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The electron-boson spectral density (EBSD) function can be obtained from the measured optical scattering
rate by solving a generalized Allen formula, which relates the two quantities with an integral equation and is
an inversion problem. Thus far, numerical approaches, such as the maximum entropy method (MEM) and the
least squares fitting method, have been applied for solving the generalized Allen formula. Here, we developed a
method to obtain the EBSD functions from the optical scattering rate using a machine learning approach (MLA).
We found that the MLA is more robust against random noise compared with the MEM. We applied the developed
MLA to experimentally measured optical scattering rates and obtained reliable EBSD functions in terms of their
shapes including the amplitudes. We expect that the MLA can be a useful and rapid method for solving other
inversion problems, which may contain random noise.
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I. INTRODUCTION

Electron-phonon spectral density (EPSD) function
[α2F (ω)] is a very important physical quantity for
understanding superconductivity in the conventional
Bardeen-Cooper-Schrieffer (BCS) superconductors [1].
Here, α represents the coupling constant between an itinerant
electron and the force-mediating phonon and F (ω) represents
the phonon spectrum. Therefore, this quantity can carry
information on the pairing interaction for forming the
Cooper pairs. The EPSD function of Pb is obtained by using
experimental techniques including optical spectroscopy and a
theoretical method [2–4]. The EPSD functions of Pb obtained
by using different experimental spectroscopic techniques and
theoretical method agree with each other and provide the
correct superconducting transition temperature (Tc) of Pb,
indicating that the phonons play the role of pairing glue for
forming the Cooper pairs [5].

To understand superconductivity in unconventional cop-
per oxide superconductors (cuprates), many researchers have
made considerable efforts to extract the corresponding pair-
ing electron-boson spectral density (EBSD) function from
experimentally measured spectra using various experimental
spectroscopic techniques including optical spectroscopy [6].
The resulting EBSD functions showed generic temperature-
and doping-dependent properties; at high temperatures above
Tc, the EBSD functions show a broad spectrum of bosonic
excitations, which extended over a wide spectral range above
400 meV, and evolved into a peak in the 30–60 meV re-
gion and a featureless high-frequency background [6] at low
temperatures near or below Tc. This behavior is consistent
with that of the spin fluctuation spectrum measured by the
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inelastic neutron scattering experiment. In particular, the
EBSD functions obtained from measured optical spectra are
crucial, because optical spectroscopy can be used to investi-
gate almost all cuprate systems [7–15]. Optical spectroscopy
can also be a bridge experimental technique between spec-
troscopic experimental techniques such as angle-resolved
photoemission spectroscopy (ARPES), scanning tunneling
microscopy (STM), and inelastic neutron scattering (INS)
because it is not very surface sensitive and provides a reliable
spectrum for a small amount of material.

Various optical properties, including optical conductivity,
can be obtained from measured reflectance spectra of cuprates
[16,17]. Information on the pairing interaction for forming
the Cooper pairs can be encoded in the optical conductiv-
ity of cuprates via the band renormalization caused by the
strong correlations between electrons. The extended Drude
model formalism [18–20] has been used to decode the infor-
mation from the measured optical conductivity. The optical
self-energy defined by the extended Drude model formalism
contains information on the correlations between electrons
[20]. The optical self-energy can be described in terms of
the EBSD function; these two quantities can be related via
so-called Allen formulas [21], which are integral equations.
Numerical methods, such as the least squares fitting method
or the maximum entropy method (MEM) [8,9,22], have been
used to obtain the EBSD function from a measured opti-
cal self-energy by solving this inversion problem. The least
squares fitting method is model dependent, whereas the MEM
is model independent. However, the amplitude of the EBSD
function obtained by using the MEM is not uniquely deter-
mined because experimental spectra naturally contain random
noise [23]; its amplitude increases as the fitting quality
improves. Therefore, the amplitude of the EBSD function ob-
tained by using the MEM may have uncertainty, which makes
it difficult to compare the EBSD functions obtained using
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different experimental techniques such as optical, tunneling,
ARPES, and inelastic neutron scattering. A recent study on the
analytic continuation problem, which is an inversion problem,
using machine learning showed that a machine-learning-based
approach provides a more accurate resulting spectrum than the
conventional MEM and is more robust against noise in terms
of peak positions and amplitude [24].

In this study, to solve the uncertainty problem in the am-
plitude of the EBSD function obtained by the MEM, we
developed a method to obtain EBSD functions from mea-
sured optical spectra using machine learning. We generated
110 000 optical scattering rates with model EBSD functions
consisting of a Gaussian peak, a sharp mode, and a broad
Millis-Monien-Pines (MMP) mode [25] using a generalized
Allen formula, which was developed by Shulga et al. [26] and
could be used for optical spectra at finite temperatures and
with a constant density of states. We also included random
noise in the optical scattering rates to make them more realis-
tic. We used 100 000 data for the training and the remaining
10 000 data for the evaluations. We found that the developed
machine learning approach (MLA) is quite robust against
random noise. To further verify our MLA, we applied it to
existing measured optical scattering rates at 100 K for one op-
timally doped (Tc = 96 K) and two overdoped (Tc = 82 K and
60 K) Bi2Sr2CaCu2O8+δ (Bi-2212) samples. We were able to
obtain EBSD functions with reasonable amplitudes from the
measured spectra of Bi-2212. We also found that the MLA
depends on the training data set (or model EBSD functions);
this issue is discussed in the Supplemental Material [27].

II. MACHINE LEARNING APPROACH FOR INVERSION
PROBLEMS

A successful MLA requires a training data set, that is rich
enough to account for data manifold, and a machine learning
model (e.g., a deep learning network), that is capable of learn-
ing meaningful features hidden in the training data set. Finally,
a well-trained model should produce a reasonable output for
a new data set, that has not been used in the training. Here,
we developed a MLA to solve the inverse problem of getting
the EBSD function I2χ (ω) from a measured optical scattering
rate 1/τ op(ω). Here, I is the coupling constant between an
itinerant electron and a force-mediating boson and χ (ω) is
the boson spectrum. The generalized Allen formulas can be
written in the following equation as

1/τ op(ω) = F (I2χ (ω)), (1)

where F (·) represents a forward (integral) operator. The
MLA learns to mimic its inverse operation F−1 : 1/τ op(ω) →
I2χ (ω), via the machine. Because the data space is huge in
this case due to discretization, it is hard to get a proper training
data set that could represent the data manifold of our problem
without expert domain knowledge. In this regard, the training
data sets can be a constraint for applications of the MLA.
Therefore, one needs to appropriately design a training data
set for his/her input data to be analyzed.

In general, the electron-boson spectral density function
[I2χ (ω)] of cuprates can be obtained from a measured
reflectance spectrum by using a well-established process
[22,28]. This process consists of a series of steps from

measured reflectance, through the optical conductivity, the
optical self-energy (or optical scattering rate), to the EBSD
function [28]. In this paper, we focus on the last step of
the process from the optical scattering rate [1/τ op(ω, T )] to
the EBSD function [I2χ (ω, T )] using one of the generalized
Allen formulas [26] as

1
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=

∫ ∞

0
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ω
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where T is the temperature and K (ω,�, T ) is the kernel,
which depends on the material phases [29]. The kernel in
Eq. (2) is known as Shulga’s kernel [26] and can be applied
to the optical spectrum at a finite temperature and with a
constant density of states. The integral Allen formula needs to
be solved through inversion methods to obtain the EBSD func-
tion from a measured optical scattering rate. As mentioned
previously, the model-dependent least squares fitting method
and the model-independent MEM method have been used to
numerically solve the integral equation [8,9,22]. In this study,
we developed a method to obtain the EBSD function from the
measured optical scattering rate via an MLA.

Our approach is based on the recent developments in ma-
chine learning, especially in the area of deep learning [30].
With the advent of big data and unprecedented computational
power, deep learning has been applied in various disciplines
in science and engineering and has achieved impressive suc-
cesses [31–33]. Deep learning utilizes multiple interconnected
layers, which allow for representing rich nonlinear models
[34]. With an ample amount of data, a well-trained deep learn-
ing network produces much more accurate and faster results
than any conventional approaches in a wide range of prob-
lems. For more detailed information on machine learning and
its application to physics, we refer the reader to the literature
[35].

For this study, we applied deep learning to solve Eq. (2).
Because our goal is to obtain the EBSD function [I2χ (ω, T )]
from the optical scattering rate [1/τ op(ω, T )], this can be
cast as an inverse problem. Owing to the ill posedness of the
inverse problem, its solution is well known to be sensitive
to noise, as demonstrated in the literature [23]. Some recent
studies have solved ill-posed inverse problems using deep
learning [36,37]; however, they are concerned with images
using convolutional neural networks (CNNs). We adopted the
long short-term memory (LSTM) layers [38] into our model
because our input [1/τ op(ω, T )] can be considered as sequen-
tial data and the LSTM network is best suited for such a case.
Whereas in a typical deep neural network with convolutional
layers the process passes through each layer only once, in the
LSTM the process is repeated before it goes to the next layer,
as marked with the black circular arrows in the hidden layers
of Fig. 1. We used three LSTM hidden layers for this study. In
the Supplemental Material [27], we show that the model with
the LSTM layers performs better than that with a CNN.
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FIG. 1. Schematic diagram of the neural network structure with long short-term memory (LSTM) layers for deep learning.

III. RESULTS AND DISCUSSIONS

The training data were generated using Eq. (2). They con-
sist of three columns: frequency, input data [1/τ op(ω, T )], and
output data [I2χ (ω, T )], where T = 100 K. To generate the
input data 1/τ op(ω, T ), we used a model output I2χ (ω, T ),
which consists of the following three terms:

I2χ (ω, T ) = Ap(T )√
2π [d (T )/2.35]

exp

{
− [ω − ωp(T )]2

2[d (T )/2.35]2

}

+ As(T )ω

ω4 + [ωs(T )]4
+ Am(T )ω

ω2 + [ωm(T )]2
, (3)

where the first term is a Gaussian peak located at ωp(T ) with
an amplitude of Ap(T ) and a width of d (T ) and the second and
third terms were previously used for analyzing underdoped
cuprates [14]. The third term is known as the MMP mode [25],
which was used for describing antiferromagnetic fluctuations.
The first and second terms are sharp components, whereas
the third one is a broad component. It is worth noting that
the model output I2χ (ω) depends on both temperature [23]
and doping [29]. We generated 110 000 data by systematically
changing all the parameters within certain ranges. The first
100 000 data were used for the training and the rest for the
validation in each iteration. We used the Adamax optimizer
[39], which is a stochastic gradient descent method and op-
timized on the basis of the square of the exponential value
of the slope. We also tried Adam [39] and Adadelta [40]
but found that Adamax provided the best result. The mean
square error (MSE) and the softplus function were used as the
loss and the activation functions, respectively, for the training
[41]. To make the input data [1/τ op(ω)] more realistic, we
added random noises with an amplitude of 2.5 meV. The train-
ing took approximately 19 h on an NVIDIA GeForce RTX
2070 Super graphics processing unit (GPU). The MSE of the
validation using the remaining 10 000 data was 8.6 × 10−5,
which indicates that the machine was well trained. It took
only ∼5 ms to obtain a solution with the trained model. We
also performed the training and validation processes using
the LSTM method with different ratios of validation (Nvalid)
to training (Ntrain) data sets (i.e., Nvalid/Ntrain) and obtained

similar results for each case (see the Supplemental Material
[27] for a detailed discussion).

In Fig. 2(a), we illustrate the three input data (solid lines)
and the corresponding data (dashed lines) reconstructed us-
ing the long short-term memory-machine learning approach
(LSTM-MLA). They agree well with each other. In Fig. 2(b),
we depict the resulting output I2χ (ω) (dashed lines) obtained
from the three input data 1/τ op(ω) using the LSTM-MLA and
the original I2χ (ω) (solid lines) used for generating the evalu-
ation data. Overall agreements are quite good. On the basis of
this evaluation, we concluded that the training was performed
well. We note that in the case of input 1, which contains a
sharp increase, the output 1 and the expected 1 exhibit small
disagreement near the peak, indicating that the sharp increase
in 1/τ op(ω) may not be sensitive enough to the shape of the
sharp peak in the model I2χ (ω). This is not associated with
random noise; the output I2χ (ω) for noise amplitudes of 0
and 2.5 meV are the same, as shown in Fig. 3(b).

Furthermore, we investigated the robustness of the result-
ing output I2χ (ω) obtained using the LSTM-MLA against
random noise. We additionally generated the input 1/τ op(ω)
(solid lines) with various amplitudes (from 0 up to 10 meV)
of random noise and the corresponding data (dashed lines)
reconstructed using the LSTM-MLA, as shown in Fig. 3(a).
The curves are progressively shifted by 50 meV from the
curve with no noise for clarity. We obtained the output I2χ (ω)
from the generated input 1/τ op(ω) using the LSTM-MLA.
In Fig. 3(b), we depict the output I2χ (ω) obtained from the
input data using the LSTM-MLA. We also show the expected
(or original) I2χ (ω) (a dashed line). The resulting output data
show almost no noise-level dependence; there are few changes
in the position, height, and shape of the peak, regardless of
the noise levels. But, if we closely investigate the differences,
the higher noise level gives more discrepancy compared with
the expected one. However, the overall shape of the output is
quite robust against random noise, which is in stark contrast to
the results obtained using the MEM [23] [also see Fig. 4(d)].
We further analyzed the EBSD functions obtained from in-
puts with different noise amplitudes using the LSTM-MLA.
We calculated the coupling constant (λ), which is defined
as λ ≡ 2

∫ ωc

0 d�[I2χ (�)/�], where ωc is a cutoff frequency.
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FIG. 2. Validation of machine learning. (a) Input data added
random noise with the amplitude of 2.5 meV (solid lines) and
the corresponding ones (dashed lines) reconstructed using the
long short-term memory machine learning approach (LSTM-MLA).
(b) Comparison of the I2χ (ω) (dashed line) obtained using the ma-
chine learning approach with the I2χ (ω) (solid lines) in the original
(or expected) data set.

Here, we used the cutoff frequency of 400 meV. We also
calculated the logarithmically averaged frequency, which is
defined as ωln ≡ exp {(2/λ)

∫ ωc

0 d� ln � [I2χ (�)/�]}. These
two quantities are important to estimate the superconducting
transition temperature [1] and were reported to be robust to
fitting quality [23]. The calculated λ and ωln from the obtained
I2χ (ω) using the LSTM-MLA were shown in the inset of
Fig. 3(b). Both λ and ωln showed small noise-amplitude de-
pendencies up to 7.5 meV. For the case of the noise amplitude
of 10 meV, we observed some deviation from that of the no
noise case. From the further analyses above and an earlier
study [23], we could see that the two quantities (λ and ωln)
were not very sensitive to the amplitude (or correct shape)
of the EBSD function. However, the correct-shaped EBSD
function can be crucial to figure out the underlying supercon-
ducting pairing mechanism by comparing it with results of
other spectroscopic experimental techniques such as ARPES,
STM, and INS and for designing theoretical models.

Then, we applied the LSTM-MLA to the existing experi-
mentally measured optical spectra: the optical scattering rates
of one optimally doped (Tc = 96 K) and two overdoped (Tc =

amplitudes

FIG. 3. Robustness of the LSTM-MLA against random noises.
(a) The input 1/τ op(ω) with various amplitudes of random noise and
the corresponding reconstructed input 1/τ op(ω). (b) The resulting
output I2χ (ω) obtained from the input data with different levels of
random noise by using the LSTM-MLA. In the inset, noise amplitude
dependent coupling constant and logarithmically averaged frequency
are shown.

82 and 60 K) Bi-2212 samples at T = 100 K. We denote these
measured samples as OPT96, OD82, and OD60, respectively
[9]. Because these samples have negligible pseudogap, we
used the generalized Allen formula in Eq. (2) to analyze these
spectra. In Fig. 4(a), we depict the three measured optical
scattering rates at 100 K and the corresponding 1/τ op(ω)
spectra reconstructed using the developed LSTM-MLA. Fig-
ure 4(b) shows the resulting output EBSD functions obtained
from the three measured optical scattering rates using the
LSTM-MLA. In Fig. 4(c), we also show the EBSD func-
tions obtained from the optical scattering rates of the same
samples using the MEM, which were previously reported
in the literature [9]. The corresponding EBSD functions in
Figs. 4(b) and 4(c) look similar to each other. However, if
the fitting quality is improved in the MEM, the shape of
the EBSD function, including peak height, is significantly
changed, as shown in Fig. 4(d), where we illustrate the EBSD
functions obtained from the optical scattering rate of OPT96
using the MEM with two different fitting quality levels [23].
The two resulting EBSD functions are significantly different,
except for the position of the sharp peak located near 50 meV.
Therefore, the shape of the EBSD function obtained using the
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FIG. 4. Applications of the developed LSTM-MLA to experi-
mentally measured optical spectra. (a) The existing experimental
optical scattering rates of Bi-2212 samples (OPT96, OD82, and
OD60) and the corresponding input optical scattering rates recon-
structed using the LSTM-MLA. (b) The resulting EBSD functions
obtained from the measured optical scattering rates using the LSTM-
MLA. (c) The EBSD functions obtained from the measured optical
scattering rates using the MEM. (d) The EBSD functions obtained
from the measured optical scattering rate of OPT96 using the MEM
with two different fitting quality levels.

MEM is not uniquely determined because of random noise,
which exists naturally in experimentally measured optical
spectra [23]. However, as noted previously, the LSTM-MLA
is highly robust against random noise and facilitates obtaining
a correct-shaped EBSD function from the measured optical
scattering rate, which naturally contains random noise.

Thus far, we have developed an MLA to obtain EBSD
functions from measured optical scattering rates for the case
of the normal state at T = 100 K. We can easily extend the
LSTM-MLA for other temperatures in the normal state. In
the cases of the normal state with a pseudogap and the su-
perconducting state, it will take much more time to generate
the training data with the same data points because, for these
two cases, the generalized Allen formulas consist of double
integrations [22,42,43]. However, for any case, as long as
sufficient training data are generated, an MLA can be simply
developed using a deep learning neural network.

We found an important issue on the MLA for solv-
ing the inverse problem. Approximate information on the
shape of the output function needs to be known a priori in

order to generate appropriate training data. If a training data
set with highly different shapes from those of the measured
input spectra is generated, the corresponding input data re-
constructed using the MLA deviate significantly from the
measured input data. Consequently, the output EBSD func-
tion obtained using the MLA will not be a reliable EBSD
function for the measured input data. In fact, the shape of
the resulting output EBSD function will be close to that of
the model EBSD function, which is used for generating the
training data. Therefore, the MLA is, in this regard, model
dependent. To explicitly demonstrate this model-dependent
issue of the MLA, we generated a training data set with
the model output I2χ (ω) consisting of only the last two
terms in Eq. (3) and developed an LSTM-MLA. Then, we
applied the developed LSTM-MLA to the measured optical
scattering rates of Bi-2212 (OPT96, OD82, and OD60). The
results are presented in the Supplemental Material [27]; the
LSTM-MLA is evidently model dependent. Therefore, to gen-
erate our training data in this study, we utilized the shapes
of the EBSD functions obtained from the measured optical
scattering rates of Bi-2212 using the MEM in a previously
reported paper [9]. At this stage, one may ask what the advan-
tages are of the MLA compared with the least squares fitting
method (LSFM) because both approaches are model depen-
dent. In fact, the LSFM has much fewer fitting parameters.
However, the MLA can be potentially extended and even-
tually a model-independent MLA will be developed in the
future.

IV. CONCLUSION

We developed a method to obtain the EBSD function
from the optical scattering rates using the MLA. We gener-
ated 100 000 training data from the model EBSD functions
using the generalized Allen formula. For the training, we
used a deep learning neural network with LSTM hidden lay-
ers. We compared the results with those obtained using a
deep learning neural network with a CNN. We found that
the LSTM-MLA took a longer time to train but provided
more accurate and stable results compared with the CNN-
MLA. We found that the MLA was quite robust against
random noise. We applied the developed MLA to the ex-
isting experimentally measured optical data of Bi-2212 and
obtained EBSD functions with reasonable shapes, including
their amplitudes. An earlier study showed that the MLA can
be used to solve an inverse problem and is robust against
random noise [24]. There was an attempt to expose hid-
den self-energies of cuprates from measured ARPES spectra
using an MLA [44]. However, our study is an application
of the MLA to obtain the EBSD function from measured
infrared/optical spectra. From the applications, we found
that the MLA is model dependent, as the results depend on
the shapes of the model EBSD functions used for generat-
ing the training data. We expect that the MLAs are useful
and rapid methods for solving other inversion problems,
which may contain random noise. We believe that model-
independent MLAs will be developed in the near future for
their wide and useful applications to analyses of various re-
gression problems including inverse problems. One possible
approach would be using invertible neural networks (INNs)

235154-5



PARK, PARK, AND HWANG PHYSICAL REVIEW B 104, 235154 (2021)

[45], where a forward model such as Eq. (1) is adopted dur-
ing training. INNs try to learn the hidden representation of
the forward model, which is usually lost in the conventional
MLA.
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