrease with the increase of the level index. With the help
of the Kubo formula, we evaluate the longitudinal magneto-
optical conductivity as functions of the photon energy. We
find the selection rule for interband (intraband) magneto-
optical transitions is anisotropic (isotropic). The selection
rules for interband transitions are �n = 0,±2 (±2,±4) for
linearly polarized light along the linear (parabolic) dispersion
direction, while the selection rules for intraband transitions
are �n = ±1, ±3 regardless of the polarization direction of
the light. For interband (intraband) transitions, the magneto-
optical conductivity excited by the linearly polarized light
along the linear dispersion direction is hundreds (dozens)
times larger than that along the parabolic dispersion direction.
The anisotropic magneto-optical absorption spectrum clearly
reflects the LL structure and results in a strong linear dichro-
ism. Importantly, the interband transition between the two
lowest-LLs results in a perfect linear dichroism with magnetic
field tunable wavelength, which is useful to design magneto-
optical devices.

The rest of the paper is organized as follows. In Sec. II, we
introduce the calculation of LLs and magneto-optical proper-
ties based on the Kubo formula. In Sec. III, we present the
numerical results and discussions. Finally, we summarize our
results in Sec. IV.

II. LANDAU LEVELS AND
MAGNETO-OPTICAL TRANSITIONS

A. Landau levels

The low-energy effective Hamiltonian of a 2D semi-Dirac
electron system is [3,8]

H = p2
y

2m∗ σx + vF pxσy, (1)

where σx and σy are the Pauli matrices, p = (h̄kx, h̄ky) the
momentum, m∗ the effective mass, and vF the Fermi velocity.
Typically, in potassium-doped few-layer black phosphorus,
the two parameters are [8] vF = 3 × 105 m/s and m∗ =
1.42 m0, where m0 is the free electron mass. The eigenvalue
of Hamiltonian (1) is

Es = s
√

p4
y/4m∗2 + v2

F p2
x, (2)

where the sign s = +/− stands for the conduction/valence
band. Equation (2) indicates that the low-energy state of a 2D
semi-Dirac electron system is highly anisotropic, of which the
dispersion is linear (parabolic) in the kx(ky)-direction. When
a perpendicular magnetic field B = (0, 0, B) is applied, per-
forming the Peierls substitution p → π = p + eA, we have
the commutator [πx, πy] = −ieBh̄. Hence, the creation and
annihilation operators can be defined as

â = lB√
2h̄

(πx − iπy), â† = lB√
2h̄

(πx + iπy), (3)

where lB = √
h̄/eB is the magnetic length. Therefore, Hamil-

tonian (1) can be rewritten as

H = − h̄2

4m∗l2
B

(â† − â)2σx + h̄vF√
2lB

(â† + â)σy. (4)

This Hamiltonian cannot be solved analytically because the
creation and annihilation operators couple all the LLs to-
gether. Fortunately, it can be solved numerically by taking
the eigenvectors of the number operator n̂ = â†â as basis
functions. In this basis, the wave function of the system can
be written as

ψ =
M∑

m=0

(
um

vm

)
|m〉, (5)

where um and vm are the linear superposition coefficients and
M is the total number of basis functions. Then, we can di-
agonalize Hamiltonian (4) numerically in a truncated Hilbert
space and obtain the eigenvalues as well as the eigenvec-
tors. In the Landau gauge A = (−By, 0, 0), the basis function
|m〉 is 〈r|m〉 = ϕ(x, y) = eikx x√

Lx
φm(y − y0), where φm(.) is the

eigenvector of the one-dimensional harmonic oscillator and
y0 = kxl2

B is the cyclotron center.
Another way to obtain the eigenvalues of Hamiltonian (4)

is to use a semiclassical argument, e.g., the Sommerfeld quan-
tization [3]. The formula of LL spectrum is given as

Es,n = sαn

[
h̄vF e√

m∗

(
n + 1

2

)
B

]2/3

, n = 0, 1, 2, 3, . . . , (6)

where αn depends on the Landau level index n. To determine
αn, we need to fit Eq. (6) with the numerical data. In our
work, we find α0 = 0.9454, α1 = 1.1668, and αn = 1.1723
for n � 2. At this point, it is interesting to compare the LLs
of 2D semi-Dirac electron systems with those of Schrödinger
electrons in conventional semi-metal or semiconductors, and
Dirac electrons in graphene. The results are summarized as

En =

⎧⎪⎪⎨
⎪⎪⎩

h̄eB
m∗ (n + 1

2 ) : Schrödinger electrons,

sgn(n)vF
√

2h̄eB|n| : Dirac electrons,

sgn(n)αn[
√

h̄eB
m∗ vF

√
h̄eB(|n| + 1

2 )]2/3 : semi-Dirac electrons.

(7)

Obviously, the LLs of the three kinds of 2D electron gas are different from each other. Further, the LL spacings for n � 2
are

�En = Es,n+1 − Es,n

= 2(n + 1)ε0(
n + 3

2

)4/3 + (
n + 1

2

)4/3 + (
n + 3

2

)2/3(
n + 1

2

)2/3 , (8)
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FIG. 1. (a) LLs as a function of magnetic field for the lowest
15 subbands, where the blue solid (red dashed) lines indicate the
numerical (analytical) results. (b) LLs in the conduction band varying
with level index under different magnetic fields. (c) Band gap of the
LL spectrum versus magnetic field. (d) LL spacings in the conduction
band (blue line) in unit of the first one (Ec,1 − Ec,0) as a function of
level index under magnetic field B = 30 T.

where ε0 = α2(h̄vF eB/
√

m∗)2/3. Meanwhile, it is also inter-
esting to compare the cyclotron resonance energies at the
quasiclassical limit for three kinds of two-dimensional elec-
tron gas, which are summarized as

h̄ωc =

⎧⎪⎪⎨
⎪⎪⎩

h̄eB
m∗c : Schrödinger electrons

h̄v2
F eB

cEF
: Dirac electrons [30,31]

h̄�( 3
4 )

2�( 5
4 )

√
m∗v2

F
2E

eB
m∗c : emi-Dirac electrons [17].

(9)

From Eq. (9), we see that the quasiclassical cyclotron reso-
nance energies all linearly depend on the magnetic field.

Figure 1(a) plots the LLs as a function of the magnetic
field for the lowest 15 subbands. From Fig. 1(a), we find
that the LLs (the red lines) given by Sommerfeld quantization
[see Eq. (6)] perfectly reproduce the numerical results (blue
lines) under any magnetic field. This proves that the LLs of
the 2D semi-Dirac electron system are proportional to the 2/3
power law of the magnetic field. Moreover, the LLs also show
2/3 power-law dependence on the level index under different
magnetic fields [see Fig. 1(b)]. This 2/3 power dependence
on the magnetic field and level index is different from that in
conventional semimetals or semiconductors [20,21] or Dirac
materials [22–24]. Although semi-Dirac electrons are realized
in potassium-doped few-layer black phosphorus [13], the LLs
are already quite different from those of pristine black phos-
phorus [32–35], indicating that they have become different
electron systems. In contrast to the gapless LLs of Dirac
materials [22–24], there is a band gap in the LL spectrum due
to the zero-point energy of the harmonic oscillator, which is
more similar to that in conventional semiconductors [20,21].
The band gap is 2Ec,0 which increases with the 2/3 power
law of the magnetic field [see Fig. 1(c)]. The stronger the
magnetic field, the larger the band gap. Further, Fig. 1(d)

FIG. 2. [(a), (b)] The spatial probability distributions of the
first/second LLs in the conduction when choose different gauges for
the vector potential A. The blue/red lines represent the probability
distribution along the x/y-direction.

shows the LL spacings in the conduction band in unit of
the first one (Ec,1 − Ec,0) as a function of the level index
under magnetic field B = 30 T. From Fig. 1(d), we find
that the LL spacings decrease with increasing level index,
which can also be inferred from Eq. (8). In other words,
the higher the level index, the smaller the LL spacing. For
the high-level index limitation (n → ∞), the LL spacing
vanishes.

Unlike the highly anisotropic dispersion at zero magnetic
field [see Eq. (2)], the LLs of a 2D semi-Dirac electron
system are independent of the wave vectors and seem to
be isotropic. However, the anisotropy of the LLs can be
revealed from the wave functions. Figures 2(a) and 2(b)
plot the spatial probability distributions in different Lan-
dau gauges of the first and second LL, respectively. The
probability distributions are calculated by using the finite dif-
ference method [36] which is not presented here. As plotted
in Fig. 2, we find that the probability distribution exhibits
strong anisotropy. It decays much faster along the y-direction
(red lines) than that along the x-direction (blue lines). This
means that electrons are more localized in the y-direction due
to the larger effective mass along this direction. The highly
anisotropic probability distribution (wave function) plays an
important role in the magneto-optical absorption spectrum
of the 2D semi-Dirac electron system as shall be discussed
later.

To conclude this subsection, the LL spectrum of a 2D semi-
Dirac electron can be understood as a hybridization of that of
the Schrödinger and Dirac electron but with new features. In
particular, the band gap arising from the zero-point energy is
inherited from the Schrödinger electron, while the decreasing
LL spacing is inherited from the Dirac electron. However, the
2/3 power-law dependence on the magnetic field and level
index as well as the highly anisotropic wave function are
not embedded in the LL spectrum of Schrödinger and Dirac
electron systems.
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B. Magneto-optical properties

Within the linear response theory, the dynamical conduc-
tivity can be written as [37–40]

σμν (ω) = h̄e2

iS0

∑
ξ 	=ξ ′

[ f (Eξ ) − f (Eξ ′ )]〈ξ |vμ|ξ ′〉〈ξ ′|vν |ξ 〉
(Eξ − Eξ ′ )(Eξ − Eξ ′ + h̄ω + i�ξ )

,

(10)

where h̄ω is the photon energy, S0 = LxLy the sample area
with the size Lx (Ly) in the x (y)-direction, |ζ 〉 = |s, n, kx〉 the
wave function expressed in Eq. (5), f (Eξ ) = [e(Eζ −EF )/kBT +
1]−1 the Fermi-Dirac distribution function with Boltzman
constant kB and temperature T . The sum runs over all states
|ξ 〉 = |s, n, kx〉 and |ξ ′〉 = |s′, n′, k′

x〉 with ξ 	= ξ ′. Meanwhile,
�ξ ∝ √

B accounts for the LL broadening induced by the dis-
order effects [37,41]. In the simplest approximation, we can
assume the broadenings are the same for each LL. The veloc-
ity matrix operators vx/y = ∂H/∂ px/y are

vx = vF σy, vy = −iv0(â† − â)σx, (11)

where v0 = h̄/
√

2lBm∗. It is worth noting that the ve-
locity operators are anisotropic, which will result in a
highly anisotropic magneto-optical absorption spectrum. Un-
der moderate magnetic fields, the absorption for linearly
polarized light along the x-direction is stronger than that
along the y-direction because of vF > v0. Meanwhile, we
note that vx (vy) is independent (dependent) on the creation
and annihilation operators, which means the magneto-optical
transition selection rules may also be anisotropic. By using the
wave function in Eq. (5), the transition matrix elements of the
velocity matrices are

X s′,s
n′,n = 〈s′, n′, k′

x|vx|s, n, kx〉

=
M∑

m′,m

ivF
( − un′,s′∗

m′ vn,s
m + vn′,s′∗

m′ un,s
m

)
δm′,m,

Y s,s′
n,n′ = 〈s, n, kx|vy|s′, n′, k′

x〉

=
M∑

m,m′
−iv0

(
un,s∗

m vn′,s′
m′ + vn,s∗

m un′,s′
m′

)

× (−√
mδm′,m−1 + √

m + 1δm′,m+1). (12)

By Fermi’s golden rule [42,43], the transition rate from the
nth LL in the s band to the n′th one in the s′ band for linearly
polarized light along the x-direction is

T s′n′,sn
x = 2π

h̄

(
h̄

lB

∣∣X s,s′
n,n′

∣∣)2

δ(Es′n′ − Esn ± h̄ω) f (Es′n′ )

× [1 − f (Esn)], (13)

while T s′n′,sn
y is similar to T s′n′,sn

x . Hence, the normal of

the matrix elements |X s′,s
n′,n|2 and |Y s′,s

n′,n |2 directly determine
the magneto-optical transition selection rules. A zero ma-
trix element represents a forbidden transition. Although the
transition matrix elements [see Eq. (12)] cannot be obtained
analytically, we can still obtain the magneto-optical transi-
tion selection rules by numerically checking all the matrix

elements of the transition rate one by one. With the ve-
locity matrix elements in Eq. (12), one can evaluate the
magneto-optical conductivity for linearly polarized light di-
rectly. Substituting Eq. (12) into Eq. (10) and making the
replacement

∑
kx

→ gsS0/2π l2
B, where gs = 2 for the spin

degeneracy, we obtain the real (absorption) part of the lon-
gitudinal magneto-optical conductivity as

Reσμμ

σ0
=

∑
n,n′,s,s′

[ f (En′,s′ ) − f (En,s)]
∣∣μs′,s

n′,n

∣∣2
�

(En,s − En′,s′ )[(En,s − En′,s′ + h̄ω)2 + �2]
,

(14)

where μ=(x, y), xs′,s
n′,n = h̄X s′,s

n′,n/lB, ys′,s
n′,n =h̄Y s′,s

n′,n/lB, and σ0 =
2e2/h. Similarly, the expression for the absorption (imagi-
nary) part of the Hall magneto-optical conductivity is

Imσxy

σ0
=

∑
n,n′,s,s′

f (En,s) − f (En′,s′ )�Im
(
xs,s′

n,n′y
s′,s
n′,n

)
(En,s − En′,s′ )[(En,s − En′,s′ + h̄ω)2 + �2]

,

(15)

where Im(xs,s′
n,n′y

s′,s
n′,n) determines the transition rate and

xs,s′
n,n′y

s′,s
n′,n = h̄2

l2
B
〈s, n|vx|s′, n′〉〈s′, n′|vy|s, n〉 is purely imaginary.

III. RESULTS AND DISCUSSION

In this section, we present the numerical results and dis-
cussions for the magneto-optical conductivities. Hereafter,
unless explicitly specified, the conductivities are all in units
of σ0 = 2e2/h, temperature T = 1K, Fermi energy EF = 0
for interband transitions, and level broadening � = 0.05

√
B

in unit of meV.
To understand the magneto-optical absorption spectra, we

first examine the interband magneto-optical selection rules
determined by the matrix elements of the transition rate. Fig-
ures 3(a) and 3(b) plot all the nonzero matrix elements of the
transition rate for the interband transition as a function of the
photon energy. As shown in Figs. 3(a) and 3(b), the matrix
elements T vn,cn′

x (T vn,cn′
y ) are nonzero only if the level indexes

satisfy |n − n′|=0,2 (|n − n′| =2,4), which indicates that the
interband magneto-optical selection rule for linearly polarized
light along the x(y)-direction is �n = 0,±2 (±2,±4), where
we defined �n = n − n′. Surprisingly, the interband magneto-
optical selection rule of the semi-Dirac electron system is
anisotropic. This is quite different from the dipole transition
(�n = ±1) in conventional semiconductors [44] and Dirac
materials [38–40,45,46]. It also differs from the isotropic
selection rule in black phosphorus thin film [32,35] in spite
of the highly anisotropic dispersion therein. We schemati-
cally illustrated the interband magneto-optical selection rules
in Fig. 3(c), where the magenta, orange, and purple arrows
denote the interband transitions of �n = 0,±2,±4, respec-
tively. Further, in the low photon energy regime, there are
well-resolved two-peak structures in the transition rate spectra
arising from the two kinds of transitions, i.e., �n = 0,±2
or �n = ±2,±4. However, the two peaks in the transition
rate spectra tend to coincide with each other with increasing
photon energy and finally merge together in the high photon
energy regime [see the purple and orange lines in Fig. 3(a)].
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FIG. 3. [(a), (b)] Nonzero elements of the interband transition rate as a function of photon energy for linearly polarized light along the
x/y-direction with magnetic field B = 30 T. (c) Schematic illustration of the interband magneto-optical transition rules, where the magenta,
orange, and purple arrows denote the interband transitions of �n = |n − n′| = 0, ±2, ±4, respectively. (d) The photon energies of the three
kinds of interband transitions with |n − n′| = 0, ±2, ±4 in units of the band gap as a function of level index. (e) The real part of the
longitudinal magneto-optical conductivity (in units of σ0 = 2e2/h) for interband transitions as a function of photon energy with magnetic field
B = 30 T.

This is actually a reflection of the decreasing spacings in
the LL spectrum plotted in Fig. 1(d). In particular, we plot
the photon energies of the three kinds of allowed interband
transitions �n = 0,±2,±4 as a function of the level index
in Fig. 3(d). As depicted in the figure, in low photon energy
regime, only the lower LLs participate in the optical transi-
tions. There is a large energy difference among the allowed
transitions, which leads to separated peaks in the transition
rate spectra [see Figs. 3(a) and 3(b)]. However, with the in-
crease of photon energy, LLs with a high index are involved in
the optical transitions. The difference of the nearest resonance
energies corresponding to the allowed transitions becomes
smaller and smaller and finally fades away [see Fig. 3(d)]
with the increase of the level index arising from the smaller
LL spacings depicted in Fig. 1(d). This contributes to merged
peaks in the transition rate spectra in the high photon energy
regime [see Figs. 3(a) and 3(b)]. Meanwhile, the transition
rate shows strong anisotropy originating from the anisotropy
of the LLs, i.e, the velocity operators and the wave functions.
The T vn,cn′

x is two orders of magnitude larger than T vn,cn′
y , re-

sulting from the highly anisotropic velocity operators, which
can also be inferred from the probability distributions plotted
in Fig. 2.

With the help of the magneto-optical selection rule, now
we can understand the magneto-absorption spectra more
easily. Figure 3(e) presents the real part of the interband
longitudinal magneto-optical conductivity as a function of
photon energy under magnetic field B = 30 T. As shown in
Fig. 3(e), the resonance frequency of the conductivity peak
varies from the midinfrared to the far-infrared regime for

B = 30 T. Of course, the resonance frequencies can be mod-
ulated by varying the magnetic fields. Further, the interband
magneto-optical absorption spectra exhibit strong anisotropy
inherited from the highly anisotropic transition rate spec-
tra. The Reσxx (red line) is hundreds of times larger than
Reσyy (blue line) resulting from the highly anisotropic band
structure in the absence of magnetic field, i.e., the highly
anisotropic velocities along different directions [see Eq. (11)].
Owing to the anisotropic magneto-optical selection rule, i.e.,
�n = 0,±2 (�n = ±2,±4) for linearly polarized light along
the x(y)-direction, the conductivity peaks in Reσxx do not
exactly coincide with those in Reσyy. In the low photon en-
ergy regime, we find well-resolved two-peak structures in
Reσxx (Reσyy) corresponding to the transitions of �n = 0,±2
(�n = ±2,±4). With the increase of photon energy, LLs
with high index are involved in the transition process. The
differences of the nearest resonance energies corresponding
to the allowed transitions (�n = 0,±2,±4) become smaller
and smaller. They finally vanish in the high photon energy
regime [see Fig. 3(d)] resulting from the decreasing LL spac-
ing plotted in Fig. 1(d). Therefore, although the selection rule
has not changed, we can only find one conductivity peak
in both Reσxx and Reσyy in the high photon energy regime.
Quantitatively, the first conductivity peak in Reσxx is one
order of magnitude larger than the others indicating a strong
absorption from Ev0 to Ec0. Other conductivity peaks in Reσxx

contributed to by �n = 0 are of the same order to those con-
tributed to by �n = ±2. In contrast, the conductivity peaks in
Reσyy contributed to by �n = ±4 are much smaller than those
contributed to by �n = ±2, which is also in line with the
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FIG. 4. The real part of the longitudinal magneto-optical con-
ductivity as a function of the photon energy under magnetic field
B = 30 T for intraband transitions of (a) �n = ±1 and (b) �n = ±3,
respectively. The dash-dotted (solid) lines denote the results for po-
larized light along the x(y)-direction. The insets depict the transitions
between the nearest LLs for transitions with filling factor ν = 1 to
3. The color of the arrows is the same as that of the corresponding
conductivity peaks.

transition rates shown in Fig. 3(b). Hence, Reσyy is dominated
by the transition of �n = ±2.

Next, we turn to discuss the intraband transitions. Figure 4
presents the real part of the longitudinal magneto-optical con-
ductivity as a function of the photon energy under magnetic
field B = 30 T for intraband transitions with filling factor
ν = 1 to 3. The dash-dotted (solid) lines denote the results for
linearly polarized light along the x(y)-direction. In both Reσxx

and Reσyy, the intraband transitions occur when the level
index changes as �n = ±1,±3, contributing to two groups
of absorption peaks. This indicates that the magneto-optical
selection rule of intraband transitions is independent of the
direction of polarization of light, i.e., isotropic selection rules.
This is the same as the magneto-optical selection rules for
intraband transitions in black phosphorus thin films [32]. All
the absorption peaks occur at the terahertz (THz) frequencies.
We schematically depicted the selection rules in the insets
as the filling factor ν varying from 1 to 3. The color of the
arrows in the insets is the same as that of the corresponding
conductivity peaks. Although the selection rule is isotropic,
the magneto-optical conductivity is still highly anisotropic.
Reσxx is one order of magnitude larger than Reσyy because of
the anisotropic velocity operator arising from the anisotropic
dispersion at zero magnetic field. For a certain Fermi level, the
conductivity in both Reσxx and Reσyy contributed to by the
transition of �n= ±3 is much smaller than that contributed
by �n = ±1. Therefore, the intraband conductivity is domi-
nated by the dipole-type transitions (�n = ±1). Under a fixed
magnetic field, the resonant frequencies for the transitions of
both �n = ±1 and �n = ±3 are red-shifted with the increase
of filling factor (doping), which is a direct reflection of the
decreasing LL spacings [see Fig. 1(d)]. The red-shift for the
transitions of �n = ±3 results in three-peak structures in

FIG. 5. The imaginary part of the Hall magneto-optical con-
ductivity σxy as a function of photon energy under magnetic field
B = 30 T for (a) interband and (b) intraband transitions. The inset
(c) depicts the transitions contributing to the σxy with filling factor
ν = 1 to 3. The dash (solid) arrows denote the interband (intraband)
transitions. The colors of the arrows are the same as that of the
corresponding conductivity peaks.

the magneto-optical conductivity, which is more similar
to the multipeak structures in graphene [38,45,46] and
silicene [39] rather than the single peak structure in con-
ventional semiconductors [44]. Moreover, the red-shift de-
creases with the filling factor which can be understood
from Eq. (8). Further, we would like to point out that the
interband and intraband magneto-optical conductivities re-
ported here can be directly measured through the infrared
spectroscopy [24,25] or the magneto-absorption experiments
[26].

After discussing the longitudinal magneto-optical con-
ductivities, i.e., σxx and σyy, now we consider the Hall
magneto-optical conductivity σxy. Figure 5 presents the
imaginary (absorption) part of the Hall magneto-optical con-
ductivity as a function of photon energy under magnetic field
B = 30 T for Fig. 5(a) interband and Fig. 5(b) intraband
transitions. For interband transitions, owing to the anisotropic
selection rules in the longitudinal magneto-optical conduc-
tivity spectra, the magneto-optical transition selection rule
for Hall conductivity Imσxy is �n = ±2. Surprisingly, for
pristine sample, i.e., EF = 0, the interband Imσxy is zero
in all photon energy regimes [see the solid orange line in
Fig. 5(a)]. The reason originates from the constrain of the
chiral symmetry. Generally, for a two-band model preserv-
ing the chiral symmetry, the Hamiltonian H of the system
satisfies σzHσ−1

z = −H , where σz is the Pauli matrix [47].
Obviously, the chiral symmetry is preserved in our system
because both Hamiltonians (1) and (4) fulfill the definition
of the chiral symmetry. The chiral symmetry has a direct
constrain on the eigenstate of the system. Namely, if ψ is an
eigenstate of the Hamiltonian corresponding to eigenvalue E ,
then σzψ is the eigenstate of the Hamiltonian corresponding to
eigenvalue −E [47]. In view of this, we find the Hall magneto-
optical conductivity contributed by �n = 2 cancels that
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FIG. 6. Contour plot of the linear dichroism for interband tran-
sition as functions of photon energy and magnetic field. The black
dashed line is the band gap of LL spectrum, which corresponds to
the resonance energy of the perfect linear dichroism.

contributed from �n = −2, leading to zero interband Imσxy

in the pristine sample. We presented a detailed proof in the
Appendix.

To obtain finite interband Imσxy, we should focus on the
electron or hole-doped sample. Taking the hole-doped sample
with filling factor ν = 1 as an example, the transition from
nv = 0 to n′

c = 2 is missing because the nv = 0 LL is empty
in this case, and only the transition from nv = 2 to n′

c = 0 is
preserved according to the transition rules �n = ± 2 [see the
black dashed arrow in Fig. 5(c)]. Therefore, there is one con-
ductivity peak in Imσxy indicating an absorption from Ev2 to
Ec0 [see the black line in Fig. 5(a)]. Next, for the filling factor
ν = 2, only the transitions from nv = 2 (3) to n′

c = 0 (1) are
preserved [see the red dashed arrows in Fig. 5(c)], contributing
to two absorption peaks in Imσxy [see the red line in Fig. 5(a)].
Similar conclusions can be drawn for the filling factor ν = 3.
For intraband transitions, Fig. 5(b) shows the intraband Imσxy

as a function of photon energy for the hole-doped sample
with filling factor ν = 1 to 3. The selection rule in this case
is also �n = ±1,±3 due to the isotropic selection rules in
the intraband longitudinal magneto-optical conductivities [see
the solid arrows in Fig. 5(c)]. As shown in Fig. 5(b), similar
to the intraband longitudinal magneto-optical conductivities
(Reσxx and Reσyy), the intraband Imσxy is also dominated by
the dipole transitions (�n = ±1). The conductivity peaks in
intraband Imσxy are also red-shifted with the increasing of the
filling factor due to the deceasing LL spacings, which can be
directly inferred from Eq. (8).

As discussed above, both the interband and intraband
magneto-optical absorption spectra are highly anisotropic,
which will result in a strong linear dichroism [48–50].
We define a dimensionless parameter I = (Reσxx −
Reσyy)/(Reσxx + Reσyy) to indicate the linear dichroism
quantitatively [48]. Figure 6 presents a contour plot of
the linear dichroism as a function of the photon energy
and the magnetic field for the interband transitions. From
the figure, we find that I is larger than 0.8 within most

photon energies and magnetic fields because Reσxx is always
dozens of times larger than Reσyy. In principle, owing to
the anisotropic selection rules, there should be a perfect
linear dichroism for the photon energy corresponding to the
transition of �n = 0 (�n = ±4) which is only allowed in
Reσxx (Reσyy). However, the differences of the resonance
photon energy between the transitions �n = 0 and �n = ±4
are quenched in the high photon energy regime [see Fig. 3(d)]
where the perfect linear dichroism is destroyed. Fortunately,
the perfect linear dichroism survives in the low photon
energy regime, where I is always 1 resulting from the
transition from Ev0 to Ec0, which only can be excited by
linearly polarized along the x-direction. Importantly, the
resonance energy of the perfect linear dichroism is exactly
the band gap of the LL spectrum, which can be effectively
modulated by the magnetic field (see the black dashed
line). Therefore, we can realize a perfect linear dichroism
in 2D semi-Dirac materials with a magnetic field tunable
wavelength by using the transition from Ev0 to Ec0, which
is important to design new magneto-optical devices. There
is also a strong linear dichroism for the intraband transition
of �n = ±1. It is similar to that of the interband transition
in the high photon energy regime, and we do not present it
here.

IV. SUMMARY

We examined the LLs and magneto-optical absorption
properties of a 2D semi-Dirac electron system based on
an effective k · p Hamiltonian and linear-response theory.
We found that the LLs of the 2D semi-Dirac electron sys-
tem can be understood as a hybridization of those of the
Schrödinger and Dirac electron but with new features. By
using the Kubo formula, we found that the selection rules
for interband magneto-optical transitions are anisotropic with
�n = 0,±2 (�n = ±2,±4) for linearly polarized light along
the x(y) -direction. Whereas, the selection rules for intraband
magneto-optical transitions are �n = ±1,±3 regardless of
the polarization direction of light. For the interband (intra-
band) transition, the optical conductivity for linearly polarized
light along the x-direction is two (one) orders of mag-
nitude larger than that along the y-direction. The highly
anisotropic magneto-optical absorption spectra clearly re-
flect the structure of the LLs and result in strong linear
dichroism. The interband transition from Ev0 to Ec0 can re-
alize a perfect linear dichroism with a magnetic-field-tunable
wavelength. The magneto-absorption spectra occur at the in-
frared frequency and can be detected directly by the infrared
spectroscopy [24–26]. Our results shed light on the magneto-
optical properties of the 2D semi-Dirac electron systems
and pave the way to design magneto-optical devices based
on it.

Note added. After more than one month of our submission,
a similar work posted on arXiv also studied the magneto-
optical properties of semi-Dirac electron system [51].
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APPENDIX

In this Appendix, we discuss the effect of chiral symmetry
on the Hall magneto-optical conductivity. In general, for a
two-band model preserving the chiral symmetry, the Hamilto-
nian H of the system satisfies σzHσ−1

z = −H , where σz is the
Pauli matrix [47]. Obviously, the chiral symmetry is preserved
in our system because both Hamiltonians (1) and (4) fulfill the
definition of the chiral symmetry. A direct consequence of the
chiral symmetry is that if ψ is an eigenstate of the Hamilto-
nian corresponding to energy E , then σzψ is the eigenstate
of the Hamiltonian corresponding to energy −E . Therefore,
assuming that the eigenstate of Hamiltonian (4) corresponds
to the Landau level Ecn in the conduction band is

∣∣ψc
n

〉 =
( | fn〉

|gn〉
)

. (A1)

Then, according to the chiral symmetry, the wave func-
tion of the Landau level Evn = −Ecn in the valence band
is

∣∣ψv
n

〉 = σz

∣∣ψc
n

〉 =
( | fn〉

−|gn〉
)

. (A2)

From the numerical calculations, we know that the selec-
tion rule for interband Hall magneto-optical conductivity is
�n = ±2. Using Eqs. (A1) to (A2) and incorporating with

the velocity matrix in Eq. (11), we obtain the matrix elements
for the interband transition �n = ±2 as〈

ψv
n+2

∣∣vx

∣∣ψc
n

〉 = −i[〈 fn+2|vF |gn〉 + 〈gn+2|vF | fn〉], (A3)

〈
ψv

n

∣∣vx

∣∣ψc
n+2

〉 = −i[〈 fn|vF |gn+2〉 + 〈gn|vF | fn+2〉], (A4)

〈
ψc

n

∣∣vy

∣∣ψv
n+2

〉 = i[〈 fn|vy0|gn+2〉 − 〈gn|vy0| fn+2〉], (A5)

〈
ψc

n+2

∣∣vy

∣∣ψv
n

〉 = i[〈 fn+2|vy0|gn〉 − 〈gn+2|vy0| fn〉], (A6)

where vy0 = v0(â† − â). Further, we obtain the matrix ele-
ments of the velocity operators for interband transitions with
�n = ±2 as

P�n=2 = 〈
ψv

n+2

∣∣vx

∣∣ψc
n

〉〈
ψc

n

∣∣vy

∣∣ψv
n+2

〉
= [〈 fn+2|vF |gn〉 + 〈gn+2|vF | fn〉]

× [〈 fn|vy0|gn+2〉 − 〈gn|vy0| fn+2〉], (A7)

P�n=−2 = 〈
ψv

n

∣∣vx

∣∣ψc
n+2

〉〈
ψc

n+2

∣∣vy

∣∣ψv
n

〉
= [〈 fn|vF |gn+2〉 + 〈gn|vF | fn+2〉]

× [〈 fn+2|vy0|gn〉 − 〈gn+2|vy0| fn〉]. (A8)

According to Eq. (15) and combining with the selection
rules, the interband Imσxy is determined by Im[P�n=2 +
P�n=−2]. However, according to Eqs. (A7) and (A8), we
have (P�n=−2)∗ = P�n=2, leading to Im[P�n=2 + P�n=−2] =
0. Therefore, the interband Imσxy contributed by the transi-
tions of �n = 2 and �n = −2 cancel each other out, leading
to the zero interband Hall magneto-optical conductivity in
pristine samples.
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