
PHYSICAL REVIEW B 104, 235156 (2021)

Skyrmion-driven topological Hall effect in a Shastry-Sutherland magnet
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The Shastry-Sutherland model and its generalizations have been shown to capture emergent complex magnetic
properties from geometric frustration in several quasi-two-dimensional quantum magnets. Using an sd exchange
model, we show here that metallic Shastry-Sutherland magnets can exhibit a topological Hall effect driven by
magnetic skyrmions under realistic conditions. The magnetic properties are modeled with competing symmetric
Heisenberg and asymmetric Dzyaloshinskii-Moriya exchange interactions, while a coupling between the spins
of the itinerant electrons and the localized moments describes the magnetotransport behavior. Our results,
employing complementary Monte Carlo simulations and a novel machine learning analysis to investigate
the magnetic phases, provide evidence for field-driven skyrmion crystal formation for an extended range of
Hamiltonian parameters. By constructing an effective tight-binding model of conduction electrons coupled to
the skyrmion lattice, we clearly demonstrate the appearance of the topological Hall effect. We further elaborate
on the effects of finite temperatures on both magnetic and magnetotransport properties.
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I. INTRODUCTION

With the experimental observation of a skyrmion lattice
in three-dimensional helical magnets MnSi [1], Fe1−xCoxSi
[2], and thin films of FeGe [3], significant attention has been
paid to the systematic study of noncollinear magnetic states
and associated magnetoelectric phenomena, where magnetic
skyrmions play a prominent role [4–8]. Analogous to a topo-
logically protected field-theoretical solution due to Skyrme
[9,10] the stability of this particle-like spin texture is guaran-
teed by topological arguments, making it immune to smooth
perturbations [11–14]. In chiral magnets, skyrmions are sta-
bilized due to a delicate interplay between direct exchange,
favoring collinear ordering, and asymmetric exchange known
as Dzyaloshinskii-Moriya interaction (DMI) that results in
spin canting [4,5]. Theoretical studies, including Monte Carlo
(MC) simulations, based on two-dimensional classical spin
models unambiguously reveal the formation of a skyrmion
crystal in these systems [15–21].

When it comes to emergent electrodynamics, a spin-
polarized current flowing in a helical magnet is predicted to
induce a torque that would produce new kinds of magnetic ex-
citations [22]. Under strong magnetoelectric coupling charge
carriers moving through a noncoplanar magnetic texture are
known to accumulate a finite Berry phase and were shown to
exhibit the topological Hall effect [23–29]. The propagating
electrons experience a torque that results in alignment of their
spins with the local moment [30–34]. The gauge flux serves as
an effective magnetic field acting on the electrons and maps
the interaction of the electron spin and local moments to a
magnetic field coupled to the charge of the itinerant electrons,
analogous to quantum Hall systems on a lattice. The resulting

Lorentz force drives a transverse current and can in its turn be
used to detect the presence of skyrmions [22,34].

In this paper, we address the formation of a magnetic
skyrmion crystal within the Heisenberg model of classical
spins on the Shastry-Sutherland lattice (SSL) [35,36]. For this,
we use large-scale MC simulations based on the METROPOLIS

algorithm complemented by the machine learning (ML) ap-
proach as implemented in Ref. [37] to determine the magnetic
phase diagram. In the following, we consider a tight-binding
model of the itinerant electrons on a skyrmion crystal to probe
the topological Hall effect and subsequently examine its de-
pendence with respect to the temperature, chemical potential,
and applied magnetic field.

II. MODEL

We base our analysis on an sd-type exchange model of
a two-dimensional magnet on the SSL, as schematically de-
picted in Fig. 1(a). This model is defined by the Hamiltonian

H = −t
∑
〈i, j〉

c†
i c j − μ

∑
i

c†
i ci − JK

∑
i

Si · si + Hd , (1)

with JK specifying the strength of the interaction between
localized magnetic moments Si and spins of conduction elec-
trons si = c†

i σci, linked to a vector of Pauli matrices σ =
(σx, σy, σz ). In Eq. (1), the summation over nearest neighbors
〈i, j〉 is assumed; the parameter t stands for the hopping
energy, μ corresponds to the chemical potential, and ci =
(ci↑, ci↓) is the annihilation operator of the conduction elec-
trons at the site ri.
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FIG. 1. (a) A schematic of a two-dimensional magnet on the Shastry-Sutherland lattice (SSL). The localized magnetic moments are
described by the classical Heisenberg Hamiltonian (2) that includes direct exchange of the coupling strength J along the edges (dashed
lines) and J ′ along diagonals (solid lines), as well as the Dzyaloshinskii-Moriya interaction (DMI) as shown by arrows. (b) Real-space spin
textures are obtained by varying the external magnetic field B and temperature T , based on machine learning optimization (ML) and Monte
Carlo simulations (MC) at fixed J ′ = −J and D = 0.5J . The in-plane (Sx

i , Sy
i ) components of localized magnetic moments are depicted by

black arrows in the xy plane, whereas the out-of-plane Sz
i components are visualized with the color bar. In the insets, corresponding static

spin structure factors S(Q) (see Appendix A for details) are shown that can be used to probe magnetic long-range ordering. Indeed, one peak
in field-polarized phase, two peaks in a spin-spiral configuration, and seven peaks in a skyrmion crystal are clearly distinguishable. (c) The
emergent spin chirality shown in terms of the external magnetic field and temperature evaluated from MC simulations. In full agreement with
real-space configurations, chirality is zero in a spin-spiral and field-polarized states, whereas it is finite in a skyrmion crystal. Computational
details of finite-temperature calculations are included in Appendix B.

The localized magnetic moments are approximated by
classical spins with competing symmetric and asymmetric
pairwise couplings

Hd = −
∑
〈i, j〉

Ji jSi · S j −
∑
〈i, j〉

Di j · (Si × S j ) − B
∑

i

Sz
i , (2)

where the first term represents the standard Heisenberg ex-
change, with Ji j = J along the edges and Ji j = J ′ along the
diagonal bonds; see Fig. 1(a). The second term defines the
Dzyaloshinskii-Moriya interaction specified by Di j = D(ẑ ×
ri j ), where D is the corresponding coupling strength and a unit
vector ri j connects ith and jth sites [38]. The last term is the
Zeeman coupling to an external magnetic field B aligned with
ẑ axis. In the following, we assume that Si is a classical vector
field of unit length |Si| = 1.

III. METHODOLOGY

To explore the magnetic phases of the Hamiltonian (2) and
associated real-space magnetic configurations, we used the
standard machinery of classical MC based on the METROPO-
LIS algorithm. We simulate a finite-sized SSL of dimensions
L × L (L = 32, 40, and 48) with periodic boundary con-

ditions. Efficient thermalization is ensured by simulated
annealing [39–42] where the simulation is started from a
random spin configuration corresponding to high temperature
Thigh ∼ 2J , followed by a reduction of temperature in steps
of �T = 0.01J until the lowest temperature Tlow = 0.01J is
reached. At each temperature, we use 5 × 105 MC sweeps
for equilibration, and 5 × 105 MC sweeps (in steps of 5000
MC sweeps) for the measurement of physical observable.
Metastable states at the low-temperature regime, near the
phase boundaries are avoided by starting the simulation from
a variational ground state and then increasing the temperature
using the MC scheme.

The MC results for magnetic ground-state phases are sup-
plemented by a novel machine learning (ML) optimization
approach that was recently proposed to probe the ground-state
spin configurations in Ref. [37]. Notably, the technique has
not been applied to geometrically frustrated systems, such as
SSL, so far. Followed by a brief description of the method,
we make use of the approach to validate MC simulations.
The ML method consists of training a fully connected neural
network with no hidden layers for searching the ground states
of magnetic systems. On each iteration of the training loop,
we generate a batch X of size nb of n-dimensional standard
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normal random vectors and feed it to the neural network. The
input features are then decoded using formula Y = XW + C,
where W is the (n × 3m)-dimensional weights matrix, C is
the (1 × 3m)-dimensional bias and m = L × L is the total
number of lattice sites. The (nb × 3m)-dimensional matrix Y
of output features is then reshaped to form a batch of size nb

of m three-dimensional spins configurations (S1, . . . , Sm) on
a lattice, while the normalization of output spins Si to unit
vectors serves as an activation function.

Next, we use the output spins for calculating the batch-
averaged energy density that represents a penalty function to
be minimized

〈ε〉nb = − 1

m

m∑
i=1

〈
Si · heff

i

〉
nb

, (3)

where heff
i = −∂H/∂Si is the effective field determined by

the model Hamiltonian (2). The effective field is calcu-
lated using two-dimensional convolution of three-dimensional
spins configuration on a square L × L lattice with the
(3 × 3 × 3 × 3)-dimensional kernel that describes all the in-
teractions of the spin Si with its nearest and next-nearest
neighbors. The neural network weights are trained to mini-
mize (3). In our simulations, we set the hyperparameters equal
to nb = 1024 and n = 64, and we perform 105 steps of the
Adam optimizer [43] for training the weights with the learning
rate α = 10−4. Upon completion of the training process, the
neural network maps input features into the ground-state spins
configuration. We implement the method using TENSORFLOW

library for ML [44] and perform our calculations on GPU.

IV. MAGNETIC PHASE DIAGRAM

Real-space magnetic configurations obtained by both MC
simulations and ML optimization are shown in Fig. 1(b).
The interplay between symmetric and asymmetric exchange
interactions results in a spin-spiral configuration being sta-
bilized at B = 0. Using standard nomenclature, this is a 1-Q
phase, where the static spin structure factor S (Q) in the inset
of Fig. 1(b) shows prominent peaks at the symmetry-related
momenta Qsp = (0,±π/2). Upon increasing the external
magnetic field this state evolves to a skyrmion lattice for
0.075J < B < 0.45J , where S (Q) exhibits the characteristic
six peaks at QSk = (0,±π/2), (±π/4,±π/4), underscoring
its 3-Q nature [the additional peak at Q = (0, 0) is a trivial one
reflecting the finite net magnetization due to the applied field].
Finally, at high fields (B � 0.45J), the ground state evolves
to a fully spin-polarized state. We note that the ground-state
spin configurations from both MC and ML approaches dis-
play excellent agreement, thus highlighting the accuracy of
the new ML approach. Raising the temperature randomizes
spin orientation owing to thermal fluctuations by weakening
and eventually suppressing the magnetic order. As there is no
in-plane anisotropy in our model, the configurations shown in
Fig. 1(b) have a companion configuration of the same energy
that can be obtained by rotating all the spins by π/2 about the
ẑ axis.

Further insight into the nature of magnetic ordering is
obtained from the static spin chirality, which measures the de-
gree of noncoplanarity of the spin textures [45] (see Appendix

A for more details). The low-field spiral phase represents a
noncollinear though coplanar spin configuration with vanish-
ing spin chirality, shown in Fig. 1(c), that is dominated by
thermal fluctuations. Once a skyrmion crystal is stabilized
at 0.075J < B < 0.45J , the spin chirality sharply increases
to a larger value, confirming its noncoplanar ordering. The
spin chirality remains almost unchanged in a skyrmion crys-
tal. With increasing temperature, the skyrmion crystal melts
into a skyrmion liquid with a corresponding reduction in the
chirality. Finally, at high temperatures, the chirality vanishes
completely in the paramagnetic phase. At higher magnetic
fields, the increase of spin polarization results in spin chi-
rality going down. Eventually, spin chirality drops to zero at
B/J � 0.45 since the spins are aligned with the direction of a
magnetic field and noncoplanarity is lost. Note that the results
of our numerical simulations are presented for J ′ = −J and
D = 0.5J . A qualitatively similar behavior was observed for
different values of J , J ′, and D characterizing the exchange
coupling strength along the edges and diagonals of SSL, as
well as DMI, respectively.

V. TOPOLOGICAL HALL EFFECT

In metallic magnets, the electronic transport properties are
strongly modified by coupling to the underlying magnetic
ordering. For simplicity, we consider a one-band model of
itinerant electrons coupled to the local moments via an sd-
type exchange interaction as specified by the Hamiltonian (1).
In practice, the latter can be realized in TmB4 that represents
alternating-layer crystalline structure, where the planes of
thulium atoms are positioned in the middle between the planes
of boron atoms. Interestingly, the sublattice of Tm atoms can
be equivalently represented by the Shastry-Sutherland model
with perfect squares and almost equilateral triangles, such that
localized electrons with a large magnetic moments interact
with conduction electrons in boron-derived bands [46]. We
focus on the skyrmion crystal where the effect on magneto-
transport is most dramatic. In magnetic metals, in addition to
the ordinary Hall resistance that is proportional to the applied
magnetic field, anomalous and topological terms are present.
The anomalous Hall effect appears in metals with a net mag-
netization due to spin-orbit coupling, while the topological
Hall effect (THE) arises due to the real-space Berry phase
that an electron moving through a noncoplanar spin texture
acquires. In the following, we focus on the contribution to
the transverse conductivity due to a skyrmion crystal that
exhibits THE due to finite chirality and resulting in the Berry
phase. In contrast, the chirality vanishes in the spiral and fully
polarized phases and hence no THE is observed. In addition
to the zero-temperature transport, we also explore the effects
of finite temperature on the THE.

In the strong coupling limit JK � t , the effective magnetic
field produced by the magnetic ordering couples directly to
the charge of the electron, analogous to quantum Hall systems
[30,31,33,34]. The electronic properties can be described by
an effective tight-binding model with a complex hopping ma-
trix element whose phase depends on the relative orientation
of the local moments as discussed in Appendix C. The energy
spectrum consists of bands grouped into a low-energy and
high-energy sector with spins aligned parallel and antiparallel
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FIG. 2. (a) Density of states of the itinerant electrons coupled to a skyrmion crystal as specified by the Hamiltonian (1). Note that the
hopping parameters in Eq. (1) along the edges and diagonals are chosen to be equal, and the energy E is measured in the units of t . The
transverse conductivity σxy, evaluated with the Kubo formula (4) at B/J = 0.3, features the topological Hall effect in a noncoplanar magnetic
background on varying the chemical potential (b) and temperature (c) with the red vertical arrows in (a) being a guide for the eye. Lines
represent the conductivity averaged over multiple MC simulations, while the shaded areas represent the corresponding errors.

to the spins in a skyrmion, respectively, and separated by en-
ergy ∼JK . The distribution of the bands depends on the degree
of frustration, t ′/t (see Appendix C for details). For the results
shown here, we chose t ′/t = 1, in accordance with the ratio
of the corresponding Heisenberg exchange interactions J ′/J .
The bands are gapped and carry a finite Chern numbers. The
resulting density of states (DOS) is shown in Fig. 2(a)—the
sequence of the minima confirms the presence of finite gaps
between successive bands in the spectrum.

To determine the Hall conductivity, we use the Kubo for-
mula

σxy = ie2h̄

N

∑
σ

∑
m 	=n

fn − fm

Em − En

〈n|vx|m〉〈m|vy|n〉
En − Em + iη

, (4)

where indices m and n represent the sum over the energy lev-
els, N is the total number of sites, fk denotes the Fermi-Dirac
distribution for the energy Ek , specified by the single-particle
state |k〉. Note that the small broadening η, introduced to
Eq. (4), is associated with the conduction electrons scattering
off the localized magnetic moments. The matrix elements of
the velocity operators v̂x and v̂y are obtained using the equi-
librium MC spin configuration. We diagonalize the effective
tight-binding Hamiltonian (N × N) to obtain its eigenspec-
trum and using Eq. (4), we calculate the Hall conductivity. We
further use the ensemble of equilibrium MC configurations at
a specific temperature and chemical potential to calculate the
average Hall conductivity and its variance.

The behavior of the topological contribution to the trans-
verse conductivity σxy, with varying chemical potential in the
skyrmion lattice state is shown in Fig. 2(b) for three different
temperatures, illustrating the effect of strong magnetoelec-
tric coupling (σxy vanishes identically in the spiral and fully
polarized states). At T = 0.01J , the transport properties are
mainly determined by electron states below the Fermi energy.
The noncoplanarity of the spin texture in a skyrmion crystal
phase results in a finite Berry phase being acquired by the
conduction electrons which shows up as a finite THE. Similar
to the quantum Hall effect, in a skyrmion crystal phase, trans-
verse conductivity exhibits a sequence of quantized plateaus
corresponding to the filling of successive (gapped) electron

energy bands with finite Chern numbers. With increasing
chemical potential, the value of σxy decreases from zero in
steps of e2/h̄, in accordance with the Chern number C = −1
of the low-energy sector. However, in contrast to quantum
Hall systems with flat electron energy bands, one finds that
the conductivity changes continuously, yet nonmonotonically
between the plateaus, which reflects the finite dispersion of the
energy bands. At small, but finite temperatures, the chemical
potential dependence retains its qualitative behavior, but the
plateaus get washed out. Subsequent raising of the temper-
ature leads to the randomization of the spins and vanishing
of net chirality, which smears out the effect. The effect of
temperature on THE is further illustrated in Fig. 2(c) where
we show the evolution of σxy with temperature at fixed μ.
The magnitude of σxy decreases monotonically with T and
vanishes in the paramagnetic phase. It should be noted that
the quantization of the Hall plateaus is most pronounced for
skyrmions with small radii where the lower bands are well
separated. For larger skyrmions, the density of the bands
increases and the energy extent of the conductivity plateaus
decreases proportionately as does the energy separation be-
tween successive plateaus. This makes it difficult to resolve
them in numerical simulations owing to finite-size effects and
fluctuations.

VI. CONCLUSION

In this paper, we discussed the THE on an SSL due to non-
coplanar magnetic texture. We provided a detailed analysis of
magnetic phase diagram for a Heisenberg model of classical
spins based on MC simulations and ML optimization, includ-
ing a proper treatment of temperature effects. Our numerical
findings reveal the formation of a skyrmion crystal on an
SSL, which, accompanied with the calculations of transport
of conduction electrons, allow us to address the THE. De-
spite its simplicity, such a model makes it possible to capture
relevant experimental signatures of the phenomenon [47,48].
We expect that our results will be crucial in understanding
experimental observation and designing new experiments to
realize topological magnetotransport properties in metallic
Shastry-Sutherland magnets.
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FIG. 3. Magnetization M and spin-chirality χ calculated from
MC and ML spin configurations as a function of external magnetic
field.
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APPENDIX A: CHARACTERIZING MAGNETIC
GROUND-STATE PHASES

In Sec. IV, to characterize the magnetic phases, we calcu-
late the magnetization, spin chirality, and static spin structure
factor. The net magnetization per site is defined as

M = 1

N

〈∑
i

Si

〉
, (A1)

where N is the total number of spins on the SSL and 〈. . .〉 is
the average over multiple MC simulations or over the batch
of size nb for ML optimization. The magnetization increases

continuously with increasing the field from zero to full sat-
uration (B/J ∼ 0.45) as seen in the upper panel of Fig. 3.
However, the magnetization increase in the different phases
exhibits distinct characteristics that distinguishes the phases.
Importantly, the MC results for the lowest temperature match
well with the ML optimization except close to the phase
boundaries, underscoring the validity of the new approach.

The static spin chirality measures the degree of noncopla-
narity of the spin configurations and is defined as

χ = 1

4πN

〈∑
�

Si · (S j × Sk )

〉
,

where the triple product of the spins is taken over triangular
plaquettes defined by the diagonal bonds. Chirality presents
an important defining order parameter in the study of complex
spin textures as it provides a direct indicator of noncoplanarity
of the underlying magnetic order. For the present problem,
χ = 0 in the spin-spiral phase confirming its coplanar struc-
ture, and rapidly rises to a finite value at the field-driven
transition to the skyrmion crystal phase, reflecting the non-
coplanarity of the magnetic texture. It should be noted that
the chirality remains roughly constant in the skyrmion phase
for different magnetic fields, whereas at B/J � 0.45, chirality
goes down to zero in the collinear field-polarized state. The
results from both MC and ML simulations for χ with varying
B are shown in the lower panel of Fig. 3. As with the magneti-
zation, the data from the two approaches agree well except in
the vicinity of the phase boundaries.

The static spin structure factor is defined as the Fourier
transform of the spin-spin correlation

S (Q) = 1

N2

∑
i, j

〈Si · S j〉eiQ·(ri−r j ),

where ri specifies the position of the ith lattice site. The
spin structure factor quantifies long-range magnetic order via
peaks in the momentum space Q = (Qx, Qy), shown in Fig. 4.

When the magnetic field is relatively weak the system is in
the noncollinear spin-spiral state; S (Q) has two distinguish-
able peaks that are related by symmetry and hence the state
is identified by a single wave vector (1-Q state). Increasing
the field strength results in a transition to the skyrmion crystal
phase; S (Q) exhibits the distinct six-peak structure charac-
teristic of the skyrmion state. The six peaks represent three
sets of symmetry-related pairs and the Skyrmion phase can be

FIG. 4. Static spin structure factor at B = 0 (a spin-spiral phase), B = 0.3J (a skyrmion crystal), and B = 0.6J (a field-polarized state).
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FIG. 5. Behavior of the peak height of the static spin structure factor components; Sxy(Q) (transverse) and Sz(Q) (longitudinal) for different
magnetic phases as a function of temperature.

considered as a linear superposition of three spiral phases (3-
Q state). There is a trivial peak at Q = (0, 0) that reflects a net
magnetization due to the applied field. At stronger magnetic
fields, the system has a tendency towards the formation of
spin-polarized ferromagnetic phase; S (Q) has only one peak
at Q = 0.

APPENDIX B: FINITE-TEMPERATURE TRANSITIONS

Both the phases of interest, a spin-spiral and skyrmion
crystal, extend to finite temperatures. With increasing tem-
peratures, the spins are randomized by thermal fluctuations,
which eventually drive a transition to the paramagnetic phase,
which can be probed through the finite-temperature MC sim-
ulations. The transition to the paramagnetic phase is most
conveniently studied through the evolution of the peak height
in static structure factors in the respective phases. Figure 5
shows the simulation results for the temperature dependence
of the height of the structure factor peak in the spiral phase and
one of the peaks in the skyrmion crystal phase. Data for both
the transverse Sxy(Q) and longitudinal Sz(Q) components of
the static structure factor are shown as they yield comple-

mentary information. The strength of the structure factor peak
decreases and eventually vanishes reflecting the suppression
of long-range order. For the spiral phase, there is a direct
transition to the paramagnetic phase. The skyrmion crystal,
on the other hand, melts to form a skyrmion liquid. While the
periodic arrangement of the skyrmions is lost, the individual
skyrmions maintain their noncoplanar structure. This is re-
flected in the nonvanishing of the spin chirality in Fig. 1(c).
Thermal fluctuations reduce the noncoplanar ordering and
eventually at a sufficiently high temperature, the paramagnetic
phase is reached. The inset shows the finite-size dependence
of the structure factor peaks in both the phases and confirms
the convergence of the data to the thermodynamic limit.

APPENDIX C: SKYRMION BAND STRUCTURE

In the limit of JK � t , the electron spins are completely
aligned with the local moments and the Hamiltonian (1) re-
duces to an effective tight-binding model

He = −
∑

〈i, j〉,σ
t eff
i j (d†

i d j + H.c.), (C1)

FIG. 6. Band structure of the conduction electrons on a skyrmion crystal background. The bands, drawn in blue, have Chern number
C = −1, whereas the rest are marked with different colors (the color bar to the right shows their particular values).
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where

t eff
i j = teiai j cos

θi j

2
, (C2)

is the effective hopping matrix for the spin-parallel electrons
between sites i and j and

ai j = arctan
− sin(φi − φ j )

cos(φi − φ j ) + cot θi
2 cot θ j

2

(C3)

is the phase factor, while θi j stands for the angle difference
between two localized spins Si and S j . The spin antiparallel

electrons are described by a similar effective tight-binding
model with a different t eff

i j and the two sectors are completely
decoupled. The effective band structure is shown in Fig. 6 for
three representative values of the degree of frustration t ′/t .
We observe that the distribution of bands depends on this
parameter, but share some common features. The bands are
gapped and carry finite Chern numbers. In contrast to quantum
Hall plateaus, the bands are not completely flat and have finite
dispersion. Moreover, the Chern numbers for the bands are
not restricted to ±1, but take multiple values, as indicated in
Fig. 6. This is characteristic of a skyrmion crystal phase and
results in the observed behavior of the transverse conductivity.
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