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Annular confinement for electrons on liquid helium
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We discuss the annular electron confinement on the liquid helium surface induced by a submerged tubular
electrode. For a shallow liquid layer the resulting potential has a minimum off the symmetry axis of the electrode.
The ground-state angular momentum transitions that are driven by the external magnetic field can be resolved
when the confinement radii in the first and second Rydberg subbands of the vertical quantization are different,
e.g., for submersion depth of the tube comparable to its radius. Then, discontinuities in the main microwave
absorption line appear with the period that corresponds to the subsequent magnetic flux quanta passing across
the area within the ground-state confinement radius.

DOI: 10.1103/PhysRevB.104.235402

I. INTRODUCTION

The surface of liquid helium can serve as an ultraclean
substrate for the two-dimensional (2D) electron gas [1]. Elec-
trons at the vacuum side are bound by the image charges that
they induce in the weakly dielectric liquid [1–3]. The vertical
quantization of electron motion in the Coulomb potential of
the image [2,3] gives rise to Rydberg states of hydrogenlike
spectrum [1–4]. The pristine nature of the substrate allowed
for the first observation [5] of the Wigner crystallization at
low electron gas density [6,7]. For the study of electron states
at the surface, microwave spectroscopic techniques [2] are
developed [8–13] with recent advances on intersubband ab-
sorption [12], excitations of high-energy Rydberg states [4],
relaxation times [9], and coupling with the superconducting
resonance cavity [14–16].

In addition to the vertical confinement a lateral one can
be introduced by gates defined at the sides of the container or
under the surface of helium. The submerged electrodes locally
strengthen the image charge potential [17–25]. The gates are
considered for, e.g., one-dimensional (1D) channels [17] or
zero-dimensional (0D) localized states [18–22,24] for quan-
tum information storage and processing [24,25]. Recently,
the coupling of Rydberg states of vertical quantization with
the lateral confinement of the Landau levels by the in-plane
magnetic field has been studied [9,10] as a model of an atom
interacting with an oscillator potential [10].

In this paper we study the annular confinement of Rydberg
states by a submerged tube-shaped electrode. In open ring-
shaped solid-state devices [26–28] the Aharonov-Bohm [29]
effect is manifested by conductance oscillations that exhibit
periodicity with the flux of the magnetic field threading the
ring. On the other hand, for closed circular quantum rings [30]
the ground state undergoes angular momentum transitions as
subsequent magnetic flux quanta fit inside the ring [28,31].
We discuss the possibility of observation of these angular
momentum transitions in the microwave absorption spectra of
electron states localized above the tube electrode. Recently,

the formation of quantum rings on the surface of a semicon-
ductor by single-atom engineering has been reported [32].

II. THEORY

The confinement of the electron gas at the liquid helium
surface is due to the dielectric constant discontinuity at the
liquid/vacuum interface [1–3]. Experiments on microwave
absorption by electrons localized at the liquid helium surface
are performed in a parallel capacitor configuration [4,8–10]
introducing an electric field that neutralizes the surface elec-
tron charge and tunes the transition energies between Rydberg
states [4,9]. A cross section of the model system is depicted
in Fig. 1. The lower plate contains a circular tube electrode
protruding towards the helium surface with an inner radius R1

and R2. The lower plate is submerged in liquid helium of depth
H . The tube electrode reaches depth d beneath the helium
surface. For the bulk of this work, we consider the model
system with R1 = 400 nm, R2 = 500 nm, and H = 1.2 μm.
Discussion of the geometrical parameters for absorption spec-
tra is provided below.

Evaluation of the effective potential felt by an electron
bound above the tube gate requires solution of the generalized
Poisson equation

∇ · [ε(r)∇V (r)] = −ρ(r)

ε0
, (1)

with ρ(r) = −eδ(r − re), where δ is the Dirac delta, and re

is the electron position. The dielectric constant of liquid 3He
is taken as ε = 1.0572 [1]. For the electron localized off the
axis of the tube electrode, the V potential does not possess the
rotational symmetry and the problem requires a solution in a
three-dimensional (3D) computational box. The rectangular
box is 4.8 μm wide in x and y coordinates with height of
D m (see Fig. 1) in the z direction (we use D = 2.4 μm
unless stated otherwise). At the surface of the electrodes, the
potential V1 or V2 is taken as the Dirichlet boundary condition
for the potential. In the experiment [4] the electric field of the
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FIG. 1. Cross section of the model system taken at y = 0. The
red areas correspond to electrodes that are spaced by D = 2.4 μm.
The lower electrode contains a circular tube extension with the inner
radius R1 = 400 nm and the outer one R2 = 500 nm. The dashed
line is the symmetry axis of the tube. The lower plate electrode
is submerged by a liquid helium layer of depth H = 1.2 μm. The
distance from the top of the tube electrode to the liquid surface is
d . ϕ stands for the electron wave function localized above the liquid
surface, close to the tube.

order of up to 10 V/cm is applied to additionally press the
electrons to the helium surface [1,4,9]. The field of this range
does not qualitatively change the results so we keep V1 = V2

and use V1 as the reference potential. For the low-energy
electron states confined above the tube, we need to determine
the potential in the region of up to � 0.75 μm from the axis of
the tube. At the sides of the computational box that are parallel
to the z axis, we apply the boundary condition of a vanishing
component of the electric field (∇V |n = 0) normal to the side
of the computational box.

The Poisson equation is solved with the finite-element
method [33] using a parabolic Lagrange-type shape function
in each element (see the Appendix). The method allows us
to take a zoom of the potential within the area occupied by
electron states. In the finite element method, the potential is
expressed in the basis of shape functions �l ,

V (r) =
∑

l

cl�l (r), (2)

associated with a single node each, so that �l (rk ) = δlk .
The Poisson equation is solved in the space spanned by the

basis functions. We substitute the expansion (2) to Eq. (1) and
next project the result on a shape function �k with integration
over the computational box �,∫

�

∑
l

cl�k (r)∇ · [ε(r)∇�l (r)]dr = −
∫

�

�k (r)
ρ(r)

ε0
dr.

(3)

Integrating by parts we get rid of the derivative over the
dielectric constant,

∑
l

cl

∫
�

∇�k (r) · [ε(r)∇�l (r)]dr

−
∑

l

cl

∫
S
�k (r)ε(r)∇�l (r) · ndS

=
∫

�

�k (r)
ρ(r)

ε0
dr, (4)

where S is the surface of the computational box, and n is a unit
vector normal to the surface. Equation (4) is a linear system of
equations for cl . Implementation of the boundary conditions
for the nodes at the surface is explained in the Appendix.

We solve the Poisson equations for the electron position re
scanned over the finite element nodes above the liquid helium.
The potential V (r) calculated in this way contains both the
contributions from the point charge of the electron floating
above the helium surface and the charges induced in liquid
helium and on metal electrodes. To determine the effective po-
tential acting on the electron near the helium surface, we need
to eliminate the electron self-interaction included in V [34].
For this purpose, we calculate potential Ve for the electron
above the helium surface but with all the metal electrodes
removed. For Ve we apply the Dirichlet boundary conditions
at all the sides of the computational box using the poten-
tial for the point charge near the contact of two dielectrics,
i.e., Ve = 1

4πε0
( e

Re
+ q′

Ri
) for z above the helium layer, where

Re = |r − re| is the distance from the electron position and
Ri = |r − r′

e| is the distance from its image placed at r′
e =

[xe, ye, H − (ze − H )] with the image charge q′ = 1−ε
1+ε

e. At
the sides of the computational box below the helium surface
we take at the boundary the potential Ve = 1

4πεε0

q′′
Re

, where

q′′ = 2ε
1+ε

e.
With V and Ve we calculate an effective potential V1 =

V − Ve, in which the electron self-interaction is removed.
Since in the calculation for both V and Ve we account for
the presence of the helium surface, in the evaluation of V1

the image charge potential induced on the liquid surface is
canceled. In the Schrödinger equation that we solve for the
confined states we reintroduce the potential of the image
charges induced in helium in its analytical form [1], Ws(ze) =
− Ze2

|ze−H | , with Z = ε−1
4(1+ε) . Ws potential diverges for z → H ,

hence it is more readily introduced in its analytical form to the
Schrödinger equation than evaluated in the polynomial shape
functions. The confinement potential energy to be used in
the Schrödinger equation is then set as W (re) = −e[V (re) −
Ve(re)] + Ws(re). We assume that the liquid helium is impen-
etrable for the low-energy electrons of the vacuum side and
take the infinite value of W below the surface.

Although for a general electron position re, the potential
V (r) is not rotationally symmetric, the effective potential
W (re) has this symmetry. We solve the Schrödinger equa-
tion in cylindrical coordinates for a given angular momentum
quantum number m, ϕm = ϕ(r, z) exp(imθ ), with azimuthal
angle θ . With the symmetric gauge A = (−By/2, Bx/2, 0) for
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FIG. 2. The results for the tube electrode at d = 200 nm beneath the surface of liquid helium. (a) The confinement potential W for the
electron in vacuum. The color of the lines indicates the distance z from the liquid helium surface. The lowest line is taken at z = 5 nm above
the surface, and the higher lines are plotted at spacings of 5 nm. (b) The lowest-energy part of the spectrum in a vertical magnetic field. The
color of the lines indicates the angular momentum quantum number m. The ground state at B = 0 is m = 0, and changes by −1 with each
crossing of energy levels as B is increased. (c) The energy spectrum for a wider range of energy. The energy levels for m = −22, −21, . . . , 11
are marked by gray lines. The lines marked by colors indicates the energy levels that are dipole coupled to the ground state. The lines width is
proportional to the absolute value of the dipole matrix element di f = 〈φi|z|φ f 〉. (nr, nz ) indicates the subbands of the energy levels, with nr and
nz standing for the number of wave function zeros in the radial and vertical directions, respectively. The color of the lines shows the average z
position of the corresponding energy level wave function. (d) The absorption spectrum calculated as the energy difference between the excited
state energy levels and the ground state. The size of the dots is proportional to the absolute value of the dipole matrix element. The presented
range corresponds to (0, 0) → (0, 1) transition (first to second Rydberg level). (e) The part of the energy spectrum corresponding to the (0,1)
subband. The color of the lines shows the average z position.

vertical magnetic field B = (0, 0, B) the Hamiltonian reads

H = − h̄2

2m0

[
∂2

∂z2
+ ∂2

∂r2
+ 1

r

∂

∂r
− m2

r2

]

+ mh̄ωc

2
+ m0

8
ω2

c r2 + W (r, z), (5)

with ωc = eB
m0

. We use the imaginary time method [35] to
determine the eigenstates of the finite difference version of
the Hamiltonian with the mesh spacing of 2.5 nm in r and z
coordinates. The region occupied by electrons in low-energy
states is much smaller than the computational box for the
Poisson equation and a finer mesh is required to describe the
wave functions. The potential spanned by the shape functions
W (r, z) can be evaluated on a finer grid.

III. RESULTS

A. Shallow tube (d = 200 nm)

For the presentation of the results, we fix z = 0 at the sur-
face of the liquid helium. The electron confinement potential
depends qualitatively on the depth at which the tube electrode
is located beneath the surface. For d = 200 nm the potential
has a pronounced local maximum near r = 0 [Fig. 2(a)] and
the minimum is located near r = 400 nm. The minimum gets
shallower and shifts to lower values of r at a larger distance
from the surface. The changing profile of the lateral potential
with z indicates a nonseparability of the potential, in contrast
to a separable potential found for a submerged rodlike elec-
trode [19].

The energy spectrum near the ground state is shown in
Fig. 2(b). The ground-state quantum number m changes as for
the semiconductor quantum rings [28,30]. For a strictly one-
dimensional ring of radius R0, the energy spectrum is given
by Em = h̄2

2m0R2
0
( �
�0

+ m)2, with flux quantum �0 = e
h , and the

flux threading the quantum ring � = BπR2
0. In Fig. 2(b) we

observe the changes of the ground-state angular momentum
in B with the spacing of �B � 8 mT. The radius corresponds
to the magnetic field flux through a one-dimensional ring of
R � 430 nm.

The spectrum in a wider range is displayed in Fig. 2(c). The
energy levels for m = −22,−21, . . . 11 are marked in gray.
Additionally, we marked with colors those excited energy
levels that are dipole coupled to the ground state. The width
of the color lines is proportional to the dipole matrix element
di f = |〈ϕi|z|ϕ f 〉|, where ϕi and ϕ f stand for the states par-
ticipating in the transition from the initial (ground) and final
(excited) state wave functions. The color of the lines indicates
the average z for the excited states. In the spectrum we see a
set of thin blue lines for states localized at z � 12 nm. The
excited states to which the transition is allowed correspond to
the same m as the ground state but correspond to excitations
within the plane of confinement. For separable potential the
wave function can be put in form ϕnr ,nz (r, z) = ϕr

nr
(r)ϕz

nz
(z),

and the dipole matrix element for transition from the ground
state would be 0 for the final states with nr �= 0 due to the
in-plane orthogonality. However, the potential W is not a
simple sum of the vertical and lateral components [Fig. 2(a)]
and the wave function is nonseparable, which allows for a
small but nonzero dipole moment. Although the potential is
nonseparable, one can attribute to states the number of wave
function zeros along the r and z directions, nr and nz, where
nz + 1 numbers the Rydberg subbands. At the top of Fig. 2(c)
we see a thick red line that corresponds to the second Ryd-
berg subband with a vertical excitation (0,1). The probability
densities for m = −1 and (nr, nz ) equal to (0,0), (1,0), and
(0,1) are plotted in Figs. 3(a)–3(c), respectively. The spectrum
of the second Rydberg subband (0,1) [Fig. 2(d)] has a similar
quantum-ring pattern as the ground-state subband (0,0). The
period is almost the same as for the (0,0) subband of Fig. 2(b),
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FIG. 3. Probability density for m = −1 states at B = 0 for d =
200 nm. (a)–(c) (nr, nz ) = (0, 0), (1,0), and (0,1) states.

since these states are localized at similar 〈r〉 [cf. Figs. 3(a)
and 3(c)]. The absorption spectrum �E for the transitions
from the ground state is depicted in Fig. 2(e). The spectrum
indicates that the main transition line from the lowest to the
second Rydberg subband is nearly independent of the exter-
nal magnetic field. The m changes in the ground-state (0,0)
subband and in the (0,1) subband are nearly perfectly synchro-
nized on the B scale. As a consequence, the Aharonov-Bohm
angular momentum transitions produce only weak symptoms
on the energy spectrum of the microwave absorption with fine
discontinuities of the absorption line that jump by less than
0.02 GHz.

B. Discontinuous transition spectrum (d = 400 nm)

The period of angular momentum transitions can be made
unequal in the lowest (0,0) and second (0,1) Rydberg sub-
bands for the tube electrode submerged deeper in helium.
The confinement potential for the tube electrode at a depth
of d = 400 nm beneath the surface is displayed in Fig. 4(a).
Compared to Fig. 2(a), the potential minimum is shifted to-
wards the axis of the system and the position of the minimum
changes as one rises above the surface to eventually disappear
near z = 100 nm. Compared to Fig. 2 the ground-state angular
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FIG. 5. Same as Fig. 3, only for d = 400 nm.

momentum transitions occur with an increased spacing on
the magnetic field scale due to reduction of the confinement
ring radius [see Fig. 3(b)]. The energy level that is coupled
to the (0,0) ground state is discontinuous as a function of B
[Fig. 4(c)]. In the second Rydberg (0,1) subband, the angular
momentum changes with a slower rate: the wave functions
are localized higher above the surface and are localized closer
to the axis than in the lowest (0,0) subband [cf. Figs. 5(a)
and 5(c)]. As a consequence, the angular momentum transi-
tions in the first and second Rydberg subbands no longer occur
at the same values of B and the absorption spectrum [Fig. 4(e)]
contains more pronounced discontinuities with jumps of the
line of the order of 0.1 GHz.

C. Deep tube (d = 600 nm)

For the tube d = 600 nm beneath the helium surface, the
W potential loses its local maximum at the axis [Fig. 6(a)].
The energy spectrum [Fig. 6(b)] is nearly identical with the
Fock-Darwin one [36], but with lifted degeneracy of the ex-
cited energy levels of nonequal |m| due to the deviation of the
confinement potential from parabolicity. The main absorption
line [Figs. 6(c) and 6(d)] is nearly independent of the external
magnetic field.
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FIG. 4. Same as Fig. 2, only for d = 400 nm.
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FIG. 6. Same as Fig. 2 only for d = 600 nm.

D. Geometry effects

The discontinuities of the absorption spectrum can be made
larger for tuned geometry. The spectrum with the inner and
outer radii reduced to R1 = 300 nm and R2 = 400 nm is
displayed in Fig. 7(a), where we use a thinner layer of helium,
d = 200 nm instead of d = 400 nm. For the tube of reduced
radius, the confinement potential changes faster with z for
these parameters which results in the increased discontinuities
in the spectrum, e.g., the ground-state transition from m = −2
to m = −3 involves a jump of 0.3 GHz instead of 0.13 GHz
as in Fig. 4(d).

For the rest of the paper, we return to R1 = 400 nm, R2 =
500 nm, and d = 400 nm. The sensitivity of the spectrum with
respect to the exact width of He layer above the tube near the
work point of d = 400 nm can be studied in Fig. 7(b). The
central set of lines in the spectrum is the one of Fig. 4(d) with
d = 400 nm. The lower set corresponds to d = 390 nm and
the upper one to d = 410 nm. The 10 nm change of the liquid
layer depth induces a shift of the absorption line by 1.1 GHz.
For lower values of the width of the helium layer d above
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FIG. 7. Absorption spectra of the transition from the lowest to
the second Rydberg level. The colors show the magnetic quantum
number m. In (a) a thin tube with radii R1 = 300 nm and R2 =
400 nm covered with helium layer of depth d = 200 nm is taken.
In (b) R1 = 400 nm and R2 = 500 nm are applied as elsewhere in
this paper and the values of d are varied.

the tube, the effective confinement radius gets larger, hence a
slight modification of the oscillation period.

In experimental conditions the distance between the plates
of the electrodes needs to be larger than the liquid helium
capillary length, i.e., not less than 1.5 mm. Our computational
model is much smaller. The length of the tube cannot be
increased much above several μm due to the limitations of the
focused ion beam methods that can define such an electrode.
Therefore, the upper plate needs to be further away from the
helium surface. To study this size effect, we kept H and d
unchanged and increased D (see Fig. 1) from 2.4 μm (as in
all the results above) to 12.4 and 22.4 μm. The results are
given in Fig. 8. The image charge at the upper capacitor plate
produces an electric field that pulls the electron up from the
surface. This field is reduced for larger D. Figure 8 shows that
as D grows, the energy position of the main absorption line is
going up on the energy scale consistent with the study of the
effect of the vertical electric field on the transition between
the ground and the excited Rydberg states [1,4,9]. At a larger
distance between the top plate and the helium surface, the
discontinuities of the absorption lines are preserved. We do
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FIG. 8. Absorption spectra of the transition from the lowest to
the second Rydberg level for H = 1200 nm, d = 400 nm, R1 =
400 nm, and R2 = 500 nm. Results for D = 2.4 μm, D = 12.4 μm,
and D = 22.4 μm are plotted with black, blue, and red lines,
respectively.
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FIG. 9. Results for the geometry of Fig. 4 in finite temperature. The first (a)–(c), second (d)–(f), and third row (g)–(i) of plots correspond to
T = 1, 10, and 20 mK, respectively. In the left column of plots (a), (d), and (g) the dots mark the energy levels near the ground-state with their
size proportional to the occupation of the energy level. In the central column (b), (e), and (h) the absorption spectrum is plotted with the size
of the symbol proportional to the product of the initial state occupation and the transition probability. The colors mark the angular momentum
for the states participating in the transition. The right column of plots shows the intensity of the line.

not expect qualitative changes of the character of the spectrum
for D increasing further.

E. Finite temperature

The absorption spectra presented above for zero tem-
perature exhibit discontinuities with the Aharonov-Bohm
periodicity. The discontinuities result from the ground-state
angular momentum transitions driven by the external mag-
netic field. The energy spacings between states confined in the

tube potential are small and in the finite temperature several
lines will be present at the same magnetic field. We need to
look for signatures of the absorption spectrum that will pertain
in finite T .

The occupation probability of the energy level with energy
Ei is given by the Fermi-Dirac distribution pi = 1

exp(β(Ei−μ))+1 ,

where β = 1
kBT and μ is the chemical potential that for a

single-electron per tube solves the equation
∑

i pi = 1. The
intensity of the absorption line for initial state i and final state
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f can be evaluated as Ii f = pi|di f |2. The low-energy spectrum
is presented in Figs. 9(a), 9(d) and 9(g) with the dots of the
size that is proportional to pi for T = 1, 10, and 20 mK,
respectively. The simulated transition spectra are plotted in
Figs. 9(b), 9(e) and 9(h) with dots of size that are propor-
tional to Ii f . Already at 1 mK the magnetic field intervals
for transitions to states of subsequent m values overlap and
at 10 mK the discontinuities in the absorption spectra are no
longer present. Nevertheless, the Aharonov-Bohm periodicity
can still be extracted from the absorption spectrum by obser-
vation of the intensities of separate lines [see Figs. 9(c), 9(f)
and 9(i)]. The intensities are maximal for the magnetic fields
that appear in the middle of subsequent ground-state angular
momentum transitions for which the energy spacing between
the ground state and the excited states is the largest [see
Fig. 4(b)]. For B that corresponds to the maximal intensity
of line m the neighbor lines with m ± 1 have equal intensities,
which can be useful as an additional feature for identification
of the confined Aharonov-Bohm effect.

IV. DISCUSSION

The results above indicate that the experimental detection
of the Aharonov-Bohm ground-state transitions by microwave
absorption requires tuning of the liquid helium level to condi-
tions in which the radius of confinement in the lowest and
second Rydberg subbands is significantly different. Adjusting
the liquid layer above the tube electrode should be relatively
straightforward. The discontinuity of the absorption energy
line due to the ground-state transitions at d = 400 nm is of the
order of 0.1 GHz [Fig. 4(d)] which is within range of the res-
olution of the microwave absorption measurements [4,9,13].

The counterparts of the discussed angular momentum tran-
sitions in a single semiconductor quantum ring are resolved
by the transport spectroscopy for systems with attached con-
tacts [28]. In the experiment on electrons on a liquid helium
surface, an array of tube electrodes could be considered.
In self-assembled semiconductor quantum rings, the ground-
state transitions induced by an external magnetic field are
detected by magnetization measurements on a system with the
number of rings of the order of 1011 [31]. For electrons on the
helium surface recent microwave absorption experiments [9]
are performed on ∼107 electrons. For our purpose, to elim-
inate the interaction between the electrons localized above
separate tube electrodes, the distances between the tubes need
to be large enough. In the present study, the rectangular shape
of the computational box does not affect the circular potential
above the tube for the distance of 1.2 μm between the axis of
the tube and the side of the computational box. The Neumann
boundary condition at the sides is justified by the screening
of the electron charge by the image charges. Therefore, the
distance between the tubes in the array of 2.5 μm should be
enough to switch off the interaction between the electrons
of separate tubes. The effects described in this paper deal
with a single electron per tube. The electron density in the
experiments is tuned by the electric field in the capacitor [4,9].
The spacing between the tubes of 2.5 μm corresponds to
1.6 × 107 cm−2, which is nearly equal to the surface electron
density in the experimental conditions of, e.g., Ref. [9].

An experiment with the array may be difficult due to the
dependence of the energy positions of the main line of the
spectrum on the exact width of the helium layer (Fig. 7),
which would require a fine positioning of the container. How-
ever, the signal from a single tube could be detected with the
recent development of the spectroscopy technique based on
the capacitive coupling of surface electrons to the capacitor
plates [11] defining the external electric field that is indi-
cated for quantum information processing on Rydberg states
as qubits. The method is based on the measurement of pA
currents induced by an electron oscillating between the lowest
and excited Rydberg states in a resonant microwave field and
thus changing its distance from both plates [11].

The present modeling neglects the coupling of the electrons
to the ripplon surface waves. The effect of the coupling to the
ripplon field on the absorption spectra has been considered in
Ref. [20] for a closely related problem of 0D states induced
by a rod electrode submerged 500 nm below the surface.
The Franck-Condon polaronic shift of the transition frequency
between the first and second energy level was estimated as a
product of 0.022 GHz and a factor fp that depends on the ratio
between the effective Bohr radius (7.6 nm) and the in-plane
confinement length a||. For the parameters of Fig. 4, a|| is
of the order of 100 nm, for which, based on the results of
Ref. [20], fp < 0.01. The ripplonic shift of the energy spectra
should be then smaller than 0.22 MHz and thus negligible.
The coupling to ripplons shifts the transition lines stronger at
higher temperature, but for T � 20 meV they remain negligi-
ble [13,37].

V. SUMMARY AND CONCLUSIONS

We studied ringlike confinement of electrons by a tubular
electrode placed beneath the surface of liquid helium. For
the tube that is submerged shallow in helium, the vertical
magnetic field induces Aharonov-Bohm angular momentum
transitions. By tuning the helium surface level one can arrange
for angular momentum transitions occurring at a period of
the magnetic field that is significantly different for the first
and second Rydberg states of the vertical quantization. Then,
the absorption spectrum exhibits distinct discontinuities at the
ground-state angular momentum transitions. At the tempera-
tures of the order of 10 mK, the discontinuities will no longer
be present since a number of states of various m will be
occupied. However, the lines can be resolved in the energy,
and the observation of the intensity of the lines as functions
of the external magnetic offers a way for the experimental
detection of Aharonov-Bohm effect for bound electron states.

APPENDIX : IMPLEMENTATION OF THE FINITE
ELEMENT METHOD

To determine the potential for the electron due to the image
charges in helium and metal electrodes, we solve the Poisson
equation using the finite element method. We use cubic ele-
ments of 100 nm side length with spacing between the nearest
nodes of 50 nm, with 27 nodes in each element. Inside the box,
we have 8 nodes per element of the boundaries of the system.
We work with 60 025 elements and 499 851 nodes.
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FIG. 10. Nodes within a single cubic element in the local system
of coordinates ξi ∈ [−1, 1] for i = 1, 2, 3. The labels close to the
nodes indicate the coordinates (ξ1, ξ2, ξ3) of the node.

For an element covering x ∈ [xs, xe] a local coordinate ξ1 ∈
[−1, 1] is used with

x(ξ1) = 1 − ξ1

2
xs + 1 + ξ1

2
xe, (A1)

and similar mapping for y and z directions with ξ2 and ξ3 local
coordinates. Within the element (see Fig. 10) 27 nodes are
defined for the local coordinates ξ1, ξ2, and ξ4 equal ±1 or 0.
We define three parabolic shape functions

ψ−1(ξ ) = ξ (ξ − 1)/2, (A2)

ψ0 = (1 − ξ )(1 + ξ ), (A3)

ψ1 = ξ (ξ + 1)/2, (A4)

which are Lagrange node functions with ψn(m) = δn,m for
n, m = −1, 0, 1. The 3D Lagrange functions for a node
with local coordinates η1, η2, η3 is defined as �η1,η2,η3 =
ψη1 (ξ1)ψη2 (ξ2)ψη3 (ξ3). Within the cubic element the potential
is spanned in the basis of 27 of these functions

V [x(ξ1), y(ξ2), z(ξ3)] =
27∑

l=1

cl�ηl1,ηl2,ηl3 (ξ1, ξ2, ξ3), (A5)

where cl = V (rl ). The matrix elements defining the system
of equations for potential at the nodes given by Eq. (4) are
divided into elements and integrated over the local coordi-
nates. The three-point differential quotient allows for an exact
calculation of the derivatives for parabolic functions and the
Gaussian quadrature provides exact values for integrals of the
polynomials. The large linear system of equations (about 0.5
mln) is sparse and solved with the PARDISO library.

The linear system of equations given by Eq. (4) is applied
for all nodes inside the computational box. For the nodes at the
sides of the computational box, equations given by boundary
conditions are introduced. Due to the properties of the La-
grange functions, the Dirichlet boundary conditions for nodes
inside the electrodes can be set as cl = V1 or V2 for nodes l
on the bottom or top electrodes, respectively. The Neumann
boundary condition for vanishing electric field component
normal to the side faces of the computational box is induced
by setting equal values of the coefficients cl = cm where l and
m are neighbor nodes adjacent to the boundary in the normal
direction. With the applied boundary conditions, the surface
integral in Eq. (4) is zero. At the top and bottom sides of the
computational box, i.e., in metal, the potential is constant and
its gradient vanishes. At the other side of the box, the normal
component of the potential is zero according to the Neumann
boundary condition applied therein.
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