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Electrical control of the hole spin qubit in Si and Ge nanowire quantum dots
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NanoLab, QTP Center, Faculty of Physics, University of Belgrade, Studentski trg 12, 11001 Belgrade, Serbia
and Institute of Physics, Pavol Jozef Šafárik University, Park Angelinum 9, 040 01 Košice, Slovak Republic

(Received 24 June 2021; revised 7 October 2021; accepted 3 December 2021; published 20 December 2021)

Strong, direct Rashba spin-orbit coupling in Si, Ge, and the Ge/Si core/shell nanowire quantum dot (QD)
allows for all electrical manipulation of the hole spin qubit. Motivated by this fact, we analyze different
fabrication-dependent properties of nanowires, such as orientation, cross section, and the presence of strain,
with the goal being to find the material and geometry that enables the fastest qubit manipulation, whose speed
can be identified using the Rabi frequency. We show that QD in nanowires with a circular cross section (cNWs)
enables much weaker driving of the hole spin qubit than QDs embedded in square profile nanowires (sNWs).
Assuming the orientation of the Si nanowire that maximizes the spin-orbit effects, our calculations predict that
the Rabi frequencies of the hole spin qubits inside Ge and Si sNW QD have comparable strengths for weak
electric fields. The global maximum of the Rabi frequency is found in Si sNW QD for strong electric fields,
putting this setup ahead of others in creating the hole spin qubit. Finally, we demonstrate that strain in the Si/Ge
core/shell nanowire QD decreases the Rabi frequency. In cNW QD, this effect is weak; in sNW QD, it is possible
to optimize the impact of strain with the appropriate tuning of the electric field strength.
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I. INTRODUCTION

The electron or hole spin trapped inside a semiconductor
quantum dot (QD) can be used as a building block of a
quantum computer [1,2]. To this end, approaches based on the
magnetic [3,4] and electric [5,6] fields to manipulate the spin
qubit are suggested. Even though the control of the spin qubit
is more straightforward with magnetic fields, electrical con-
trol of the spin qubit using the electric-dipole spin resonance
(EDSR) is favorable in physical realizations [7–14].

The principal physical mechanism that enables the elec-
trical control of the spin qubit is the spin-orbit interaction
(SOC). Besides its positive effect in EDSR-based schemes,
SOC leads to undesirable effects such as decoherence and
relaxation [15–18]. Among materials with notable SOC that
can host spin qubits, Si and Ge have recently attracted much
attention due to their free nuclear spin environment, leading
to long dephasing times [19–21]. Also, in the group of dif-
ferent Si and Ge nanostructures, special interest is devoted to
quasi-one-dimensional geometries such as hut wires [22–26]
and nanowires [27–32]. In such systems, the realization of
spin qubits with holes rather than with electrons is owed to
the fact that SOC is much stronger in the valence than in
the conduction bands. The so-called “direct Rashba spin-orbit
interaction” (DRSOI) that was predicted in Ge/Si core/shell
nanowires [33] represents an efficient way to manipulate hole
spin states in such structures electrically [34,35]. The other
SOC mechanisms, Dresselhaus [36]/Rashba [37], are forbid-
den by symmetry/much weaker than the DRSOI term.

Here we investigate how the electrical control of a hole
spin qubit in Si, Ge, and Ge/Si core/shell nanowire QD is
dependent on the electrically tunable DRSOI and fabrication-

dependent parameters of the nanowire, such as orientation,
cross section, and strain. We focus on realistic profile shapes,
circular and square cross sections [38,39], and realistic profile
sizes [40]. Since the hole states in Ge have almost isotropic
dispersion relation at the � point, we employed the spherical
approximation when studying the hole spin qubit in Ge and
Ge/Si core/shell nanowire QD. On the other hand, the orien-
tation dependence of Si hole states is taken into account when
discussing the hole spin qubit in Si nanowire QD.

The Rabi frequency, measuring the speed of single-qubit
rotations, can be used to assess the efficiency of the hole
spin qubit. We used the fact that the strongest g factor is
achieved when the electric and magnetic fields are applied
perpendicular to the nanowire and are mutually parallel [30];
the strong driving of the Rabi frequency is enabled by varying
the electric field strength. We divided the Rabi frequency
dependence on the electric field strength into two regimes: in
the first one, Rabi frequency is proportional to the electric field
strength, while in the second regime a nonlinear response is
observed. Our analysis shows that hole spin qubits in circular
cross section nanowire (cNW) QDs are much less efficiently
controlled by the electric field than in square profile nanowire
(sNW) QDs. In the linear regime, we showed that the Rabi
frequency in hole spin qubits inside Ge and Si sNW QD are of
comparable strength, assuming the orientation of Si nanowire
such that the spin-orbit effects are maximized. In the nonlinear
regime, the global maximum of Rabi frequency is found in
Si sNW QD, putting this setup in favor of others for the
creation of the hole spin qubit. We also investigated the role
of strain in the hole spin qubit formed in the Ge/Si core/shell
nanowire QD. We showed that strain always decreases the
Rabi frequency; in cNW QDs this effect is not so pronounced,
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FIG. 1. Setup for the construction of the hole spin qubit. The
main axis of the nanowire coincides with the z-direction. The core
of the nanowire has a square (left panel) or circular (right panel)
cross section. In the case of the Ge/Si core/shell nanowire, the Si
shell around the Ge core increases the overall cross section, where
the shell thickness parameter γ = (LS − L)/L is given with the help
of the outer Si shell diameter/side length LS and the inner Ge core
diameter/side length L. Note that no shell is present in the case of
the Si and Ge nanowire (γ = 0). Gating potential V used to localize
the hole spin qubit, given in Eqs. (8) and (9), is also denoted. Finally,
both the magnetic and electric fields are applied in the x-direction to
maximize the spin-orbit effects.

whereas in sNW QDs the strong impact of shell thickness can
be minimized with the appropriate tuning of the electric field
strength.

This paper is organized as follows. After the introductory
section, in Sec. II the model of the hole spin qubit in Si,
Ge, and Ge/Si core/shell nanowire QD is introduced. The
numerical procedure used for Hamiltonian diagonalization
and the formal definition of the Rabi frequency is given in the
same section. In Secs. III and IV the dependence of the Rabi
frequency on the electric field strength in Si and Ge cNW and
sNW QD is analyzed, respectively. Next, in Sec. V, the role
of strain in the Ge/Si core/shell nanowire QD hole spin qubit
on the Rabi frequency is discussed. Finally, in Sec. VI, short
conclusions are given.

II. MODEL

In this section, we introduce the setup for the creation of the
hole spin qubit (see Fig. 1 for an illustration), whose dynamics
can be described using the Hamiltonian

H = HLK + HDRSOI + HZ + V + HBP. (1)

The first term of the total Hamiltonian H is the four-band
Luttinger-Kohn (LK) Hamiltonian [41,42]. In the simplest
case, where the nanowire axes coincide with the crystallo-
graphic directions [100], [010], and [001] (xyz orientation),
the LK Hamiltonian is equal to

Hxyz
LK = h̄2

2m

[(
γ1 + 5

2
γ2

)
k2 − 2γ2

(
k2

x J2
x + k2

y J2
y + k2

z J2
z

)

−4γ3({kx, ky}{Jx, Jy} + c.p.)

]
, (2)

where c.p. stands for cyclic permutation, {A, B} = (AB +
BA)/2 is the anticommutator, m is free electron mass, γ1,2,3

are the Luttinger parameters, k is the momentum operator,
and Ji are spin-3/2 operators obeying the relation [Ja, Jb] =
iεabcJc (εabc is the Levi-Civita symbol). Note that, in zero
magnetic field, the momentum operator is equal to −i∇, while
for homogeneous magnetic field B = Bxex + Byey + Bzez, it
equals to k = −i∇ + e/h̄A (e > 0), where the vector poten-
tial A is given as

A = − 1
2 Bzyex + 1

2 Bzxey + (Bxy − Byx)ez. (3)

It is argued that the strongest spin-orbit effects [30] occur
when the nanowire main axis is oriented along the [001]
direction, whereas the x and y axes coincide with the [110]
and [1̄10] directions, respectively. In this case, the LK Hamil-
tonian is equal to [30]

H rot
LK = h̄2

2m

[(
γ1 + 5γ2

2

)
k2 − γ3

(
k2

x − k2
y

)(
J2

x − J2
y

)
−4γ3({ky, kz}{Jy, Jz} + {kz, kx}{Jz, Jx})

−γ2(k2
x J2

y + k2
y J2

x + 4{kx, ky}{Jx, Jy})

−γ2
(
k2

x J2
x + k2

y J2
y + 2k2

z J2
z

)]
. (4)

In the case of the Ge nanowire, the Luttinger parameters are
equal to γ1 = 13.35, γ2 = 4.25, and γ3 = 5.69 [43], while the
same parameters for the Si nanowire equal to γ1 = 4.22, γ2 =
0.39, and γ3 = 1.44 [43]. For Ge, the spherical approximation
is valid since γ3/γ2 ≈ 1. Thus, instead of Hamiltonians (2)
and (4), we will consider the LK Hamiltonian

H spherical
LK = h̄2

2m

[(
γ1 + 5γs

2

)
k2 − 2γs(k · J)2

]
, (5)

invariant under arbitrary rotations of the nanowire coordinate
system with respect to the crystallographic axes, where γs =
(2γ2 + 3γ3)/5 = 5.114.

The second term in Eq. (1) corresponds to the electric-field-
induced Hamiltonian

HDRSOI = −eE · r = −e(Exx + Eyy + Ezz), (6)

usually called the DRSOI. Our model neglects the Rashba
SOC since it is shown that the DRSOI dominates [30]. On
the other hand, the Dresselhaus SOC is absent in Ge and Si
due to symmetry [44].

Furthermore, the direct coupling of the hole spin to the
magnetic field is described through the Zeeman term [44]

HZ = 2kμBB · J, (7)

with μB being the Bohr magneton, while k = 3.41 (−0.26)
[43] is the g factor for Ge (Si) holes. Note that the anisotropic
Zeeman term is omitted, being a reasonable assumption in
both materials [43].

Next, we describe the QD confinement potential V . For a
sNW the potential V is equal to

V s =
{

0, |x| < L
2 , |y| < L

2 , |z| < z0
2 ,

∞, otherwise.
(8)

In the xy-plane, hard-wall conditions coincide with the square
profile of the nanowire, while the confinement strength z0 is
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dependent on the external gating. In this work, we will assume
L = 10 nm [40] and z0 = 30 nm [45], being typical values in
nanowire qubit experiments. Similarly, for a cNW, the gating
potential is equal to

V c =
{

0, r < R = L
2 , |z| < z0

2 ,

∞, otherwise,
(9)

where r represents the radial coordinate and R = L
2 is the half

diameter of the profile.
The last term in Eq. (1) represents the strain-induced Bir-

Pikus Hamiltonian [46], present only in the case of Ge/Si
core/shell nanowire. It is equal to

HBP = −
(

a + 5b

4

)
(εxx + εyy + εzz )

+b
(
εxxJ2

x + εyyJ2
y + εzzJ

2
z

)
+ 2d√

3
(εxy{Jx, Jy} + c.p.), (10)

where a, b, d are the deformation potentials, while εi j are the
matrix elements of the symmetric strain tensor. In strained
Ge/Si core/shell nanowires, εxy = εxz = εyz = 0, εxx = εyy =
ε⊥. Furthermore, we use the following parameters: a = 2 eV,
b = −2.2 eV, d = −4.4 eV [47]. Since the hydrostatic de-
formation potential a provides only a global shift that can
be discarded, the Bir-Pikus Hamiltonian has a very simple
effective form [48]

H eff
BP = |b|[ε⊥(γ ) − εzz(γ )]J2

z . (11)

In the previous equation, functions ε⊥ and εzz depend on the
parameter γ = (LS − L)/L, described with the help of the
outer Si shell diameter (side length) LS and the inner Ge core
diameter (side length) L. The dependence of ε⊥ and εzz on γ

and the general discussion of the validity of the model can be
found in [30,48].

As a final remark, it should be noted that there is a global
minus sign in Eq. (1) that does not affect the physics of
holes. Its only effect is to resemble the most common positive
(electron-like) energy levels of a particle in a box model and
it is used in similar studies [30].

A. Numerical diagonalization

An adequate basis for the numerical diagonalization is
needed to find the eigenvalues and eigenvectors of the hole
spin qubit Hamiltonian H . In the case of the hole spin qubit in
sNW QD, the eigensolutions will be expanded in the basis set

〈r|nxnynz〉〈s| jz〉 = ψnx (x)ψny (y)ψnz (z)χ jz , (12)

where

ψn(u) =
√

2

Lu
sin

[
nπ

(
u

Lu
+ 1

2

)]
, (13)

(n, u) = (nx/ny/nz, x/y/z), represents solutions for the parti-
cle in the box model, with nx,y,z � 1, Lx = Ly = L, and Lz =
z0; χ jz represents the eigenvector of the operator Jz,

Jzχ jz = jzχ jz , (14)

with jz = ±3/2,±1/2. On the other hand, in the case of the
hole spin qubit in cNW QD, the eigenbasis is again adapted to
the geometry of the problem and chosen as

〈r|inz〉〈s| jz〉 = ψ i
(m,nr )(r, ϕ)ψnz (z)χ jz , (15)

where ψ i
(m,nr )(r, ϕ) represents the ith eigenvector of the parti-

cle in an infinite circular well [49]

ψ i
(m,nr )(r, ϕ) = N(m,nr )J(m,nr )

(
zm,nr

R
r

)
eimϕ

√
2π

, (16)

while zm,nr is the nr th zero of the regular Bessel function Jm(z)
for m = 0,±1,±2, . . . quantized values of the angular mo-
mentum Lz. Additionally, N(m,nr ) represents the normalization
constant, set by the equation N2

(m,nr )

∫ R
0 J2

(m,nr )(
zm,nr

R r)rdr = 1.
For sNW QD, numerical diagonalization is done using the

13 500 basis states, i.e., the 15 lowest states in each Cartesian
direction and four spin states. On the other hand, for cNW
QD, in addition to 15 ψnz (z) and four χ jz eigenstates, we
used the 226 lowest ψ(m,nr )(r, ϕ) eigenstates of the infinite
circular well problem. We carefully checked that the given
number of basis states enables good convergence of the Rabi
frequency value for each configuration studied. This is done
by comparing the Rabi frequency results with the 14 × 14 ×
14 × 4-dimensional basis in the case of the square profile and
the 196 × 14 × 4-dimensional basis in the case of the circular
profile. The estimated maximal relative difference is less than
0.35% in the case of the square profile and less than 0.85%
for the circular profile, proving that the number of basis states
is sufficient.

B. Rabi frequency

At zero magnetic field, the ground state of the Hamilto-
nian H is two-fold degenerate. The presence of the magnetic
field breaks the degeneracy and leads to the magnetic-field-
dependent splitting between the initially (at B = 0) degenerate
ground state. We assume that qubit states |+〉 and |−〉 cor-
respond to magnetic-field-induced split ground hole state at
B = 0. With the applied oscillating electric field Enw in the
direction of the nanowire main axis, we can achieve the elec-
trical control of the hole spin qubit. When the oscillating field
is resonant with the Larmor frequency of the qubit, the Rabi
frequency 	R is equal to

	R = e

h̄
Enw|〈+|z|−〉|, (17)

where Enw is the strength of the oscillating field. Since
the strength of the Rabi frequency measures the speed of
single-qubit rotations, the value of 	R for different qubit con-
figurations can be used to access the efficiency of the analyzed
hole spin qubit.

The presence of mirror plane symmetries plays an essential
role in determining the allowed directions of the electric and
magnetic fields for obtaining 	R 	= 0. Thus, we will shortly
discuss their role. First, in zero electric and magnetic field,
the system is invariant under three mirror plane symmetries:
σxy, σxz, and σyz. The applied oscillating electric field Enw

in the z-direction breaks the σxy symmetry, leaving only two
mirror planes as symmetries of the system. If the static electric
field is applied in the z-direction also, the g-matrix formalism
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[50] can be used to deduce that the Rabi frequency is zero,
independently of the orientation of the magnetic field. On the
other hand, the electric field applied in the x- or y-direction
breaks the σyz/σxz mirror plane, thus lowering the number of
mirror plane-symmetries to one only. In this case, the Rabi
frequency is zero when the magnetic field is applied in the
direction perpendicular to the mirror plane [50], whereas in
all other cases, nonzero 	R is obtained.

Since 	R is dependent on the g factor strength, it is plausi-
ble to set the magnetic and electric field orientation in such a
way that the value of g is maximized. This can be achieved
when the magnetic field is perpendicular to the nanowire
main axis and parallel to the electric field [30]. Thus, in this
work we assume that both the electric and magnetic fields
are applied in the x-direction of the coordinate frame given
in Fig. 1.

III. HOLE SPIN QUBIT IN SI NANOWIRE QD

We start our analysis of the Rabi frequency from hole spin
qubits in the Si nanowire QD. As discussed earlier, we will
focus on the electric field effects, enabled by the presence of
DRSOI. For simplicity, we assume that the oscillating electric
field strength Enw = 0.03 mV/nm is fixed, as in [51]. More-
over, the study of magnetic field effects is omitted due to the
very simple dependence (linear) of 	R on the strength of Bx

for reasonably strong fields up to 1 T.
In Fig. 2, the dependence of 	R on the electric field

strength Ex is plotted for two different orientations of the
nanowire and different cross sections, assuming Bx = 0.1 T.
For weak electric fields, the Rabi frequency is linearly depen-
dent on the electric field strength. A signature of the host Si
material is the fact that 	R differs significantly for different
nanowire orientations, as expected since γ3/γ2 
 1. The LK
Hamiltonian H rot

LK corresponds to the orientation where the
spin-orbit effects are the most pronounced [30]; as a compar-
ison, the Rabi frequency dependence on Ex for the nanowire
orientation that coincides with the main crystallographic axes
is given. Also, in Fig. 2, the percentage of light-hole states
( jz = ±1/2) in the qubit state |+〉 (very similar result is
obtained for |−〉) is given for different cross sections and
nanowire orientations. For weak electric fields, |+〉 is almost
exclusively of the light-hole origin, as suggested when ana-
lyzing Si nanowire states at the � point [30]. However, for
stronger fields, the influence of heavy-hole states enhances
and can become significant as the electric field strength is
further increased.

The response of the Rabi frequency to the applied elec-
tric field can be divided into two regimes: the first one
corresponds to the linear response of 	R, whereas in the
second regime nonlinear response is present. In the lin-
ear regime 	R can be very well approximated as α

sup
subEx,

	R ≈ α
sup
subEx, where the subscript/superscript corresponds to

the nanowire profile/orientation. The corresponding parame-
ters α

xyz
s = 6.40 × 10−6 MHz m

V , αrot
s = 3.26 × 10−5 MHz m

V ,
α

xyz
c = 5.91 × 10−7 MHz m

V , and αrot
c = 4.11 × 10−6 MHz m

V
indicate that the square profile is by far more suitable for the
electrical control of the hole spin qubit, as well as z || [001],
x || [110] orientation. A more complicated dependence on Ex

is observed in the nonlinear regime: for both the square and

FIG. 2. Rabi frequency 	R dependence on the electric field E =
(Ex, 0, 0) strength for two different nanowire orientations, assuming
circular (upper panel) and square (lower panel) profile of the cor-
responding nanowire. The magnetic field applied is equal to B =
(0.1, 0, 0)T, while other parameters can be found in the main text.
For all the configurations studied, the contribution of the light-hole
states in the qubit state |+〉 versus the electric field strength is also
given.

circular profile having the z || [001], x || [110] orientation,
global maximum of 	R around 10−2 V/nm is observed, fol-
lowed by the rapid decline of Rabi frequency. On the other
hand, for the xyz orientation and both the sNW and cNW QD,
	R is weakly dependent on the electric field strength.

The orbital contribution analysis in each scenario can be
used to rationalize the obtained results. Besides the total
heavy-hole/light-hole separation that was already given in
Fig. 2, it is possible to match the orbital contribution of
heavy-hole/light-hole basis states in qubit states |+/−〉. For
weak electric fields, an orbital ground state with light-hole
spins is dominant (|11〉 and |111〉 for Si cNW and sNW QD,
respectively; the formal definition of orbital states |inz〉 and
|nxnynz〉 can be found in Sec. II A and more specifically in
Eqs. (12) and (15)). For stronger fields, other states start to
appear as well. Since the electric field is applied in the x-
direction, it is reasonable to expect that higher orbital states
in the x-direction appear in the decomposition of the basis
states. As we will show, for weak and moderate electric fields,
only a few lowest-orbital states with heavy-hole and light-
hole spins significantly affect the qubit states. Thus, we will
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FIG. 3. For Si nanowire with circular (upper panel) and square
(lower panel) cross section, described by the LK Hamiltonian H rot

LK,
comparison between the numerical results, linear fit of 	R, and dif-
ferent approximations of 	R values are given: dotted line represents
results when qubit states are approximated with |11〉 and |12〉 (LH
fit |11〉) light-hole states for cNW QD or with |111〉 and |112〉 (LH
fit |111〉) light-hole states for sNW QD; dashed-dotted line/dashed
line represent results when states |11〉, |21〉, |31〉, |12〉, |22〉, |32〉
(|111〉, |211〉, |311〉, |112〉, |212〉, |312〉) having light-hole/light-hole
and heavy-hole spins are used to approximate the qubit states.

demonstrate that it is possible to approximately describe the
Rabi frequency in terms of only a few basis states. In the
simplest picture, we can approximate the qubit states as

|+/−〉c ≈ c|+/−〉
11± 1

2

|11〉|± 1
2 〉 + c|+/−〉

12± 1
2

|12〉|± 1
2 〉, (18)

|+/−〉s ≈ s|+/−〉
111± 1

2

|111〉|± 1
2 〉 + s|+/−〉

112± 1
2

|112〉|± 1
2 〉, (19)

where c|+/−〉
11± 1

2

, c|+/−〉
12± 1

2

(s|+/−〉
111± 1

2

, s|+/−〉
112± 1

2

) represent coefficients of

the qubit states |+〉 and |−〉 in Si cNW (sNW) QD. It is impor-
tant to mention that the nonzero orbital contribution of states
|12〉|± 1

2 〉 (|112〉|± 1
2 〉) is necessary to achieve 	R 	= 0. This

stems from the fact that the matrix element of z, appearing in
the definition of 	R (17), is zero if the z-component of the
qubit states is the same, 〈1|z|1〉 = 0, due to symmetry. Since
|〈1|z|i〉| is the largest for i = 2, there follows the reason for
choosing exactly this state in the Eqs. (18) and (19).

In Fig. 3, for the case of the LK Hamiltonian H rot
LK, a com-

parison between the numerical results and approximations at

various levels are given. In the simplest case, we use the low-
est orbital eigenstate and its pair to approximately describe the
qubit states (dotted line). Also, we analyze the approximation
with added orbital states |21〉, |31〉, |22〉, |32〉 (|211〉, |311〉,
|212〉, |312〉) having light-hole spins (dashed-dotted line) and
both the light-hole and heavy-hole spins (dashed line). Finally,
the linear fit of 	R is plotted to determine the regime of linear
response to the electric field.

In the linear regime, it is evident that with only two or-
bital states, the behavior of 	R can be explained. Since the
coefficients c|+/−〉

11± 1
2

and s|+/−〉
111± 1

2

are independent on Ex in this

regime, the linear response to Ex purely corresponds to the
linear response of coefficients c|+/−〉

12± 1
2

and s|+/−〉
112± 1

2

to the applied

electric field. For stronger fields, the influence of the other
orbital states and heavy-hole spins is evident (see Fig. 3),
and it is necessary to expand the number of basis states for
realistic approximation of 	R. The plots show that the in-
creased number of basis states gives more realistic results,
thus explaining the need for the relatively large number of
basis states included in the Hamiltonian diagonalization.

In the end, it remains an open question why the nanowire
with a square profile is more susceptible to displaying large
Rabi frequencies than the circular ones. To this end, we made
an approximate model of the Rabi frequency based on the
perturbation theory (see the Appendix for more details). More
concretely, we divide the total Hamiltonian (1) at finite B
into two parts: the first one, H1, corresponds to the case
of zero magnetic field, while the second one, H2, collects
the magnetic-field-dependent terms and can be treated as a
perturbation. Using the first-order perturbation theory, an ap-
proximate description of the Rabi frequency [see Eq. (A6)]
can be made, collecting the basic features of 	R. Numeri-
cal estimates, in this case, confirm that the main difference
in Rabi frequency values of cNW and sNW QD hole spin
qubits lies in much stronger magnetic-field-induced transition
matrix elements of sNW QD, as explained in detail in the
Appendix.

IV. HOLE SPIN QUBIT IN GE NANOWIRE QD

In this section, using the spherical approximation of the
LK Hamiltonian, see Eq. (5), the effect of nanowire geometry
and the electric field strength on the Rabi frequency is going
to be investigated. Again, we will discuss our results in the
magnetic field regime up to 1 T, for which the response of 	R

to Bx is linear.
In Fig. 4, we plot the dependencies of 	R on the electric

field strength for the hole spin qubit in Ge cNW and sNW QD,
assuming magnetic field strength Bx = 0.1 T. On the right side
of the plot, we present the influence of light-hole states in |+〉
for the studied cases.

The obtained results can be divided according to the type
of response to the electric field. In the linear regime, the fitting
	Ge

R,i = αGe
i Ex, i = s, c, gives the parameters αGe

s = 3.37 ×
10−5 MHz m

V and αGe
c = 1.62 × 10−7 MHz m

V , confirming the
beneficial role of the square profile for the electrical control of
the hole spin qubit again. Comparing the results with the hole
spin qubits inside the Si nanowire QD, the relation αGe

s ≈ αrot
s

indicates that both materials can be used to provide similar
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FIG. 4. For the hole spin qubit in Ge cNW and sNW QD, depen-
dence of the Rabi frequency 	R on the electric field strength Ex is
given. The applied magnetic field is equal to B = (0.1, 0, 0)T, while
other parameters can be found in the main text. On the right side
of the plot, for the configurations studied, the contribution of the
light-hole states in the qubit state |+〉 versus the electric field strength
is given.

outputs. The nonlinear regime in Ge differs for different pro-
files. In the case of the sNW QD, Rabi frequency is weakly
dependent on the electric field strength. In contrast, 	R in
the cNW QD gradually increases. However, due to the much
stronger slope of 	R in the linear regime, the hole spin qubit
in Ge sNW QD gives much better results than the Ge cNW
QD.

To gain better insight into the 	R difference for Ge cNW
and sNW QD hole spin qubit, we analyze the orbital contri-
bution of qubit states in each case of interest. First, we notice
that the qubit state |+〉 in Ge cNW QD is almost exclusively of
light-hole origin for weak electric fields (similar as in Si cNW
and sNW QDs, see Fig. 2). In contrast, in Ge sNW QD, the
influence of light-hole states is considerably smaller. Besides
the different light-hole/heavy-hole influence, the orbital com-
position of qubit states in cNW and sNW QD differs greatly.
In the case of qubit states created in cNW QD, the role of
the light-hole |11〉 state is dominant for electric field strengths
up to 10−3 V/nm. For stronger fields, the influence of orbital
|21〉 and |31〉 states with both light-hole and heavy-hole spins
becomes relevant. Similarly as for Si nanowires, we can ap-
proximate Rabi frequency behavior with only a few orbital
states. In Fig. 5 we compare the obtained numerical results
with the linear fit of 	R, the minimal model (LH fit |11〉) that
approximates qubit states with light-hole states |11〉 and |12〉,
as well as approximations taking into account orbital states
|11〉, |12〉, |21〉, |22〉, |31〉, and |32〉 with (i) light-hole (LH fit
|11〉, |21〉, |31〉), (ii) both the light-hole and heavy-hole spin
states (LH-HH fit |11〉, |21〉, |31〉). As evident from the upper
panel of Fig. 5, the minimal model can reproduce the linear
response of 	R; for stronger fields, more states are needed to
reproduce the Rabi frequency results adequately.

The orbital contribution of Ge sNW QD qubit states is sig-
nificantly different. For weak electric fields, up to 10−4 V/nm,

Ge

Ge
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FIG. 5. For the hole spin qubits in Ge nanowire with circular
(upper panel) and square (lower panel) cross section, comparison
between the numerical results, the linear fit of 	R, and the fits of 	R

with approximated qubit states is given. In the case of Ge cNW QD,
dotted line represent results when qubit states are approximated with
orbital states |11〉 and |12〉 having light-hole spins; dashed-dotted
line/dashed line represent results when states |11〉, |21〉, |31〉, |12〉,
|22〉, |32〉 having light-hole/light-hole and heavy-hole spins are used
to approximate the qubit states. In the case of sNW QD, besides the
linear fit and the numerical results, the minimal fit of qubit states
[Eq. (19)] is used, as well as approximations based on states |111〉,
|122〉, |211〉 with light-hole/light- and heavy-hole spins (see the last
paragraph of Sec. IV).

besides the light-hole state |111〉, which is relatively domi-
nant, several other states appear as well. To mention a few,
light-hole states |122〉, and |211〉 are present with both light-
and heavy-hole spin states. In the minimal basis model, see
Eq. (19), it is possible to qualitatively explain the behavior of
	R for weak fields. For stronger electric fields, qubits have
more and more disperse orbital contribution, and more basis
states need to be included in the picture. This is illustrated
in the lower panel of Fig. 5, where, besides the linear and
the minimal basis fit (LH fit |111〉), approximation based on
the orbital states |111〉, |122〉, |211〉 with light-hole/light- and
heavy-hole spins are presented (LH/LH-HH fit |111〉, |122〉,
|211〉). Note that in the case of |111〉 and |211〉 states, com-
plementary states |112〉 and |212〉 are included in the picture
because |〈1|z|2〉| is the dominant transition matrix element
between those of the type |〈1|z|i〉|, i = 1, . . . , 15. On the other
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FIG. 6. Dependence of 	R on strain in hole spin qubits formed
inside Ge/Si core/shell cNW and sNW QD. In both cases, magnetic
field Bx is equal to 0.1 T, whereas the electric field values are set
to 10−3 V/nm and 10−5 V/nm for the circular and square profiles,
respectively.

hand, for |122〉 both the |121〉 and |123〉 states should be
included since |〈2|z|1〉| ≈ |〈2|z|3〉|.

V. HOLE SPIN QUBIT IN GE/SI CORE/SHELL
NANOWIRE QD

Finally, we study the strain effects in Ge/Si core/shell
nanowire QD hole spin qubit. Since the Bir-Pikus Hamil-
tonian is proportional to J2

z , it can be concluded that the
(degenerate) eigenstates of H eff

BP are either light-hole states
χ±1/2 with the eigenvalue |b|[ε⊥(γ ) − εzz(γ )]/4 or heavy-
hole states χ±3/2 with the eigenvalue 9|b|[ε⊥(γ ) − εzz(γ )]/4.
Focusing on the qubit states, being the two lowest eigenstates
of the total Hamiltonian, it is evident that the strain will lead to
the increase of the light-hole/heavy-hole contribution in qubit
states, depending on the sign and value of ε⊥(γ ) − εzz(γ ),
where γ represents the relative shell thickness. The value of
ε⊥(γ ) − εzz(γ ) is always positive and increases with the γ

increase. Thus, we conclude that the role of light-hole states
in |+/−〉 will be enhanced.

To study the response of the Rabi frequency on the pres-
ence of strain, we fix the magnetic field strength to 0.1 T
and vary both the electric field strength and shell thickness
γ ∈ (0, 0.8). The results will be discussed for both the Rabi
frequency’s linear and nonlinear response to the electric field.
In the linear regime, qubit states in cNW QD can be very well
approximated as in Eq. (18). The effect of strain is such that
the orbital contribution of the light-hole state |11〉 slightly
increases, whereas the light-hole state |12〉 decreases more
rapidly; thus, it is expected for the Rabi frequency to decrease.
However, this decrease is weak, as evident from the fact that
	R(γ = 0.8)/	R(γ = 0) is approximately 1.2 for electric
fields up to 10−3 V/nm. On the other hand, in the Ge/Si
core/shell sNW QD strain has a more pronounced effect,
leading to the much stronger decreasing trend of 	R with the
increase of γ . As an example, in Fig. 6, the dependence of the
Rabi frequency on the shell thickness γ ∈ (0, 0.8) is given for
the hole spin qubit in Ge/Si core/shell cNW and sNW QD,

assuming electric field strengths 10−3 V/nm and 10−5 V/nm,
respectively. It is evident from the plots that strain in sNW
QD hole spin qubit leads to a one order of magnitude decrease
of the Rabi frequency, whereas in cNW QD its effect is very
weak.

Finally, a weak effect of strain on 	R in Ge/Si core/shell
cNW QD is preserved in the nonlinear regime also. On the
other hand, in sNW QD the role of strain is muffled with
the increase of the electric field (Ex � 0.1 V/nm), reaching
the ratio 	R(γ = 0.8)/	R(γ = 0) ≈ 1.35 that is comparable
with nanowires having a circular profile.

VI. CONCLUSION

We analyzed hole spin qubits in QD formed inside Si,
Ge, and Ge/Si core/shell cNW and sNW. The possibility to
electrically control the hole spin qubit through direct Rashba
spin-orbit coupling is exploited and the role of different ma-
terials and geometries is investigated in detail, with the goal
to find setups that enable the fastest control of the hole spin
qubit. The Rabi frequency, the quantity that allows a simple
estimation of the qubit efficiency, is defined, and its depen-
dence on the electric field strength is investigated. We showed
that the hole spin qubits in QDs inside sNW are much more
easily tuned than the corresponding qubits in cNW QDs. For
weak fields, the Raby frequency is linearly proportional to the
electric field strength. In this regime, we showed that the Rabi
frequency in the hole spin qubits inside Ge and Si sNW QDs
are of comparable strengths, providing that the orientation of
Si nanowire is such that the spin-orbit effects are maximized.
In the nonlinear regime, the global maximum of the Rabi
frequency is found in QD inside Si sNW, putting this setup in
favor of others for the creation of the hole spin qubit. Finally,
we studied strain effects in the hole spin qubit inside Ge/Si
core/shell nanowire QD. Our numerical analysis shows that
strain diminishes the Rabi frequency. Whereas in cNW QD
this effect is not so pronounced, a strong influence of strain
in Ge/Si core/shell sNW QD is observed, such that it can
be optimized with the appropriate tuning of the electric field
strength.

In the end, a few general remarks should be addressed.
First, our results are in line with the recent experimental
work [52], assuming the same magnetic field strength. Also,
although our work was focused on the Rabi frequency be-
tween the two lowest (qubit) states, at nonzero temperature
due to thermal activation, the electric-field-induced transition
between different states can be achieved. Although the de-
tailed research is beyond the scope of this work, it should
be stated that the electrical control of the Rabi frequency is
possible only with states that were initially degenerate at zero
magnetic field, whereas between energetically divided states
at B = 0, the Rabi frequency is only weakly sensitive on the
strength of the electric field. Also, in this work, we assumed
hard-wall confinement. According to the authors of [12], a
much stronger Rabi frequency is expected for the smooth-wall
confinement than in the setup studied within this work. In
future works, it would be interesting to investigate the role
of different regular shapes of nanotubes, having the symme-
try Cnv, where n corresponds to the order of the rotational
axis. Since simpler regular shapes, such as equilateral triangle
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FIG. 7. (upper panel) In the case of the Si sNW QD hole spin
qubit, a comparison between the numerical results and the approxi-
mation of 	R using the perturbation theory [Eq. (A6)] is given. Note

(n = 3), hexagon (n = 6), octagon (n = 8) have a similar
order of the rotational axis to the square profile (n = 4) and
much lower n than the circular profile (n = ∞), it is to be
expected that the results in such geometries should be more
similar to the results for the square profile.
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APPENDIX: RABI FREQUENCY BASED ON FIRST-ORDER
PERTURBATION THEORY

Here, we present the estimate of the Rabi frequency based
on the first-order perturbation theory, which can be used the
gain more insight into the difference between the cNW and
sNW QD hole spin qubits.

Following the approach described in [50], we divide the
QD Hamiltonian H into two parts: the first one H1 collects
the LK Hamiltonian [Eqs. (2) or (4)] at zero magnetic field,
potential V , and DRSOI (6),

H1 = Hxyz/rot
LK (B = 0) + V + HDRSOI, (A1)

while the second part, H2, collects the magnetic field de-
pendent parts consisting on the Zeeman term (7) and the
magnetic-field-dependent part of the LK Hamiltonian

H2 = HZ + (
Hxyz/rot

LK (B) − Hxyz/rot
LK (B = 0)

)
. (A2)

In the zero field, the eigenvalues En of H1, with the corre-
sponding eigenstates |n, σ =↑↓〉, are two-fold degenerate. We
can define the corresponding qubit states |±0〉 from the hole
ground states |0,±〉 as an eigenvalues of the magnetic-field
Hamiltonian H2 (we neglect terms proportional to B2 since
the numerical results in the main text show that the Rabi fre-
quency is linearly dependent on the magnetic-field strength),

(〈0,+|H2|0,+〉 〈0,+|H2|0,−〉
〈0,−|H2|0,+〉 〈0,−|H2|0,−〉

)
. (A3)

Using the first-order correction of the qubit states

|+1〉 = |+0〉 +
∑

n 	=0,σ

〈n, σ |H2|+0〉
E0 − En

, (A4)

|−1〉 = |−0〉 +
∑

n 	=0,σ

〈n, σ |H2|−0〉
E0 − En

, (A5)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
that in the perturbative derivation of 	R only two states that were
initially degenerate at B = 0 were included. (middle panel) For the Si
cNW QD hole spin qubit, comparison between the numerical results
(dotted line) and the pertubative estimate of Rabi frequency results
obtained using two states in the pertubative expansion (dashed-dotted
line) is given. (lower panel) Comparison of 	R for cNWs with half
diameters 5 nm (used in all previous plots) and 5.6419 nm. In all
calculations, we assumed that magnetic field Bx is equal to 0.1 T and
have used the LK Hamiltonian Hxyz

LK .
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the Rabi frequency can be defined as

	R = e
Enw

h

∣∣∣ ∑
n 	=0,σ

1

E0 − En

(〈+0|z|nσ 〉〈nσ |H2|−0〉

+〈+0|H2|nσ 〉〈nσ |z|−0〉
)∣∣∣. (A6)

Using the previous relation, the role of different contributions
to the Rabi frequency can be determined: the role of energy
separation at zero B, the role of the dipole term |〈±0|z|nσ 〉|
and the role of the magnetic-field-induced transition matrix
elements of the form |〈±0|H2|nσ 〉|. Also, it is instructive to
look at the minimal number of states needed to satisfactorily
describe the Rabi frequency.

In the case of the sNW QDs only two states, having the
same energy E1 at B = 0, should be included in the perturba-
tive expansion to obtain very good approximation of the Rabi
frequency. This is illustrated in the upper panel of Fig. 7 on the
example of Si, using the LK Hamiltonian Hxyz

LK . With the help
of the same LK Hamiltonian, in the middle panel of Fig. 7
we present the perturbative result in the case of Si cNW QD
hole spin qubit, using the two states (dashed-dotted line) in
the perturbative expansion, with the corresponding degenerate
energy (at B = 0) E1. Although the fit is not ideal (we obtain
the converged results by taking six states in the perturbative
expansion), it can be used to qualitatively compare the role of
the nanotube profile and to identify the term responsible for
the significant difference between Rabi frequencies.

To this end, we will compare the the perturbative results
in the cNW and sNW case based on two-state perturbative
expansion. In the cNW case, the energy E1 − E0 is weakly
dependent on the electric field strength, varying the most 10%

below 4.8 meV. The similar happens to the dipole term, which
is almost constant and roughly equal to 3.7 nm. On the other
hand, the magnetic-field-induced transition matrix element is
strongly dependent on the electric field strength Ex and, since
the other two terms are weakly dependent on Ex, it follows
almost the same dependence on the electric field as 	R.

The similar influence of the three terms can be traced in
the sNW QD hole spin qubit also. The weak dependence of
energy separation on Ex is observed, changing at the most 5%
above/below 3 meV. In addition to that, the value of the dipole
term was almost constant and proportional to 3.5 nm, while
the magnetic-field-induced transition matrix element followed
the electric field dependence of 	R.

Thus, much stronger Rabi frequency in the sNW QD case,
when compared to the cNW QD, is due to much stronger
magnetic-field-induced transition rate. The same conclusions
are valid in the case of the LH Hamiltonian, H rot

LK, confirm-
ing the dominant role of magnetic-field-induced transitions in
determining the electric field dependence of 	R.

In the end, it remains an open question whether the dif-
ferent cross-sectional areas of the studied sNW and cNW can
be responsible for obtaining different 	R. To this end, in the
lower panel of Fig. 7 we present the results for cNWs with
R = 5 nm (old results) and R = 5.6419 nm, where the last
one corresponds to the same cross-sectional area as sNW. As
is obvious from the plot, this difference is small, confirming
that cross-section size plays no major role in the discrepancy
between the two geometries. In the linear regime, 	R(R =
5.6419 nm) > 	R(R = 5 nm), while for strong electric fields
the opposite happens. This conclusion is consistent with [53],
where the Rashba hole effect is discussed for Si and Ge
nanowires, being the dominant mechanism for the manipu-
lation between the qubit states.
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[30] C. Kloeffel, M. J. Rančić, and D. Loss, Phys. Rev. B 97, 235422
(2018).

[31] F. N. M. Froning, M. K. Rehmann, J. Ridderbos, M. Brauns,
F. A. Zwanenburg, A. Li, E. P. A. M. Bakkers, D. M. Zumbühl,
and F. R. Braakman, Appl. Phys. Lett. 113, 073102 (2018).

[32] F. N. M. Froning, M. J. Rančić, B. Hetényi, S. Bosco, M. K.
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