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Reservoir optics with exciton-polariton condensates
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We investigate an all-optical microscale planar lensing technique based on coherent fluids of semiconductor
cavity exciton-polariton condensates. Our theoretical analysis underpins the potential in using state-of-the-art
spatial light modulation of nonresonant excitation beams to guide and focus polariton condensates away from
their pumping region. The nonresonant excitation profile generates an excitonic reservoir that blueshifts the
polariton mode and provides gain, which can be spatially tailored into lens shapes at the microscale to refract
condensate waves. We propose several different avenues in controlling the condensate fluid, and demonstrate
formation of highly enhanced and localized condensates away from the pumped reservoirs. This opens new
perspectives in guiding quantum fluids of light and generating polariton condensates that are removed from
detrimental reservoir dephasing effects.
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I. INTRODUCTION

Advancements in guiding and focusing the flow of planar
(paraxial) light waves at the microscale brings far-reaching
possibilities into miniaturized optical technologies, from mi-
crolens arrays [1] to optical circuitry and logic gates [2], that
are reliant on dispersion management. Metamaterials [3,4],
plasmonic lenses [5–7], phase-change materials [8], photonic
crystals [9,10] and disordered materials [11] all offer a variety
of techniques to focus planar light, though usually coming at
the cost of irreversible fabrication methods. Here, we intro-
duce an all-optical planar microlensing approach in a system
of microcavity exciton-polariton condensates that offers flex-
ible and reprogrammable lens configurations.

Exciton-polaritons (from here on polaritons) are boson-
like quasiparticles formed by coherent hybridization of
electron-hole pairs in semiconductor quantum wells and mi-
crocavity photons in the strong-coupling regime [12], as
sketched in Fig. 1. The extremely small effective polariton
mass (∼10−5 of the electron mass) and large interaction
strength, due to the excitonic component, has opened up new
strategies in all-optical control over macroscopic coherent
matter-wave fluids of light, or polariton condensates [13].
For the past ten years there have been several important
experiments in all-optical manipulation of polariton conden-
sates using nonresonant excitation methods [14,15] such as
condensate amplification [16], trapping [17,18], exceptional
points [19], dissipative annealing of the XY model [20], vortex
manipulation [21,22], and lattices [23,24]. Many works have
also combined the optical control provided by nonresonant
lasers in conjunction with engineered photonic potentials such
as micropillars, microwires, or wedged cavities (i.e., photonic
potential gradient) which led to development of optically
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controllable interferometers [25] and transistor switches [26].
Alongside these developments in optical control, there is a
growing variety in cheaper room-temperature materials that
operate in the strong coupling regime [27–29] which opens
new perspectives on the role of exciton-polaritons in future
optical based technologies [30].

In this study, we explore spatial control over propagating
exciton-polariton condensates using nonresonant excitation
beams shaped into a planoconcave microlens (see Fig. 1). The
excitation beam induces (photoexcites) a static reservoir of in-
coherent excitons which provide both gain and blueshift to the
polariton modes [14,15]. Consequently, excited polaritons ex-
perience a complex valued effective potential landscape which
can both amplify and phase-modulate transmitted waves.
When the excitation beam is removed the reservoir rapidly
decays which permits rewriting new and different potential
landscapes on the same sample location. Recently, similar
flexibility was demonstrated with phonon-polaritons in hexag-
onal boron nitride heterostructure [31]. So far, there have
been several studies addressing the potential in nonresonant
all-optical control to manipulate the flow of condensate po-
laritons. This includes planar wave-guiding effects [32,33],
barricading signals (transistor switches) [26,34], amplification
[16,35], and tailoring the condensate momentum distribution
[36]. However, to our knowledge, there has been no inves-
tigation on planar microlensing of exciton-polaritons. Since
lenses constitute a fundamental optical element in many sci-
entific disciplines there is an important missing piece in the
existing literature on all-optical polariton control.

We demonstrate how the pumped planoconcave lens
strongly focuses polariton condensate wavelets that are either
impinging on the lens, or generated inside (i.e., lens driven
above threshold). We also show that the nonresonant nature of
these lenses can lead to tunable, and high contrast, condensate
density beatings at the focal point reaching frequencies as high
as 250 GHz. From an application perspective, such pumped
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lens elements might offer a building block in generating a
directional flow of optical information and focused high-
density polariton condensates with large nonlinear energy
scales which forms an essential ingredient in any information
processing schemes. The all-optical aspect is then particularly
exciting when considering circuitry whose elements can be
reprogrammed with ease.

The rest of the paper is organized as follows: In Sec. II,
as a preparation for the more complicated nonlinear polariton
system, we study microlensing in a damped two-dimensional
(2D) Schrödinger system corresponding to the linear (non-
interacting) polariton regime. In Sec. III, we nonresonantly
excite a source condensate which approximately emits a co-
herent plane wave polariton flow. This flow impinges on a
planoconcave microlens generated by a second nonresonant
beam. We analyze the response of the condensate waves
against this additional microlens potential and develop an ar-
gument for the operational requirements of efficient reservoir
lensing. In Sec. IV, we investigate a simpler idea of using
only a lens-shaped beam pumped above condensation thresh-
old, resulting in spontaneous formation of condensate profiles
strongly focused away from their pumped region. Finally, the
general conclusion of our reservoir optics scheme is drawn in
Sec. V.

II. PLANAR POLARITON MICROLENSING
IN THE LINEAR REGIME

We start our analysis by considering first non-interacting
(linear regime) lower branch polaritons in a planar microcav-
ity described, in the effective mass approximation, with a 2D
Schrödinger equation with a complex potential and drive term
representing a resonant laser excitation

ih̄
∂�

∂t
=

[
− h̄2∇2

2m
+ (Vr + iVi) f (r) − ih̄γ

2

]
�

+ E (r)e−i(ωst−ks·r). (1)

Here, m is the effective polariton mass, γ is the linear decay
rate due to the lossy cavity mirrors, Vr and Vi quantify the the
real and imaginary parts of the lens potential with a spatial
profile f (r), and E (r) is a coherent (resonant) driving field
with frequency ωs and wave vector ks.

The lens potential is taken to represent an optically gener-
ated potential in polariton systems [14] although many other
methods are available in designing polaritonic potential land-
scapes [37]. Therefore, the limited resolution coming from
using spatial light modulators and finite exciton diffusion is
accounted by applying Gaussian blurring on a step function

f (r) = 1

2πw2

∫
F (r′)e−|r−r′ |2/2w2

dr′, (2)

where

F (r) =
{

1 for r ∈ L
0 else, (3)

where L is the lens area. For all lens shapes used in cal-
culations we apply a Gaussian blur corresponding to w ≈
0.85 μm [2.0 μm full-width-at-half-maximum (FWHM)].
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FIG. 1. Sketch of the nonresonant lensing effect with exciton-
polariton condensates in a semiconductor microcavity. Quantum well
excitons are photoexcited through nonresonant pumping (dark red
profiles) and while the cavity mirrors (symmetric distributed Bragg
reflectors) provide photon confinement and strong coupling.

We will focus on steady-state solutions �(r, t ) =
ψ (r)e−iωst giving the time-independent Schrödinger equation

h̄ωsψ =
[
− h̄2∇2

2m
+ (Vr + iVi ) f (r) − ih̄γ

2

]
ψ + E (r)eiks·r.

(4)

Deep inside the potential region f (r) ≈ 1 we obtain the ho-
mogeneous Helmholtz equation

∇2ψ + k2ψ = 0, (5)

k2 = 2m

h̄2

[
h̄ωs − Vr − i

(
Vi − h̄γ

2

)]
. (6)

Under resonant driving, ks = √
2mωs/h̄, the refractive index

of the complex-valued potential with respect to the source is

n′ =
√

1 − Vr

h̄ωs
− i

h̄ωs

(
Vi − h̄γ

2

)
. (7)

We will consider only propagating waves and not evanescent
waves inside the lens region meaning that Vr < h̄ωs. More-
over, the system is taken to have net losses everywhere and
thus Vi − h̄γ /2 < 0. We can separate the real and imaginary
parts of the refractive index so it reads

n′ = n + iκ, (8)

where

n =
√

1 − Vr

h̄ωs
, κ = |Vi − h̄γ /2|

h̄ωsn
. (9)

Here, we assumed that the real detuning is larger than the
imaginary detuning |Vi − h̄γ

2 | � |Vr − h̄ωs|.
For a planoconcave shaped potential whose edge (i.e.,

FWHM) is depicted with a green solid line in Figs. 2(b) and
2(e) (see Supplemental Material [38] for the case of a positive
meniscus lens) we recall the Lensmaker’s equation in the ray
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FIG. 2. (a), (b) The normalized density, |�|2, and (d), (e) phase, arg(�), of the wave function without (a), (d) and with (b), (e) the lens
potential. The source and the lens are outlined with green solid lines. (c), (f) Line profile of the wave-function density along the lens axis
(y = 0) as a function of varying real (c) and imaginary (f) part of the potential. In (b) and (e) the yellow dashed lines indicate the principal
plane of the lens and the focal point with distance f . The green vertical dashed lines in (c) and (f) indicate the source location and the front
and back surface of the lens.

optics limit where the focal length f follows

f = R

1 − n
. (10)

Here, R is the radius of curvature of the back surfaces of the
lens. In the case of planar microlenses, whose characteristic
spatial scale is only several wavelengths, the focal length
will deviate from Eq. (10) due to pronounced scattering and
interference of the waves impinging on the lens. We thus
numerically solve the steady state of Eq. (1) under resonant
excitation of plane waves that pass through the planocon-
cave microlens. We base our parameters on state-of-the-art
inorganic microcavities for generating polariton condensates
[39]: γ −1 = 5.5 ps and m = 4.9 × 10−5m0 where m0 is the
free electron mass.

Since n = 1 and n < 1 outside and inside the lens, re-
spectively, an incident planar wave front from the left will
transmit through the lens to converge into a cylindrical wave
front on the right side. We numerically solve for the steady
states of Eq. (1) under resonant excitation at the left side of
the lens with a profile, E (r) ∝ exp[−x2/(2σ 2

x ) − y2/(2σ 2
y )]

whose FWHM is outlined with green in Fig. 2(a) centered

at x = 0. We set the energy of the source excitation to
h̄ωs = 2.0 meV so to have a rapidly varying phase front and
remaining within the parabolic (dispersion) regime. The cor-
responding steady-state density and phase profiles of �(r)
without any lens potential are shown in Figs. 2(a) and 2(d).

When a planoconcave potential V (r), of size in the order of
several wavelengths (λs ≈ 3.9 μm), is introduced both trans-
mitted and scattered waves contribute in a complicated way
to the focal region on the right side of the lens [see Fig. 2(b)].
Here we set R = 10.0 μm and the lens’ thickness T = 4.5 μm
which corresponds to n ≈ 0.4472 and f ≈ 18.1 μm indicated
by the yellow dashed lines in Figs. 2(b) and 2(e). We observe
a focal region (i.e., the whiteish region of converged/focused
waves) that lies outside the lens curvature R and within the
ray-optics focal length f [Eq. (10)], as a consequence of the
microscopic nature of the lens shape. We stress that the low
polariton intensity in the focal region is dominated by their
rapid decay rate γ used in our simulation. However, condensa-
tion of polaritons with large lifetimes reaching γ −1 = 270 ps
has also been demonstrated [40], leading to longer propa-
gation lengths and time scales to manipulate the condensate
flow.
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In Fig. 2(c), we show the line profile of the wave-function
density at y = 0 for varying real potential strength Vr . The
focal region both shrinks and the focal length decreases as the
potential strength increases in qualitatively agreement with
Eq. (10) (yellow solid line). It is worth mentioning that from
Eq. (6) one can, in principle, achieve epsilon-near-zero (n =
0) lensing, which has been studied extensively in metama-
terials [41], by tuning the excitation frequency. However, at
h̄ωs ≈ Vr incident waves undergo stronger reflection leading
to a pronounced interference pattern as seen in Fig. 2(b) to the
left of the lens. We also vary the imaginary part of the potential
Vi in Fig. 2(f) showing a clear amplification of the transmitted
waves in accordance with the imaginary part of the refractive
index in Eq. (9).

III. PLANAR RESERVOIR MICROLENSING
WITH POLARITON CONDENSATES

A. Generalized Gross-Pitaevskii model

Having characterized the effects of the 2D planoconcave
microlens on an incoming plane wave, we now move to the
nonlinear regime with condensates of polaritons. The polari-
ton condensate wave function �(r, t ) obeys a generalized
Gross-Pitaevskii equation coupled to a driven exciton reser-
voir N (r, t ) rate equation [42]

ih̄
∂�

∂t
=

[
− h̄2∇2

2m
+ α|�|2 + G

(
N + ηP(r)



)

+ ih̄

2
(ξN − γ )

]
�, (11)

∂N

∂t
= −( + ξ |�|2)N + P(r). (12)

Here, G = 2g|χ |2 and α = g|χ |4 are the polariton-reservoir
and polariton-polariton interaction strengths, respectively, g
is the exciton-exciton dipole interaction strength, |χ |2 is the
excitonic Hopfield fraction of the polariton, ξ is the scatter-
ing rate of reservoir excitons into the condensate,  is the
reservoir decay rate, η quantifies additional blueshift coming
from a dark background of excitons which do not scatter
into the condensate, and P(r) is the nonresonant continuous-
wave pump. The parameters used in all simulations are based
on negatively detuned cavities, |χ |2 = 0.4, with GaAs-type
quantum wells, g = 1 μeV μm2. Remaining parameters are
taken similar to those used to describe recent experiments,
h̄ξ = 2.8g; η = 5; and  = γ [22,23]. We also note that our
findings do not critically depend on the parameter values,
which can be adjusted through the system properties (e.g.,
exciton-photon detuning or the exciton dipole moment by
appropriate choice of the semiconductor material).

Let us quantify the nonresonant pump as P(r) = P0 f (r)
where P0 is a positive scalar denoting the power density of the
pump laser and f (r) is its profile. It is instructive to define the
condensation threshold which, formally, is a bifurcation point
separating the so-called normal (uncondensed) state (|�| = 0)
and the condensed state (|�| 
= 0). The threshold can be iden-
tified as the point where a single frequency component of our
system in the linear regime crosses from negative to positive
imaginary value (i.e., small |�| starts growing exponentially
in time). Alternatively, one can also estimate the threshold of

Eq. (11) numerically by expanding the reservoir steady state

N = P(r)

 + ξ |�|2 = P(r)



[
1 − ξ |�|2


+ O(|�|4)

]
(13)

and compare the contribution between the zeroth and the
first-order terms. Integrating through space we can write the
following inequality:

ξ



∫
f (r)|�|2 dr < ε. (14)

Here, ε � 1 is some small, reasonably chosen, numerical
tolerance to determine the threshold. Physically, the above
expression simply states that around threshold any nonlinear
effects on the reservoir are small. In this weak nonlinear
regime the potential generated by the pump is approximately

V (r) � P(r)



[
G(1 + η) + i

h̄

2
ξ

]
. (15)

Separating the real and imaginary parts gives

Vr = P0


G(1 + η), Vi = P0 h̄ξ

2
. (16)

For a homogeneous pump P(r) = P0 the threshold power cor-
responds to the balance of gain and dissipation Vi − h̄γ /2 = 0
which gives P0,th = γ/ξ . For inhomogeneous pump spots
the threshold power is bigger due to additional planar losses
of waves from the spatially finite gain region.

B. Numerical results on reservoir lensing

We will consider two separate pumps P(r) = PS (r) +
PL(r), of characteristic sizes DS and DL, which are referred
to as the source and the lens as introduced in Sec. II and
depicted in Fig. 1. We will denote the complex-valued po-
tential coefficients for the source and the lens potentials as
VS = Vr,S + iVi,S and VL = Vr,L + iVi,L, respectively. Conser-
vation of energy tells us that polaritons generated at the source
will obtain kinetic energy following:

Vr,S = 2h̄2π2

mλ2
. (17)

Let us list some requirements in order to obtain steady-state
lensing of polariton waves with wavelength λ coming from
the source and passing through the lens:

(i) DL > λ, the lens has to be large enough to refract the
incident waves.

(ii) 0 < Vr,S − Vr,L = �, waves must be propagating in the
lens.

(iii) PL < PL,th, the lens should be below threshold.
(iv) PS > PS,th, the source must be above threshold.
Here, PS(L),th are the threshold powers of the isolated source

(lens) pumps.
We can rewrite requirements (i) and (ii) in terms of the

model parameters, respectively,

DL > h̄π

√
2

mP0,SG(1 + η)
= λ, (18)

0 <
P0,S − P0,L


G(1 + η) = �. (19)
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Here, P0,S(L) denotes the power density of the nonresonant
source (lens) pump. It therefore becomes evident that increas-
ing P0,S will allow us to satisfy both requirements. However,
� needs to be reasonably bounded to obtain good focusing of
transmitted waves. This is evident from the variable maximum
intensity in the focal region in Fig. 2(c). Therefore, arbitrarily
increasing P0,S does not guarantee good focusing of polariton
waves. We also note that requirement (iii) is not strict as we
will see later.

We demonstrate our reservoir lensing scheme in Fig. 3
by numerically solving the generalized Gross-Pitaevskii and
reservoir model. We set the profile of the source pump to be
cigar-shaped to approximately generate plane waves fS (r) =
exp[−x2/(2σ 2

x ) − y2/(2σ 2
y )] in which σx � σy. The lens is

taken to be planoconcave shaped with R = 10.0 μm and T =
4.5 μm. The FWHM of the source and lens are outlined with
green solid curves in Figs. 3(a) and 3(d). We stress that due to

the different profiles of the source and the lens their threshold
powers are different.

One of the main differences between the resonant scheme
discussed in Sec. II and the current nonresonant scheme is
the vivid localization of the source condensate along the ver-
tical direction shown in Fig. 3(a). This effect stems from the
anisotropic gain region favoring modes with minimal losses,
and effective attractive interactions between the condensate
and the reservoir due to the gain-saturation mechanism [43].
None-the-less, enhancement of propagating waves in the fo-
cal region can be observed clearly in Fig. 3(a), partly due
to amplification from the lens gain. The phase map shown
in Fig. 3(d) is very different from that in Fig. 2(d) which
stems from the large detuning between the source waves
and the lens potential in simulation, i.e., � = Vr,S − Vr,L ≈
2.0 meV − 0.8 meV = 1.2 meV. In order to reduce the de-
tuning �, and get stronger focusing, one could pump the

FIG. 3. (a) Normalized density |�|2 and (d) phase map arg(�) of the condensate in the steady state under nonresonant pumping. (b),(e)
Time-resolved density line profile along y = 0 for two different pump powers. (c) Time-integrated density line profile, and (f) corresponding
spectral weight for varying lens power. Data is normalized at each step in PL/PL,th. The FWHM of the pump profiles is outlined with green
solid lines. Vertical green dashed lines indicate the outer and inner boundary of the source and lens at y = 0. The horizontal green dashed line
indicates the threshold of the isolated lens. The horizontal yellow dashed line indicates the onset of periodic dynamics characterized by more
than one spectral peak.
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lens harder. However, this triggers condensation inside the
lens and requirement (iii) is violated. Moreover, reinforcing
“ballistic” interactions between the source and the lens region
have lowered the lens threshold [44,45] (yellow dashed line
in Fig. 3). These complex wave dynamics make it therefore
a nontrivial task to adjust the detuning arbitrarily � to obtain
stronger focusing while—at the same time—keeping the lens
pump below threshold.

If, on the other hand, requirement (iii) is relaxed and the
lens power is made variable then interesting nonlinear physics
become enhanced. In Fig. 3(c) we show the time-integrated
line profile of the wave-function density at y = 0 for varying
lens power PL, and the corresponding energy spectrum in
Fig. 3(f). As discussed at the start of the section, the system
favors a steady-state behavior when PL is small, characterized
by a single clear spectral line in Fig. 3(f). In this regime, the
results are similar to those of a static lens potential impinged
by resonantly excited waves discussed in Sec. II. However, as
the lens power increases, an additional spectral line appears
and nonstationary periodic solutions form as a result of intri-
cate interactions between the condensate polaritons generated
at the source and the lens, in agreement with experiments
[46,47]. It is worth mentioning that such solutions are also
captured in a density matrix treatment [48]. An example of
two such solutions in the time domain is shown in Figs. 3(b)
and 3(e). Clear ≈252 GHz intensity beatings in the focal re-
gion can be observed in Fig. 3(b) whereas Fig. 3(e) shows two
dominant beat frequencies.

IV. RESERVOIR LENSES ABOVE THRESHOLD

There are limitations to the source and lens scheme in
previous section which cannot be quantified nicely given the
complex wave dynamics at play. Firstly, reinforcing behavior
between the source and the lens regions results in lowered
threshold gain of the interacting system which can lead to
condensation into extended quasinormal standing wave modes
that are supported by both the source and the lens region. This
is a general feature of interacting dissipative systems, such as
coupled lasers, or interacting polariton condensates [44,45].
Second, the source pump size would, in general, need to be
larger than the lens in order to avoid � getting too large (i.e.,
smaller source pumps need to be driven with higher power
and thus emit waves with higher energy). This can lead to
thermally induced self-trapping of the source condensate [49].

To overcome these issues, we consider a more simple case
where the source pump PS (r) = 0 is omitted and just the
lens PL(r) is driven above threshold. Indeed, the lens region
then plays the role of a carefully designed anisotropic planar
emitter from which waves radiate to constructively interfere.
In Fig. 4 we show the condensate steady state for a pump
profile shaped into a planoconcave lens and driven above
threshold. Polariton waves generated in the pump region are
propagating along the direction normal to the lens surface and
form a strong focal region with a clear phase shift.

When the “lens” power is increased then the contrast be-
tween the condensate density within and outside the lens
region increases as shown in Figs. 5(a) and 5(b), where in
the latter we plot the condensate density line profile along the
lens axis [50]. These results underpin the potential of using

FIG. 4. (a), (b) Steady-state condensate density |�|2 and
(c), (d) phase arg(�) for two different nonresonant pump config-
urations. The nonresonant pump is shaped into a (a) planoconcave
lens showing clear focusing of the emitted waves outside the pump-
ing area, and a (b) planoconcave resonator made from two lenses
(emitter) facing each other. Note that each individual lens is below
threshold but the system/resonator as a whole has a lower threshold
and thus supports a standing wave condensate at lower powers. The
FWHM of the pump profiles is outlined in green.

anisotropic shaped nonresonant excitation beams to generate
high density polariton condensates spatially separated from
any influence of the background exciton reservoir such as
strong dephasing or spatial hole burning effects. In the Sup-
plemental Material [38] we also provide results on a pump
shaped into a positive meniscus lens.

We also investigate the potential of designing planar res-
onators by setting two identical lens-shaped pump profiles

FIG. 5. (a) Condensate density for a planoconcave shaped non-
resonant pump at high powers and (b) line profile along y = 0 for
varying power. The vertical green dashed lines indicate the pumped
region.
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facing each other [see Figs. 4(b) and 4(d)]. Now, a clear
condensate standing wave forms, strongly localized along the
horizontal direction. The mode number of this planar standing
wave can easily be tuned by changing the distance between
two lenses or their pump power [47]. Moreover, the pump
polarization of each pump lens can also be adjusted to design
condensate standing waves with intricate polarization patterns
[51]. These results open a pathway in generating structured,
high density, polariton condensates spatially separated from
the direct influence of the reservoir by simply adjusting the
geometric configuration and the excitation power of the non-
resonant pump.

V. CONCLUSIONS

In summary, we have theoretically investigated all-optical
planar microlensing techniques on condensates of exciton-
polaritons. The lenses are created by using spatially patterned
nonresonant excitation profiles that provide both gain and
blueshift to the polariton modes. We stress that our scheme
should not be confused with that of resonant control [52,53]
where auxiliary “condensates” are directly injected to provide
spatially patterned polariton blueshift.

We studied the condensate dynamics first in a source-and-
lens pump setup as shown in Fig. 1. We provide a comparison
of the rich nonlinear dynamics to that of linear Schrödinger
wave mechanics. Scanning across pump power parameters,
we demonstrate a departure of the condensate steady state,
resembling the linear Schrödinger dynamics, into a stable
limit cycle state characterized by multiple spectral peaks and
rapid (≈252 GHz) density oscillations in the focal region.
This result holds promises for polaritonic clock generators
in integrated circuits [54]. We next studied the condensate
behavior in a simpler setup consisting of only a single lens

shaped pump driven above threshold. This resulted also in
highly anisotropic condensate emission and strong focusing of
condensate waves outside the pump region. This opens possi-
bilities in generating polariton condensates that are separated
from detrimental reservoir dephasing effects and might obtain
unprecedented coherence times, favorable for highly sensitive
planar matter-wave interferometers [25].

The possible reservoir devices and their applications are
not limited by the examples we present in this paper, and we
hope this work will stimulate the theoretical and experimental
application of reservoir optics in polariton condensates. For
instance, one might add such planar lenses at the apertures
of pumped wave guides considered in Ref. [32], or even at
the end of a staircase potential as in Ref. [36], to collect
polariton waves and prevent diffraction and signal losses in
future polaritonic circuitry. Indeed, the anisotropic shape of
the lenses and their ability to focus (concentrate) polariton
condensates puts them in a unique position to operate as
directional nonlinear elements for information processing in
the same spirit as planar optical transistors. Our findings are
also relevant to atomtronics [55,56] where arbitrary all-optical
control over the atom’s potential landscape is possible [57].

The data presented in this paper are openly available from
the University of Southampton repository [58].
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