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First-principles study of excitons in optical spectra of silver chloride

Arnaud Lorin,1,2 Matteo Gatti,1,2,3 Lucia Reining ,1,2 and Francesco Sottile1,2

1LSI, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, F-91120 Palaiseau, France
2European Theoretical Spectroscopy Facility (ETSF)

3Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette, France

(Received 15 September 2020; revised 27 September 2021; accepted 29 November 2021; published 23 December 2021)

Silver chloride is a material that has been investigated and used for many decades. Of particular interest
are its optical properties, but only few fundamental theoretical studies exist. We present first-principles results
for the optical properties of AgCl, obtained using time-dependent density functional theory and many-body
perturbation theory. We show that optical properties exhibit strong excitonic effects, which are correctly captured
only by solving the Bethe-Salpeter equation starting from quasiparticle self-consistent GW results. Numerical
simulations are made feasible by using a model screening for the electron-hole interaction in a way that avoids
the calculation of the static dielectric constant. Finally, the localization of bright and dark excitons is discussed.
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I. INTRODUCTION

Silver chloride is a versatile material, long known for a
large variety of applications. For instance, it is a reference
electrode for electrochemical measurements [1], and in its
nanostructured phase it has remarkable antimicrobial proper-
ties [2–4]. Moreover, it has been recently shown that silver
clusters at AgCl surfaces form an efficient photocatalytic sys-
tem [5–9]. The largest range of applications of AgCl is related
to its optical properties: it is responsible for several shades
in stained glass [10], and it is widely used as photochromic
material in photosensitive glasses [11]. In particular, AgCl is a
crucial ingredient in photographic paper to produce the latent
image [12,13]. It was already the key component in the first
color photography in history realized by Becquerel in 1848
[14]: a recent study has shown that the colors in Becquerel’s
photochromatic images were due to silver nanoparticles in a
silver chloride matrix [15–17].

In spite of the importance of its optical properties, ex-
perimental results, including absorption, reflectivity, and
luminescence, are relatively old [18–29] (see Refs. [30,31]
for more recent reviews). Moreover, the same photochromic
properties of AgCl that make it so appealing for applica-
tions also hamper spectroscopy experiments: its electronic
and optical properties can be changed significantly by irra-
diation with light [32], thus affecting the reliability of the
measured spectra. On the other side, theoretical simulations
are a valuable tool to provide a solid benchmark and remove
possible ambiguities from experimental results. Several first-
principles studies [33–39] within density functional theory
[40,41] (DFT) have focused on ground-state properties and
the Kohn-Sham electronic structure. However, these methods
cannot access the band gap, a fundamental ingredient for the
optical properties. Only recently, band-structure calculations
using the GW approximation [42] (GWA) within many-body
perturbation theory [43] (MBPT) have yielded more reliable

numbers for the photoemission gaps [44–46]. Instead, to the
best of our knowledge, MBPT studies for the optical proper-
ties of silver chloride are still missing.

This work aims at bridging this gap: we have conducted
state-of-the-art electronic structure calculations to investigate
the optical properties of bulk AgCl. Indeed, aside from its
strong interest for a wide range of applications, AgCl is chal-
lenging from the theoretical point of view: Ag 4d states are
strongly hybridized with Cl 3p and have a direct impact on
the band gap. Their strong localization requires a high cutoff
in plane-wave calculations, and it moreover poses problems
for simple density functionals such as the local density ap-
proximation (LDA) or the generalized gradient approximation
(GGA). Simple models [47,48] are not reliable because of
its peculiar band structure and estimates of excitonic effects
based on the Wannier model (see, e.g., Refs. [30,31]) should
be examined with great care: advanced first-principles ap-
proaches are needed in order to get reliable insight.

The questions that we will address in this work are the
following: Which level of theory is needed for a proper de-
scription of optical properties of AgCl, including questions
related to pseudopotentials, self-consistency, and excitonic
effects? Can we simplify the calculations, in spite of the
complexity of the material? How strong are excitonic effects
due to the electron-hole interaction? Finally, the nature of
excitons in AgCl is a crucial question with a direct impact on
all the applications that involve the optoelectronic properties
of AgCl.

Section II summarizes the approaches used to access
ground- and excited-state properties. Results for the band
structures from DFT and MBPT, as well as first results for the
optical properties, are given in Sec. III. In Sec. IV, we propose
a way to efficiently use a model screening of the electron-hole
interaction, and we show that this allows us to overcome the
computational limitations and obtain reliable optical spectra.
Finally, Sec. V is dedicated to the discussion of excitonic
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effects in the optical properties of AgCl, and conclusions are
drawn in Sec. VI.

II. METHODOLOGY

Starting from a DFT ground-state calculation, there are
two possible routes to determine optical spectra [49]: first,
to extend DFT to time-dependent DFT [50,51] (TDDFT),
and second, to move to MBPT [43,52], where the one-
body Green’s function is determined from a Dyson equation
with a given approximation for the self-energy, and subse-
quently optical properties are derived from the solution of
a Bethe-Salpeter equation [53,54] (BSE) for the two-body
correlation function. When simple approximation for the
exchange-correlation (xc) functionals are sufficient, TDDFT
is computationally more efficient than MBPT. It is therefore
interesting to compare the results of the two approaches, and
we will detail both routes in the following. Atomic units are
used in this paper.

A. Optical absorption with time-dependent
density functional theory

The optical properties of a system are linked to the inverse
dielectric function ε−1 = 1 + vcχ , where vc is the Coulomb
potential and χ is the linear density-density response function.
This quantity can be accessed, in principle exactly, using
TDDFT in linear response [55]. First, one has to build the
noninteracting polarizability χ0 on the basis of Kohn-Sham
(KS) DFT ingredients.

The full density-density response function χ is then ob-
tained from the Dyson-type linear-response equation [55]

χ = χ0 + χ0(vc + fxc)χ, (1)

where in reciprocal space all quantities are functions of
momentum q in the first Brillouin zone and (aside from
vc) of ω, and matrices in reciprocal-lattice vectors G, G′.
The exchange-correlation kernel, that in real-space and real-
time reads as fxc(r, r′, t − t ′) ≡ δvxc(r, t )/δn(r′, t ′), is the
functional derivative of the xc potential with respect to
the density n. It depends on two space (or reciprocal
space) arguments and on the time difference t − t ′ (or fre-
quency ω). Its exact expression is unknown. Two extensively
used approximations are the random-phase approximation
(RPA) fxc ≈ 0, and the adiabatic local density approx-
imation (ALDA), where fxc(r, r′, t − t ′) ≈ δ(r − r′)δ(t −
t ′)dvLDA

xc /dn|n(r,t ). From the density-density response func-
tion we evaluate the inverse dielectric function

ε−1
G,G′ (q, ω) = δG,G′ + 4π

|q + G|2 χG,G′ (q, ω). (2)

The macroscopic dielectric function [56,57] is then

εM (ω) = lim
q→0

1

ε−1
G=G′=0(q, ω)

. (3)

From the macroscopic dielectric function we derive optical
properties: optical absorption is related to the imaginary part,
Im εM , and the extinction coefficient is given by κ = Im

√
εM .

For optical properties, the wave vector is very small com-
pared to the crystal, and we take the limit q → 0 (where the

transverse and longitudinal dielectric functions coincide [58]).
Equation (3) takes into account crystal local field effects be-
cause the dielectric matrix is inverted before the macroscopic
average G = G′ = 0 is taken.

B. Band structure with the GW approximation

KS eigenvalues cannot be interpreted as electron removal
and addition energies, but they often give a good overview of
the band structure and constitute a convenient starting point
for further calculations. In order to obtain a more meaning-
ful band structure, we add quasiparticle corrections using
the Green’s function formalism. In the quasiparticle approx-
imation, addition and removal energies are obtained from a
modified one-particle equation [42,52][

−1

2
∇2 + vext (r) + vH (r)

]
φnk(r)

+
∫

dr′	xc(r, r′, Enk )φnk(r′) = Enkφnk(r), (4)

where, aside from the external and Hartree potentials vext and
vH, the self-energy 	xc plays the role of an effective nonlocal
and energy-dependent potential. The generalized eigenvalues
of Eq. (4) can be interpreted as addition and removal ener-
gies, and are used to build the theoretical band structure. The
quasiparticle wave functions φnk are also in principle different
from the KS ones, which changes in particular the density.
A widely used approximation for the self-energy is Hedin’s
GWA [42]. In this approximation, 	xc = iGW is the product
of the one-body Green’s function G and the screened Coulomb
interaction W = ε−1vc.

The G0W 0 approach [59–62] replaces the Green’s func-
tion entering the self-energy by the KS one and evaluates
the screened Coulomb interaction W using the RPA for ε−1

following Eq. (1). A further simplification is obtained by
evaluating the quasiparticle eigenvalues perturbatively with
respect to the KS ones, and by making use of the fact that the
self-energy is approximately linear around the quasiparticle
energy. This yields

Enk = εnk + Znk[〈	xc(εnk )〉 − 〈vxc〉], (5)

with εnk the KS eigenvalue, vxc the KS xc potential,
and the quasiparticle renormalization factor Znk = [1 −
〈 ∂	xc(ω)

∂ω
|εnk〉]−1. Here, expectation values are taken with the

KS wave functions. The G0W 0 approach based on KS cal-
culations with approximate functionals such as the LDA or
GGA has met broad success for many materials [52,61–63],
but it encounters problems when it comes to materials with lo-
calized electrons [52,63–67]. These are often transition metal
oxides and other correlated materials where d or f electrons
are important, but as we will see, the problem also concerns
AgCl, because of the hybridization between Ag 4d and Cl
3p electrons. These materials require better starting eigen-
values and wave functions, or self-consistency. A prominent
self-consistent approach is quasiparticle self-consistent GW
[64,65] (QSGW). In this approach, Eq. (4) is approximated by
an effective Schrödinger equation with a static Hamiltonian,
and the resulting eigenvalues and eigenfunctions are used
to build a new quasiparticle Green’s function and screened
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Coulomb interaction. The procedure can be iterated to self-
consistency and often improves over G0W 0 results [52,63–
67]. One delicate point in the evaluation of the GW self-
energy is frequency integration. Since 	xc is a product of G
and W in real space and time, it becomes a convolution in fre-
quency space. We have performed the frequency integration
using the Godby-Needs plasmon-pole model (PPM) [68] and
we have validated the PPM results with respect to those ob-
tained with the accurate contour deformation technique [69].

C. Optical absorption with the Bethe-Salpeter equation

The electron addition and removal quasiparticle band
structure obtained from the GW calculation can be used as
starting point to determine the linear-response properties in
the framework of MBPT, as an alternative to TDDFT. The
density-density response function χ is linked to the two-
particle correlation function L by the relation χ (r1, r2; t1 −
t2) = −iL(r1, t1, r1, t1, r2, t2, r2, t2). L, in turn, can be ob-
tained from the solution of the BSE [53,54]. In the GWA and
neglecting variations of the screening upon perturbation of the
system this equation reads as

L(1, 2, 3, 4) = L0(1, 2, 3, 4)

+ L0(1, 2, 5̄, 6̄)[vc(5̄, 7̄)δ(5̄, 6̄)δ(7̄, 8̄)

−W (5̄, 6̄)δ(5̄, 7̄)δ(6̄, 8̄)]L(7̄, 8̄, 3, 4). (6)

Here, (1) is a shorthand notation for position, time, and spin
(r1, t1, σ1), barred indices are integrated over. L0(1, 2, 3, 4) =
G(1, 3)G(4, 2) is the two-particle correlation function in ab-
sence of interaction between the two particles, and W is
the screened Coulomb interaction calculated within RPA. As
before, we will not consider spin in the following. As a fur-
ther approximation, usually the quasiparticle approximation
is made for G in L0 and the frequency dependence of W
is neglected in the kernel of the BSE. In this case, one can
immediately set t1 = t4 and t2 = t3 in Eq. (6), and the resulting
equation can be reformulated as an eigenvalue problem with
an effective electron-hole Hamiltonian Hexc, where vc and W
show up as effective electron-hole interactions [49,70–72].
This Hamiltonian is usually expressed in a basis of pairs of
orbitals. In systems with a gap at zero temperature, only pairs
of an occupied and an unoccupied orbital contribute to the
absorption spectrum, so the pair corresponds to a transition
|t〉. In this basis the Hamiltonian reads as

〈t |Hexc|t ′〉 = Etδt,t ′ + 〈t |K|t ′〉, (7)

where the energy Et is the difference between an unoccupied
and an occupied quasiparticle state, calculated in the GWA,
and the kernel K is the sum of the electron-hole interactions:
K = vc − W . Et > 0 (<0) for resonant (antiresonant) transi-
tions.

The Tamm-Dancoff approximation [73,74] (TDA) neglects
the coupling between resonant and antiresonant transitions.
It is usually a good approximation for absorption spectra of
solids. We have verified that this is also true for AgCl, and all
results shown in the following are obtained within the TDA.

The macroscopic dielectric function from the solution of
the BSE, taking into account local field effects [49], can be

calculated directly in the TDA as

εM (ω) = 1 − lim
q→0

8π

Nk0q2

∑
λ

∣∣∣∑t At
λρ̃t (q)

∣∣∣2

ω − Eλ + iη
, (8)

where the oscillator strengths ρ̃t (q) ≡ ρ̃n1n2k(q) =∫
ψ∗

n1k−q(r)e−iq·rψn2k(r)dr, while Aλ and Eλ are solutions
of a modified Hexc, where the bare Coulomb interaction vc

of the electron-hole exchange does not have its long-range
component vc(G = 0); note that the sets of Eλ contain both
positive and negative energies. They can be different from
the independent-(quasi)particle transition energies Et . If
the exciton energy Eλ is smaller than the direct gap (i.e.,
the smallest Et ), then the exciton is said to be bound and the
difference Et − Eλ is its binding energy. The coefficients Aλ

mix the previously independent transitions contained in ρ̃.
This suggests to analyze spectra in terms of the independent
transitions that contribute to a given many-body transition
λ. The eigenvectors of the excitonic Hamiltonian |At

λ|2 as a
function of t or Et indicate how much each transition between
an occupied and an empty state is mixed into the excitonic
eigenstate λ. The electron-hole correlation in real space can
be examined by investigating the e-h wave function,

�λ(rh, re) =
∑

t=vck

At
λφ

∗
vk(rh)φck(re). (9)

In particular, one can fix the position rh = r0
h of the hole

and visualize the corresponding density distribution of the
electron, nλ(re) = |�λ(r0

h, re)|2, for a given exciton λ.
Finally, we introduce the cumulative sums

Iλ(ω) = lim
q→0

√
8π

Nk0q2

Et <ω∑
t

At
λρ̃t (q) (10)

and

Sλ(ω) = |Iλ(ω)|2. (11)

Since in the sum there can be both constructive or destructive
interference effects between the complex numbers At

λ and ρ̃t ,
the cumulative sum is not necessarily a monotonous function.
The value of Sλ(ω → ∞) gives the oscillator strength with
which an exciton λ contributes to the absorption spectrum [see
Eq. (8)]. If it is negligibly small, the exciton is said to be dark.
Otherwise, if it has a significant contribution to the absorption
spectrum the exciton is called bright.

III. RESULTS

A. Kohn-Sham band structure

AgCl crystallizes in the fcc rocksalt structure. Calculations
are carried out at the room-temperature experimental lattice
constant [75,76] aexpt = 5.55 Å.

The Kohn-Sham band structure in the LDA is shown in
Fig. 1. With the top valence at L and the bottom conduction
at �, the minimum gap is indirect and amounts to 0.56 eV.
The minimum direct gap lies close to �, at about 2

9 � − K ,
followed by a direct gap at 1

6 � − X and the direct gap
at �; these gaps are 2.78, 2.85, and 2.86 eV, respectively.
These values are consistent with previous LDA calculations
[33,34,37–39,45]. In GGA the indirect L → � gap is 0.3 eV
larger [34–37,44,46].
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FIG. 1. Calculated band structure of silver chloride. The top
valence energy has been aligned to zero in all cases. Red lines are
the LDA calculation, the dots the G0W 0 results, and the crosses
the QSGW results. The dashed and dotted-dashed lines represent
the conduction bands shifted from the LDA by 1.9 and 2.98 eV,
respectively.

Since, to the best of our knowledge, inverse photoemis-
sion spectra are not available for AgCl, the fundamental gaps
have been extracted from optical measurements [31] and res-
onant Raman scattering experiments [30,77]. The onset of
the lowest-energy peak in the absorption spectrum gives an
estimation of the minimum direct gap. The tail of the peak
extending towards low energies is due to phonon-assisted
absorption processes [30,31]: its edge can be used to infer
the value of the indirect gap. However, in both cases one also
has to take into account the fact that the photoemission gap is
larger than the absorption peak position by the exciton binding
energy, whose estimation can introduce uncertainties in the
band-gap value. We will come back to this point in Sec. V. In
any case, the KS gaps severely underestimate the experimental
values of 5.13 eV for the direct optical gap [25], and 3.25 eV
for the indirect absorption edge [23,77].

Earlier theoretical studies [30,31,47,78,79] have found that
Ag+ 4d and Cl− 3p ionic states have similar energy in the
crystal, leading to strong hybridization in the valence band.
While their mixing is zero at �, it is strong elsewhere, notably
at L. This k-dependent hybridization and the strong p − d
repulsion cause the upward curvature of the top valence bands
at � (i.e., a negative hole effective mass) and make AgCl an
indirect semiconductor. On the contrary, in the alkali-metal
halides, which share the same rocksalt crystal structure, the
ionic energy levels are well separated, leading to a much larger
ionic character of the compounds and a direct band gap.

Our calculations, as shown by the band structure in Fig. 1
and the projected density of states (PDOS) in Fig. 2, confirm
this picture. While Cl 3s states are located at ∼ − 15 eV (not
shown), the valence band region comprises eight bands. They
are very close to each other at the � point, where from the
bottom to the top we count three degenerate Ag t2g states,1

two degenerate Ag eg states, and three degenerate Cl 3p states.

1The crystal field at Ag site has a cubic point symmetry (Oh).
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FIG. 2. Projected density of states of silver chloride calculated in
KS-LDA compared to photoemission spectra from Mason [80] and
Tejeda et al. [78] at a photon energy hν = 1486.6 eV. In each curve
the top valence has been aligned to zero and the intensity scaled to
the maximum of the most prominent peak. In the inset: zoom on the
calculated unoccupied PDOS.

The hybridization between Ag 4d and Cl 3p increases moving
away from the � point towards the top and the bottom of
the valence bands at the L point, where Ag 4d and Cl 3p
are strongly mixed. Their interaction gives rise to dispersive
bands. Instead, three Ag 4d bands, which are not dispersive
between � and L, remain at the center of the valence manifold,
giving rise to a pronounced sharp peak in the PDOS. Finally,
the lowest conduction band has a delocalized Ag 5s and Cl
4s character at the � point [38] and mixed Ag 5s–Cl 3p
elsewhere.

In Fig. 2 the calculated PDOS is compared to experimental
photoemission spectra measured at 1486.6 eV photon energy
by Mason [80] and Tejeda et al. [78]. The two measured
spectra, taken at the same photon energy, differ in their shapes,
illustrating the experimental difficulty of the characterization
of the electronic properties of AgCl. Still we can analyze their
common features. The measured spectra are characterized by
a bandwidth of about 6 eV and a main peak centered at about
−3.1 eV. The calculation correctly describes the presence of
shoulders about 4 eV below the main peak and about 2 eV
above it. On the basis of atomic photoionization cross sections
[81], we find that photoemission spectra at hν = 1486.6 eV
mostly probe the Ag 4d electrons. We can therefore directly
compare the experimental spectra to the calculated Ag 4d
PDOS. We thus assign the main peak to the nondispersive
Ag 4d bands, which result too shallow by about 1 eV in KS-
LDA. This underestimation of the binding energy of occupied
localized d levels is a common tendency of KS-LDA that can
be improved by the GWA (see, e.g., [63,82–86]), as we will
discuss more in detail in the next subsection.

B. Band structure in the GW approximation

The band structure of silver chloride evaluated in G0W 0 has
been added to the KS-LDA band structure in Fig. 1. The top of
the valence band is aligned to zero. The G0W 0 band structure
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TABLE I. Direct and indirect photoemission gaps from different approximations compared to experimental (Expt.) absorption onsets from
optical measurements (Refs. [23,25]) which provide a lower bound due to excitonic effects (see Sec. V).

Indirect Direct

LDA 0.56 2.78
G0W 0 (PPM) 2.4 4.8
G0W 0 (CD) 2.4 4.6
G0W 0 (EET) 2.4 4.7
QSGW 3.7 5.9
evQSGW 3.2 5.7
Absorption onset (Expt.) 3.25 5.13

is similar to the KS-LDA one, aside from an almost rigid shift
of 1.8–1.9 eV of the conduction bands. For illustration, the
dashed curve shows the lowest conduction bands in KS-LDA,
shifted upwards by 1.9 eV.

This size of the band-gap opening is in agreement with the
value of 1.75 eV recently obtained by Zhang and Jiang [46]
in a G0W 0 full-potential linearized augmented plane-wave
calculation starting from a KS-GGA band structure. Instead,
van Setten et al. [44] reported a much smaller G0W 0 correc-
tion to the KS-GGA gap: 1.25 eV. The reason of this large
discrepancy should not be ascribed to inaccuracies in the pseu-
dopotentials [46], but rather to an underconvergence problem:
their automatized algorithm employed only 155 bands (com-
pared to 820 in this work). On the contrary, Gao et al. [45]
found a much larger G0W 0 correction starting from KS-LDA,
i.e., 2.38 eV, and had to include up to 2500 empty bands
in the G0W 0 calculation. A similar situation was previously
encountered in other materials like ZnO [87–89] and TiO2

[90], where semicore electrons have to be explicitly included
in the GW calculation. The origin of the problem in those
calculations was identified [89,90] with the use of the f -sum
rule in the Hybertsen-Louie [59] PPM, which was adopted
also by Ref. [45] for AgCl. An alternative PPM proposed
by Godby and Needs [68], which is instead optimized for
the spectral range of interest, does not create this problem.
Also in the present case, our results obtained with the Godby-
Needs PPM agree (within 0.2 eV at most) with the accurate
contour-deformation (CD) calculation that we have carried
out as benchmark (see Table I). As a final validation, we
have also employed the effective energy technique [91] (EET)
that accounts approximately for all empty states and allows
reaching convergence much more easily than the traditional
sum-over-states scheme. Using the EET (here used within the
PPM) the values for the band gaps are once again in agreement
within 0.1 eV (see Table I).

Our G0W 0 indirect band gap is 2.4 eV and the direct gap at
� is 4.6–4.8 eV. Both are still smaller than the experimental
optical gaps (see Table I). However, in situations with large
pd hybridization as for AgCl the LDA starting point may
not be reliable [65]. Moreover, the large corrections obtained
within the G0W 0 scheme question the first-order perturbative
approach itself.

In order to overcome the problem of the KS-LDA starting
point and assess the G0W 0 perturbative scheme, we have
performed QSGW calculations. The new band structure is
shown in Fig. 1; again, top valence bands are aligned. At
first sight, there is no drastic change in the dispersion of the

valence and conduction bands. However, a closer look at
Fig. 3 allows for a more detailed analysis. Figure 3 displays
the QP energy corrections obtained within the QSGW scheme
as a function of the corresponding KS-LDA energies. There,
both the horizontal and vertical axes have been aligned to
zero for the top valence state at L. Whereas the G0W 0 valence
bands were essentially on top of the KS-LDA ones, QSGW
results slightly increase, by 0.1 eV, the valence bandwidth
and push the narrow Ag 4d bands in the middle of the valence
band down by 0.5 eV, leading to a better agreement with pho-
toemission results [78,80]. The remaining 0.5-eV discrepancy
is similar to what is observed for shallow d levels in other
semiconductors: for further improvement, vertex corrections
in the self-energy beyond the GWA should be included [86].
The most obvious change is the almost rigid shift of the
conduction bands with respect to KS-LDA, which has passed
from 1.9 eV in G0W 0 to 2.98 eV, as indicated by the dotted-
dashed line in Fig. 1 and the horizontal blue line in Fig. 3.
With this shift, the indirect gap becomes 3.7 eV while the
direct band gap is 5.9 eV. The fact that now band gaps seem to
be overestimated (see Table I) may have two reasons. First, the
self-consistent RPA screening in QSGW is too weak, which
brings results too close to Hartree-Fock [52,65,67,85,92].
The inclusion of the attractive electron-hole interaction, i.e.,
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FIG. 3. QSGW QP energy corrections as a function of the cor-
responding KS-LDA energies. The corrections have been set to zero
for the top valence state, whose KS-LDA energy is also set to zero.
The horizontal blue line is the value of the scissor correction used in
the calculation of absorption spectra in Sec. V A.
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FIG. 4. Extinction coefficient as a function of energy. The RPA
calculation based on the KS-LDA band structure (black solid curve)
is compared to experimental data from Ref. [25] measured at 4 K
(red curve), at 90 K (blue curve), and at room temperature (orange
curve).

a vertex correction, in the screened interaction W has been
shown to improve QSGW band gaps of semiconductors
[52,92]. Moreover, the electron-phonon interaction, here
neglected, also leads to a band-gap renormalization [93–96].
Second, the experimental optical gaps may be affected by
excitonic effects, which is the topic of this work (see Sec. V).

Finally, Fig. 3 shows that the QSGW corrections for the
conduction bands are grouped around two main values: aside
from the 2.98-eV shift corresponding to the band gap opening
around �, a second group of states undergo a larger correction
of 3.35 eV. The latter stems from the bottom conduction band
between X , W , and K .

We have also performed a QSGW calculation where only
the QP eigenvalues are calculated self-consistently, while the
QP wave functions are constrained to remain the KS-LDA
orbitals. This further calculation is named “evQSGW” in Ta-
ble I. It gives band gaps that are intermediate between the
G0W 0 and the full QSGW results, illustrating the impact of
the change of the wave functions on the band structure. Fi-
nally, we have tested the effect of the update of the screened
Coulomb interaction W : a QSGW calculation, in which we
keep W fixed at the level of the RPA-LDA W0, yields gaps
(direct 4.8 eV and indirect 2.7 eV) that are closer to the G0W 0

ones than to the QSGW results. In the QSGW calculation in
AgCl the modification of the screened interaction W is hence
the most critical effect.

C. Absorption spectra

Since the optical properties of AgCl are of utmost im-
portance for its applications, their calculation and analysis
represents the focus of this work.

1. Absorption spectrum in time-dependent
density functional theory

Figure 4 shows the extinction coefficient κ (ω). We com-
pare the RPA result (black curve) with three representative
experiments at different temperatures: 4 K (red curve), 90 K
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FIG. 5. Comparison of the extinction coefficient measured at
4 K with several TDDFT approximations. Since the energy range is
limited to 3–7 eV, these spectra have been calculated with only four
conduction bands.

(blue curve), 300 K (orange curve). The spectra in Fig. 4
have been measured up to 6.7 eV in Ref. [25]. The wider
range at room temperature has been obtained by combining
results from different sources in Ref. [25]. The measured
spectra are highly sensitive to the experimental conditions.
In Sec. V A we will come back to this point by comparing
the 4-K spectrum with another low-temperature experimental
result from Ref. [31]. Here we can already notice how the
shape of the measured spectra is strongly affected by temper-
ature: the very sharp peak at the onset of the spectrum around
5.1 eV is clearly visible only at low temperatures, while the
room-temperature spectrum is much broader. Since our calcu-
lations do not include the effect of temperature, comparison to
the low-temperature experiment should be more meaningful.
Still, keeping this fact in mind, also the room-temperature
experiment gives important indications. Overall, the RPA and
experimental spectrum at 300 K are similar. However, the
absorption onset is underestimated in the RPA, by more than
1 eV. Moreover, the RPA entirely misses the sharp feature
at the onset of the low-temperature experimental result. The
underestimate of the onset is a common problem in KS-RPA
spectra [49]. Since fxc = 0 and only short-range components
of vc contribute to optical spectra, the onset is determined by
the interband transitions in χ0. It suffers therefore both from
the use of the LDA, and from the fact that even the exact KS
band gap would be smaller than the measured band gap. The
results do not change when fxc is taken into account within
the ALDA: in Fig. 5 the ALDA (dashed green curve) is hardly
distinguishable from the RPA (black curve). The ALDA can
neither lead to a significant opening of the optical gap, nor to
a significant change in the spectral shape.

It is well established [97,98] that the ALDA suffers from
the absence of a long-range contribution that in nonzero-band-
gap materials would diverge as 1/q2 for the large wavelength
of the light, q → 0. The exact xc kernel should contain such a
contribution. Several suggestions exist how to include a long-
range component in fxc [98–101]. All kernels of this family
start from a χ0 built with a quasiparticle band structure from
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GW or similar approaches, instead from a KS one. A simple
static and scalar fxc with a long-range contribution can then
simulate the effects of the electron-hole interaction by shifting
spectral weight to lower energies.

In order to simulate the missing excitonic effects, we
have examined the long-range kernel [98] of the type α/q2,
where the band-gap opening at the QSGW level is accounted
for by a scissor correction of 2.98 eV. The result is given
by the pink curve in Fig. 5. The value of α = −0.94 has
been obtained from Eq. (4) of Ref. [99] using an experimen-
tal dielectric constant ε∞ = 4 [102,103]. In contrast to the
ALDA, the long-range kernel does shift the spectral weight to
lower energies with respect to the QSGW+RPA result (violet
curve), where fxc = 0. However, the spectral onset remains at
the QSGW one, overestimating the experimental result, and
the sharp peak is still missing. A larger value of |α| in the
long-range kernel α/q2 would enhance the excitonic effects.
However, in order to reproduce the sharp experimental peak,
we should increase the strength |α| to very large values, which
leads to a very bad spectral shape. For example, the dotted
curve in Fig. 5 is obtained with α = −3.5. Note that for the
figure its overall intensity is divided by a factor 5 since the
peak at the onset is now much too strong, while all other
spectral features are flattened. This failure of static long-range
kernels is confirmed also by similar approaches, such as the
recent bootstrap kernel [104,105] [see the blue curve in Fig. 5,
obtained by using Eq. (5) of Ref. [105]]. Therefore, we can
conclude that TDDFT with the presently available simple
approximations does not give a good description of the optical
properties of AgCl, and in particular, of the strong excitonic
effects that should explain the remaining discrepancy between
theory and experiment. For this reason, we have to move on to
a full description in the framework of MBPT, by solving the
BSE.

2. Optical spectra from the Bethe-Salpeter equation: Insight and
difficulties

A state-of-the art BSE calculation starts from the G0W0

band structure (here simulated by a scissor shift of 1.9 eV) and
employs the LDA-RPA screened Coulomb interaction W to
account for the electron-hole attraction. The result of a G0W0-
BSE calculation obtained with 2048 shifted [106] k points and
19 bands is shown in Fig. 6. This kind of calculation is com-
putationally expensive. A k-point convergence test performed
with a reduced number of conduction bands indeed shows that
at least 2048 shifted k points should be used [we have tested
up to 6912 shifted k points (see Fig. 17 in Appendix)]. The
need for a quite large number of k points is related to the
particular band structure of AgCl: the smallest direct gap is
located at k points that are not high-symmetry points (see
Sec. III A). A homogeneous k-point grid that includes these
k points must be very dense.

The G0W0-RPA onset of the spectrum (pink dashed line in
Fig. 6) underestimates the experimental threshold and does
not show a pronounced peak at low energy: it merely shifts
the LDA-RPA spectrum to higher energy. The electron-hole
interaction in the BSE shifts oscillator strength to lower en-
ergies, and a peak forms (black lines in Fig. 6). However, the
G0W0+BSE spectrum is now at an even lower energy and the
excitonic peak is much too weak with respect to experiment.
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FIG. 6. Comparison between the experimental extinction coeffi-
cient from Ref. [25] at different temperatures and MBPT calculations
(with 2048 shifted k points and 19 bands): G0W0-RPA obtained with
1.9-eV scissor correction (pink dashed line) G0W0+BSE obtained
with the full screening matrix WGG′ (q) (black solid line) or only its
diagonal contribution (black dashed line).

BSE calculations in solids are often done by neglecting
the off-diagonal elements of the screening matrix [49,71]
WGG′ (q) that represents the direct electron-hole interaction.
We note that this does not imply neglecting local field effects
altogether since they are accounted for by the modified bare
Coulomb interaction in the electron-hole exchange. The diag-
onal approximation to W is justified when the electron-hole
pair is delocalized enough to justify a space-averaged screen-
ing. The first excitonic peak in AgCl is influenced by this
approximation: taking into account the full spatial details of
screening (solid black line in Fig. 6) reduces the peak intensity
by about 10% with respect to the approximation of diagonal
screening (dashed black line in Fig. 6).

This G0W0+BSE calculation remains qualitative for sev-
eral reasons. As pointed out above, the G0W0 band structure
from an LDA starting point is not reliable for AgCl. While this
issue could be solved by using the QSGW band structure as a
starting point for the BSE calculation, the main computational
problem would still remain the setting up of the full screening
matrix WGG′ (q) that should be calculated self-consistently
for too many q points. In order to overcome this problem,
we complement the first-principles calculations with a model
screening, where the parameters of the model are fitted to the
ab initio results. As we will see in the next section, a careful
analysis allows us to turn this simple approach into a powerful
way to obtain reliable results. We also note that the assessment
of this model screening approach has a relevance that goes
beyond AgCl itself, as the same method could be efficiently
applied to more complex materials, making very expensive
calculations possible.

IV. MODEL SCREENING OF THE ELECTRON-HOLE
INTERACTION

The screened Coulomb interaction is evaluated in Fourier
space as

WGG′ (q̃) = ε−1
GG′ (q̃, ω = 0)vcG′ (q̃),
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FIG. 7. Effects of the model electron-hole screening on BSE results in AgCl. Left panel: ab initio LDA-RPA (crosses) and model (solid
lines) dielectric constants ε(q, ω = 0) as a function of |q|. The ab initio results are obtained using four-times shifted 4 × 4 × 4 (red) or
6 × 6 × 6 (black) Monkhorst-Pack grids of k points, corresponding to 256 or 864 k points in the full Brillouin zone, respectively. The black
cross at q → 0 also contains the correction for the nonlocal pseudopotential, while the red cross does not. Model results are fitted to the ab
initio results at q = 0 (respective color code) or at q = 0.15 a.u. (blue), where results on the smaller grid are already converged. Right panel:
BSE spectra obtained with 864 shifted k points, 8 valence and 6 conduction bands. The screening of the electron-hole interaction is taken from
the results shown in the left panel: either the diagonal of the ab initio screened Coulomb interaction (dashed black), or the model screening
fitted to the 864 k points result at q = 0 (solid black), or to the 256 k points result at q = 0 (red) or at q = 0.15 a.u. (blue).

where q̃ = k − k′ must correspond to the difference between
two k points on the grid used in the calculations. Therefore,
with increasing k-point grid size an increasing number of
screening matrices have to be calculated. Even though the
screened electron-hole interaction is calculated within the
RPA and at ω = 0, this quickly constitutes a formidable task,
especially within the QSGW scheme.

In order to overcome this bottleneck, sometimes the ab ini-
tio screening is replaced by a model [107–118]. In particular,
for bulk semiconductors a successful model was proposed in
Ref. [119]. It represents the static dielectric function as

ε(q) = 1 + 1
1

ε(q=0)−1 + α
( q

qT F

)2 + q4

4ωp

, (12)

where qT F = 2(3n̄/π )1/6 and ωp = √
4π n̄, with n̄ the average

density. α is a parameter set to 1.563, following Ref. [119].
This model dielectric function only gives the diagonal in
reciprocal space, but, as we will see, it is sufficient for the
present purpose.

Although the model is very simple, its use requires care.
First, the “average density” should not be the average den-
sity of all electrons, but only of those valence electrons that
participate to the screening. This difference is well defined
in a simple semiconductor such as silicon, but less obvious in
materials like AgCl with electrons of different character in the
valence bands. Since the model screening depends strongly
on the density, comparison of the model results with various
choices for the valence density to an, even not fully converged,
ab initio calculation in a few q points is sufficient to see that
the screening is determined by the electrons in the eight upper
valence states, i.e., the Ag 4d and Cl 3p electrons. To include
some of the remaining, more tightly bound, electrons in the
average density would clearly lead to overscreening.

Second, the macroscopic dielectric constant enters the
model as an important parameter. Not always a reliable ex-
perimental value is known, and in a fully first-principles
framework, it should be calculated. This is a much more
delicate point, as we will illustrate in the following. The
left panel of Fig. 7 shows the KS-RPA dielectric function
ε(q, ω = 0), calculated with a four-times shifted 4 × 4 × 4
grid of k points, corresponding to 256 k points in the full
Brillouin zone (red crosses). This calculation yields a macro-
scopic dielectric constant ε(q = 0) = 6.36. The model curve
(red line) that is obtained by using this value for ε0 reproduces
the ab initio results very well at large q, and it is perfect
for q → 0 by definition, but for small to moderate q the
discrepancy is significant. As a consequence, when the full
first-principles screening of the electron-hole interaction in
the BSE is replaced with this model screening, the comparison
is not satisfactory, as can be seen in the right panel of Fig. 7.

Interestingly, the problem is not the model, but the ab
initio calculations: the left panel also shows the ab initio
results obtained with a denser Brillouin zone sampling (black
crosses). The comparison highlights the fact that the value
of the dielectric constant at q = 0 calculated on the coarse
grid (red crosses) is not converged, contrary to the values
obtained for nonvanishing q. Indeed, the q = 0 calculation
should be more difficult to converge with respect to the Bril-
louin zone sampling: for q = 0 transition energies �ε enter
the dielectric function in a denominator, but for q → 0 this
denominator is determined by (�ε)3. A second difficulty is
that, unless a double k grid is used, the q → 0 limit requires
the calculation of a correction to the dipole matrix element
whenever the Hamiltonian is nonlocal [120]. This correction,
which takes the form of a commutator of the potentials with
the space coordinate r, gives a sometimes sizable contribution
in the case of nonlocal pseudopotentials, and/or when the
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band structure stems from a nonlocal self-energy [121,122].
Both difficulties are very general and even occur in simple
semiconductors such as silicon. Figure 8 gives an illustration,
with ε(q, ω = 0) of bulk silicon shown for various grids of k
points, and including or excluding the commutator with the
nonlocal pseudopotential. This is a Kohn-Sham calculation,
so the pseudopotential is the only nonlocal component.

Since by increasing the number of q points the contribution
from q = 0 to a sum over the Brillouin zone vanishes, the
poor quality of ε(q = 0) is often acceptable when the ab
initio dielectric function is used in an integral, e.g., in GW
or BSE calculations. Instead, when the macroscopic dielectric
constant is used to determine the model dielectric function,
a bad estimate of ε(q = 0) deteriorates the model screening
over a large range of wave vectors, as can be seen from the
left panel of Fig. 7 for AgCl, by comparing the fits obtained
on the converged and unconverged ab initio calculations.

One might, of course, improve the calculation of the
dielectric constant, but this would reduce significantly the
computational gain of using the model, especially when self-
consistent QP results are used (see below). Here, we propose
an alternative route, namely, we fit the model to the calculated
dielectric constant at a nonvanishing momentum transfer q0 =
0. In this way, no commutator has to be evaluated, and we can
make use of the fact that ε(q0) converges more quickly than
ε(q = 0). The choice of the q0 where the model parameters
should be determined is constrained: for larger q, and taking
into account crystal local field effects, the local anisotropy of
the crystal induces a scattering around the function ε(q) and
therefore some arbitrariness. One therefore has to choose a
value q0 that is small enough to yield a well defined ε(q0)
and large enough to converge fast with the k-point grid. In
any case, for any q0 = 0 the problem of the commutator is
avoided. Equation (12) now turns into

ε(q) = 1 + 1
1

ε(q0 )−1 + α
(q2−(q0 )2 )

q2
T F

+ (q4−(q0 )4 )
4ωp

. (13)
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FIG. 9. Silver chloride: static dielectric constant as function of
momentum transfer calculated using different levels of theory: Kohn-
Sham LDA, G0W 0, evQSGW, and QSGW. All calculations are done
using a four-times shifted 4 × 4 × 4 Monkhorst-Pack k-point grid
and 340 bands. The commutator with the nonlocal potentials (pseu-
dopotential and self-energy, when applicable) is neglected. The fit
of the model results at q0 = (−0.125, −0.125, 0) in units of the
reciprocal lattice (q = 0.15 a.u.) yields the dielectric constants.

This approach, as we will show subsequently, is very powerful
to converge optical spectra calculated from the BSE. As a
byproduct, once the model parameters are determined this also
allows one to extrapolate the dielectric constant at q → 0.
This is demonstrated in the left panel of Fig. 7: the model
dielectric function obtained from the fit to the rough first-
principles calculation at q0 = 0.15 a.u. (blue curve) compares
very well to the one fitted to the best first-principles calcula-
tion at q = 0 (black curve); from the fit at q0 = 0.15 a.u. to
the unconverged calculation, one can read an RPA dielectric
constant ε(q = 0) = 5.32, which well compares with the con-
verged ab initio result ε(q = 0) = 5.46, and which is much
better than the result ε(q = 0) = 6.36 of the unconverged ab
initio calculation itself.

Note that the converged RPA dielectric constant of 5.46
is larger than the experimental value, which is found to lie
between 3.7 [102] and 3.97 [103]. Other calculations based on
KS-LDA [45] also find too large dielectric constants, similar
to ours. This may be traced back to the Kohn-Sham band
gap, whose influence on the dielectric constant is in the RPA
not compensated by fxc. However, for consistency we use the
RPA value in order to simulate the RPA screening. Since over-
screening leads to underestimation of the excitonic effects,
we have calculated the dielectric function also using G0W 0,
evQSGW and QSGW results as input for the RPA. Results
are shown in Fig. 9. As expected, the strongest screening is
obtained in the KS-RPA, the same result as presented in Fig. 7.
Self-energy corrections to the eigenvalues calculated in G0W0

open the gap and lower the screening, with an effect that is
particularly visible at smaller wave vectors. Self-consistency
on the eigenvalues further opens the gap and lowers the
screening, again with a stronger effect at smaller wave vectors.
Self-consistency in the wave functions in QSGW enhances the
trend, with an effect that is significant at small q, but almost
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negligible above q ≈ 1 a.u. These ab initio results have been
obtained using a 4 times shifted 4 × 4 × 4 grid, neglecting
the commutator with the nonlocal pseudopotential and, in the
case of the GW calculations, neglecting the commutator with
the nonlocal self-energy. As a result, while the differences
between the various approximations are significant but rea-
sonable and smooth for q = 0, the same does not hold for
q = 0. In particular, the dielectric constant is clearly too small
when GW ingredients are used. The error due to the neglect
of the commutator with the nonlocal self-energy is sizable,
and of opposite sign with respect to the pseudopotential con-
tribution. We therefore determine the screening at q0 = 0.15
a.u., and then use Eq. (13) to obtain the full ε(q). This allows
us to extrapolate the dielectric constants at vanishing wave
vector. We obtain ε(q → 0) = 5.32 in Kohn-Sham as stated
above, and we find 4.15 in G0W0-RPA, 3.9 in evQSGW+RPA,
and 3.25 in QSGW+RPA, respectively. The GW results are
therefore closer to experiment than the Kohn-Sham ones, and
the help of the model in avoiding the calculation of the com-
mutators is particularly welcome.

The quality of BSE results obtained using the model
screening is shown in the right panel of Fig. 7. This picture
has been obtained with 864 shifted k points, for both the
G0W0+BSE spectra calculated with the model and with the
ab initio screening neglecting the off-diagonal elements of
screened interaction W : when the model is used in our im-
proved procedure, the differences are very small. The intensity
of the peaks is underestimated by the model screening with
respect to the diagonal approximation to the ab initio W by
an amount that is similar to the overestimation of the diagonal
approximation with respect to the use of the full screening
matrix WGG′ (q) in the BSE (see Fig. 6). The model screen-
ing BSE calculation is therefore very close to the ab initio
full W BSE result. We can conclude that we can safely use
the model screening in order to converge the BSE spectra.
Even more importantly, the model permits us to carry out the
QSGW+BSE scheme for the requested dense k-point grid.

V. EXCITONS

We can now analyze the influence of the excitonic effects
on the optical spectra of AgCl. We will make a detailed anal-
ysis of the character of the excitons, in order to understand
their spatial localization and interpret the optical properties of
AgCl.

A. Excitonic effects: Role of the screening and comparison to
experiment

Figure 10 shows the absorption spectra obtained, with a
converged grid of 2048 k points, comparing different flavors
of RPA and BSE results. All spectra are calculated with
LDA wave functions. G0W0+BSE and QSGW+BSE spectra
differ for two reasons. First, a different scissor correction:
1.9 or 2.98 eV to simulate the G0W0 or QSGW band-gap
opening, respectively; second, the model screening (12) is
evaluated with ε0 = 5.32 and 3.25 for the G0W0+BSE and
QSGW+BSE spectra, respectively. The energy of the first
exciton peak (solid lines) moves from 4.4 eV in G0W0+BSE to
5.25 eV in QSGW+BSE. By comparing the BSE spectra with
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FIG. 10. Absorption spectra calculated in the RPA (dashed lines)
and from the BSE (solid lines), using scissor corrections and model
screenings obtained from G0W0 (black lines) or QSGW (blue lines).

the corresponding RPA results (dashed lines), we find that the
reduced screening in QSGW+BSE crucially enhances exci-
tonic effects with respect to G0W0+BSE. The exciton binding
energy for the first peak is 0.21 eV within G0W0+BSE and
becomes 0.43 eV within QSGW+BSE. Within the GWA the
role of different approximations for the screened interaction
W is well known [52,63,65,67,85,92,123–125], while it has
been less investigated in the framework of BSE calculations
[121,122,126–129]. In both cases, self-consistency weakens
the screening, and a vertex correction would be needed to
restore agreement with experiment. In the case of GW the ab-
sence of vertex corrections leads to too large band gaps, while
in the case of BSE the effect is an increased electron-hole
interaction, leading to more localized excitons. However, both
in GW and in the BSE the overall effect of self-consistency is
in general an improvement towards the experiment. This is
particularly true in the BSE, where the resulting sharpening
of the excitonic peaks is important and needed. It should
also be noted that GW +BSE calculations benefit from partial
error canceling since W has opposite sign in the two cases.
Here we find that the larger redshift of the QSGW+BSE
spectra partially compensates the larger scissor correction in
the QSGW+RPA result with respect to G0W0-RPA. Most
importantly, however, the oscillator strength of the excitonic
peak is greatly increased.

Our final results for the extinction coefficient are com-
pared with experiment in Fig. 11. This figure, aside from the
measurement at 4 K from Carrera and Brown [25] that was
already presented in Sec. III C, also displays an additional
experimental spectrum that we have directly converted from
the absorption coefficient reported in Ueta et al. [31]. This
spectrum, also measured at liquid-helium temperature, has the
advantage of being available on a wider energy range. How-
ever, it has been obtained from the reflectivity measurement of
Yanagihara et al. [29] using a Kramers-Kronig transformation,
a procedure that introduces additional uncertainties and can
lead to a large error bar in the peak intensities [130]. The two
experimental spectra agree on the position of the first peak at
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FIG. 11. Extinction coefficient spectra: comparison between
experimental results [25,31], and G0W0+BSE and QSGW+BSE cal-
culations obtained with a grid of shifted 2048 k points and 25 bands.
The horizontal black arrow indicates the estimated shift of the 6.6-eV
peak that would be obtained by using QSGW corrections instead of
the scissor operator.

5.1 eV, while they show discrepancies concerning the shape
of other spectral features. These differences also illustrate the
limitations and the caution needed in the comparison of the
calculated spectra with experiment.

The combined use of the converged k-point grid and
QSGW ingredients, which was made possible thanks to
the model screening, improves remarkably the comparison
with experiment (red line in Fig. 11) with respect to the
G0W0+BSE spectra (black line in Fig. 11). Further improve-
ment might be obtained by the use of QSGW quasiparticle
wave functions and by the inclusion of dynamical effects in
the BSE [52], which is well beyond the scope of this work.
The QSGW+BSE results (blue line) reproduce well the first
sharp excitonic peak and place it very close to the experimen-
tal peak at 5.1 eV. In the calculations a Gaussian broadening
of 0.09 eV accounts for the finite k-point sampling and the
0.02-eV experimental resolution.2 Here it is important to note
that this spectral broadening does not change the area under
the peaks, which can be therefore compared to the experiment.
In the measured spectrum from Carrera and Brown [25] the
sharp peak at 5.1 eV has a long tail extending to lower energies
that has been explained in terms of phonon-assisted indirect
transitions [30,31,131]. We find that the area of the calculated
first peak matches well the sum of the areas of the peak and
the tail in the experiment. We could therefore argue that the
coupling with phonons [95,132–135], here not accounted for,
could explain the transfer of spectral weight to lower ener-
gies, together with the strong temperature dependence of the
measured spectra [30,31]. The spectrum by Ueta et al. [31],
instead, does not display a similar tail at low energies: this
qualitative difference between the experimental data could

2Additionally, a spin-orbit splitting of ∼0.1 eV contributes to the
experimental peak width [31].

be due to problems related to use of the Kramers-Kronig
transformation.

The calculated BSE spectrum has a second prominent ex-
citonic peak at 6.6 eV, which is already beyond the available
energy range of the spectrum by Carrera and Brown. It should
correspond to the peak at 7.2 eV in the spectrum of Ueta
et al. The reason for the underestimation of the peak position
in the calculation can be attributed to the scissor correction
that becomes less accurate for larger transition energies. The
independent electron-hole transitions that give rise to this
excitonic peak (see Sec. V B) have QSGW corrections (see
Fig. 3) that are larger by 0.4 eV than the scissor correction.
By taking into account this additional shift (see black arrow in
Fig. 11), the agreement between theory and experiment would
be greatly improved.

In the next section we will analyze in detail the properties
of these excitonic features in the spectra.

B. Analysis of the excitons

Thanks to the full diagonalization of the BSE Hamiltonian,
which provides the eigenvalues Eλ and eigenvectors Aλ (see
Sec. II C), we can now analyze in detail the character of the
lowest-energy excitons.

The sharp peak at the onset of the spectrum is due to three
degenerate exciton states. They are not the lowest-energy ex-
citons though: approximately 50 meV below them there is also
a twofold-degenerate dark exciton that does not contribute to
the absorption spectrum.

The left and middle panels of Fig. 12 represent the most
important contributions to a dark and a bright exciton, re-
spectively, in terms of electron-hole transitions in the band
structure (the results for the other dark and bright excitons are
similar). The size of the orange circles is proportional to the
weight of |At

λρ̃t | contributing to the exciton λ for each vertical
transition t between a valence and a conduction band at a k
point.

We find that these excitons originate from transitions be-
tween the top valence and the bottom conduction bands at
the k points close to the minimum direct gaps in the band
structure. In this region, close to the � point, the valence
and conduction bands are almost parallel, which means that
many transitions of similar energy can mix and favor strong
excitonic effects [136,137]. Such excitons cannot be described
by simple models such as the Wannier model [138,139].

The contributions to the dark and bright excitons in the
band structure look very similar. The main difference is at
the � point, which contributes for the bright exciton, whereas
it is absent for the dark exciton. The oscillator strengths for
many transitions are separately not zero even for the dark
exciton. In order to understand why the dark exciton has in
total zero oscillator strength, one has to explicitly consider the
sum over equivalent transitions in the numerator of Eq. (8),
in particular over k points. Indeed, for the dark excitons the
BSE coefficients at k = 0 are even functions of k: Aλ(k) =
Aλ(−k), while for the bright excitons they are odd functions:
Aλ(k) = −Aλ(−k). Since for the same transitions the one-
particle oscillator strengths are also odd: ρ̃(k) = −ρ̃(−k),
the products Aλ(k)ρ̃(k) interfere constructively for the bright
excitons and destructively for the dark excitons. This differ-
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FIG. 12. (Left) Projection of |At
λρ̃t | on the band structure for one of the two dark excitons. The size of the circles is proportional to |At

λρ̃t |.
(Center) Same analysis for one of the three bright excitons. The scale is the same for both panels. (Right) Corresponding cumulative functions
Sλ(ω) for the bright and dark excitons (black and blue lines, respectively).

ent mixing of formerly independent transitions is a typical
manifestation of the many-body excitonic effects. The result
of this constructive or destructive mixing can be seen in the
right panel of Fig. 12. For the bright exciton the cumulative
function Sλ(ω) (black line) steadily increases as a function
of ω, i.e., as long as more transitions are taken into account,
reaching its final intensity at around 15 eV. The picture for the
dark exciton is instead very different: as a result of the cancel-
lation between equivalent transitions at the same energy, the
cumulative function Sλ(ω) (blue line) remains always zero,
leading to the dark nature of the exciton.

We can analyze in a similar manner also the peak at 6.6 eV
in the QSGW+BSE spectrum (see Fig. 11), which originates
from three degenerate excitonic states λ. We explicitly con-
sider one of these excitons in Fig. 13. From the representation
of the contributions |At

λρ̃t | on the band structure in the upper
panel, we can conclude that this high-energy exciton stems
from electron-hole transitions distributed all over the Brillouin
zone. Moreover, in contrast to the lowest-energy excitons, in
this case not only transitions between the top valence and the
bottom conduction bands give rise to the excitonic state, but
also deeper valence bands have an important contribution.

The corresponding cumulative function, contrary to the
case of the bright bound exciton in Fig. 12, is not a
monotonously increasing function. To understand what hap-
pens, it is easier to look directly at Iλ(ω) from Eq. (11). It has
a peculiar behavior: it increases when the first contributions at
lower energy are summed, but it decreases shortly afterwards
and becomes negative, before going up again and crossing
the x axis at an energy ω0. After this point, it increases
monotonously. This implies that the total oscillator strength
of this exciton in the spectrum is given by contributions from
electron-hole transitions of energy Et > ω0. This part of the
function Iλ is highlighted in orange in the bottom panel of
Fig. 13. In the upper panel of the same figure, we have
therefore distinguished the two kinds of contributions. Those
that have an energy Et < ω0 and do not effectively contribute
to the exciton oscillator strength are represented by the black
circles, while the others with energy Et > ω0 that are suffi-
cient to yield the final spectrum are represented by the orange
circles.

In order to understand the behavior of the cumulative func-
tion in Fig. 13, it is useful to examine the excitonic eigenvector
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FIG. 13. (Upper panel) Projection of |At
λρ̃t | on the band structure

for one of the three excitons forming the peak at 6.6 eV in the
QSGW+BSE spectrum (see Fig. 11). Full black circles correspond to
transition with energy smaller than the energy ω0 given by the black
vertical line in the bottom panel, full orange circles correspond to
transitions at higher energy. The scale is the same as in Fig. 12. (Bot-
tom panel) The corresponding real part of the cumulative function
Iλ(ω) (the imaginary part, not shown, has a similar behavior). Con-
tributions for ω > ω0 (orange part of the curve) add constructively
to form the exciton oscillator strengths, while the contributions for
ω < ω0 (in black) cancel.

235149-12



FIRST-PRINCIPLES STUDY OF EXCITONS IN OPTICAL … PHYSICAL REVIEW B 104, 235149 (2021)

FIG. 14. Electron density distribution for the two degenerate lowest-energy dark excitons. Shown are cuts along the [101] plane for the
exciton calculated in W -RPA (left panels) and W -QSGW (right panels), where the hole has been placed close to the Ag atom (top panels) and
close to the Cl atom (bottom panels). Cl (Ag) atoms are represented by green (gray) balls, while the hole position is black.

Aλ to first order in K , which reads as

At
λ = δt,tλ + 〈t |K|tλ〉

Et − Etλ

, (14)

where the zero-order term is given by δt,tλ , corresponding to
the zero-order electron-hole transition tλ within an indepen-
dent particle picture. This yields

Iλ(ω) =
Et <ω∑

t

δt,tλ ρ̃t +
Et <ω∑

t

〈t |K|tλ〉
Et − Etλ

ρ̃t + BG(ω). (15)

Supposing that ρ̃t does not change sign with t , the cu-
mulative function is hence given by three contributions: (i)
a steplike contribution from the zero-order term starting ω >

Etλ , (ii) the first-order term which is responsible for the non-
monotonous behavior, with a negative contribution whose
absolute value reaches its maximum at ω = Etλ , and which
subsequently becomes less negative and continues to increase
monotonously, and (iii) a background BG(ω) due to higher
orders. The sum of these terms explains the observations.
Such an effect can only occur when Etλ is not among the
lowest transitions energies because only for higher Etλ the sum
can have negative contributions [140,141].

Finally, we examine the electron-hole correlation function
�λ(rh, re) for the dark and bright bound excitons Fixing the

hole at position r0, its square modulus gives the electron prob-
ability distribution in the electron-hole pair (in each case we
take the sum over the degenerate states λ). The electron-hole
interaction correlates the position of the hole and the electron;
it is thus necessary to compare different positions for the
hole. Since the top valence band has a mixed Ag 4d–Cl 3p
character, two different locations for the hole are considered:
close to the Ag or the Cl sites. In order to avoid the nodes of
the valence wave functions, the hole position is slightly shifted
away from the atomic sites. Therefore, the electron density
plots do not have the cubic symmetry of the crystal. The
corresponding electron distributions are displayed in Figs. 14
and 15 in the color contour plots3 that represent a cut in the
[101] plane of AgCl: the upper panels are for the hole located
close to Ag atoms and the bottom panels for the hole close to
the Cl atoms; the left panels correspond to calculation using
W = W0 from the RPA (W -RPA), while the right panels to the
calculation using W from the QSGW approach (W -QSGW).
The first figure shows the sum of the electron distribution
for the two degenerate dark excitons and the second one the
sum of the three degenerate bright excitons. The saturation

3For these plots we have used the VESTA software [142].
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FIG. 15. Same as the previous figure for the three degenerate bright excitons.

intensity is the same in each column but it is 1.8 times larger
for the dark than for the bright exciton.

The spatial distributions obtained from W -RPA and W -
QSGW are qualitatively similar. However, the W -QSGW
calculation significantly increases the electron density close
to the hole, consistently with the fact that the self-consistent
screening leads to a stronger electron-hole interaction.

The analysis of these plots reveals several aspects of the
excitons. In both the dark and bright excitons, the intensity is
stronger when the hole is placed close to silver than close to
chlorine. This difference is more evident for the dark exciton
than for the bright one. More importantly, the bright exciton
is more delocalized than the dark exciton, whose envelope
has a spatial extension that is smaller than 2 unit cells. In the
bright exciton, independently on where the hole is placed, the
electron density is mainly localized around chlorine atoms. It
is interesting here to make a comparison with LiF, which has
the same crystal structure as AgCl. Since LiF is a wide-gap
insulator, one would expect a tightly bound electron-hole pair
with the hole located at F sites and the electron at neighboring
Li sites. BSE calculations [72,143,144] instead have shown
that the electron charge is always localized on F atoms (and
only weakly on Li atoms). In other words, the role of Cl in the
exciton of AgCl is analogous to F in LiF.

A qualitative explanation for the electronic distribution at
the atomic sites depending on the position of the hole can be

drawn from the dominant single-particle transitions that give
rise to each exciton. We distinguish the two possible hole loca-
tions: if the hole is situated at a silver atom, the dark exciton is
formed by the dipole-forbidden transition Ag 3d → 4s, yield-
ing a spherical shape to the electron distribution at the Ag site
where the hole is located; instead, the bright exciton, thanks to
the Cl-Ag hybridization of the valence band, has the character
of a dipole-allowed transition Ag d → Cl, giving rise to an
axial electron distribution on the Cl atoms next to the hole site.
If the hole is located at a chlorine atom, the dark exciton has
the character of the dipole-forbidden transition Cl 3p → Cl
3p and the corresponding electron distribution at the Cl site
where the hole is situated has an axial distribution; instead,
the character of the bright exciton is the dipole-allowed Cl
3p → Cl 4s, which is possible thanks to the fact that the Cl
4s contribute to the conduction band (see Fig. 2) around the
� point where the exciton is formed. This results again in a
spherical shape of the electron distribution at the Cl site where
the hole is located.

VI. CONCLUSIONS

In conclusion, we have presented an extensive theoreti-
cal study of the electronic and optical properties of silver
chloride, using ab initio calculations starting from KS-DFT.
Since the KS band structure severely underestimates all gaps,

235149-14



FIRST-PRINCIPLES STUDY OF EXCITONS IN OPTICAL … PHYSICAL REVIEW B 104, 235149 (2021)

we have evaluated quasiparticle corrections using the GW
approximation of MBPT. We have found that self-consistency
is needed to produce realistic results. In order to understand
the optical spectra, we had to include the electron-hole inter-
action, which leads to strong excitonic effects. One could in
principle obtain optical spectra also from the computationally
more efficient TDDFT, but excitonic effects in AgCl could
not be captured by current approximations. We therefore had
to solve the Bethe-Salpeter equation of MBPT.

Since convergence needs a dense Brillouin zone sampling,
we used a model to describe the screening of the electron-
hole interaction. The most important input for this model
is the dielectric constant at vanishing wave vector, which is
more difficult to determine than values at larger wave vec-
tor. We have shown that this can lead to large errors. We
therefore propose to change the model input such that van-
ishing wave vectors can be avoided. We have shown that
this leads to very good agreement between results that are
calculated with the full ab initio screening, and those ob-
tained using the model screening. As a byproduct, it also
allows us to determine dielectric constants using different
levels of theory in a very efficient way. Using this approach
the agreement with experiment is improved significantly,
which allows us to assign peaks and interpret the excitonic
features.

The calculations show that a threefold-degenerate bright
exciton, which corresponds to the strong peak that is visible
at the onset in the experiment, is preceded by a twofold-
degenerate exciton that is dark due to destructive interference.
Analysis of the electron-hole correlation function reveals that
a hole close to a silver atom leads to a strong redistribution
of the electron density, whereas the effect is much weaker for
a hole close to a chlorine atom. The use of a self-consistent
screening calculated in QSGW strongly enhances the local-
ization of the electron around the hole, with respect to RPA
screening of the electron-hole interaction. This is interesting,
as it may have consequences for the coupling of electronic
excitations in AgCl to the lattice, or for the migration of
charge between AgCl as a substrate and molecules adsorbed
on its surface.

ACKNOWLEDGMENTS

This work was supported by a grant from the Ile-de-France
Region–DIM “Matériaux anciens et patrimoniaux.” Compu-
tational time was granted by GENCI (Project No. 544). We
acknowledge fruitful discussions with V. de Seauve, M.-A.
Languille, and B. Lavédrine. We are thankful to V. Gorelov
for the development of the analysis tool of the exciton in terms
of band structure projections.

APPENDIX: COMPUTATIONAL DETAILS

We have generated Troullier-Martins [145] pseudopoten-
tials using the FHI98PP package [146]. We used an LDA xc
functional in the Perdew-Wang parametrization [147] with
scalar relativistic corrections. It is generally established that
spectroscopy calculations require valence shells to be com-
plete because of the strong spatial overlap between electrons
in the same shell and the consequent strong exchange effects

[126,148,149]. Here we use the slightly ionized [150] atomic
configuration 1s22s22p63s23p64s23d104p64d10 to create the
pseudopotential of silver, with the 4spd shell 4s24p64d10

in the valence. We use s as the local reference component
to represent all higher angular momenta. Cutoff radii were
set to 0.9 a.u. for the s, 2.3 a.u. for the p, and 1.5 a.u.
for the d component, guaranteeing satisfactory logarithmic
derivatives and excitation energies. Chlorine does not present
the same difficulty, and we have created the pseudopotential
using an atomic configuration of 1s22s22p6 for the core and
3s23p4.53d0.5 for the valence electrons. Cutoff radii were 1.6
a.u. for s and p components and 1.8 a.u. for the d component.

DFT calculations are done using the ABINIT package
[151]. Converged results for AgCl were obtained by using
Monkhorst-Pack [152] 8 × 8 × 8 grids shifted along four
directions and a kinetic energy cutoff Ecut = G2

max/2 = 150
Hartree.

We have performed band-structure calculations with both
G0W 0 and QSGW, using the ABINIT package [151] and with
a four-times shifted (4 × 4 × 4) grid to sample the Brillouin
zone. For G0W 0 calculations, W was obtained using 5000
plane waves to describe the wave functions and 550 bands.
The size of the dielectric matrix was 1471 G vectors. For the
self-energy, wave functions were described with 4000 plane
waves and 820 bands were used to evaluate 	xc.

For computationally heavier QSGW calculations, the basis
set had to be reduced introducing an error bar of 0.2 eV with
respect to fully converged G0W 0 results. The parameters used
are, for the screening, a matrix size of 1100, 340 bands, and a
cutoff of 1200 plane waves for the wave functions. For the
self-energy calculation, 420 bands were used as well as a
cutoff of 1200 plane waves for the wave functions.

The linear-response TDDFT calculations were carried out
using the DP code [153]. Convergence for both absorption
and the extinction coefficient over a frequency range of 0 to
10 eV was reached using 2048 shifted k points [106], 965
plane waves for the wave functions, 59 G vectors for the
polarizability matrix including crystal local field effects, 13
occupied bands, and 20 unoccupied bands. The spectra are
calculated with a 0.1-eV Lorentzian broadening.

All BSE calculations have been performed using the EXC

code [154]. As input, we use the KS band structure cor-
rected by a scissor shift taken from our GW calculation. We
have verified that this reproduces well the effect of the true
GW corrections at the absorption onset but is less accurate
at higher energies (see Fig. 3). We refer to G0W 0+BSE or
QSGW+BSE for BSE calculations that use a scissor de-
termined from G0W 0 or QSGW band-structure calculations,
respectively. The convergence with respect to the number of
plane waves used to represent the KS orbitals in the BSE
calculation is shown in Fig. 16. The absorption spectrum is al-
ready well converged with 965 plane waves. The BSE matrix
elements are little influenced by the plane waves with large
wave vector since the latter oscillate rapidly and therefore
yield vanishing contributions to the matrix elements of the
more slowly varying functions with which they are integrated.
The convergence with respect to the number of k points is
illustrated by Fig. 17. The unshifted grids containing high-
symmetry k points converge much slower than the grids that
are slightly shifted off high-symmetry k points [106]. The
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FIG. 16. Convergence of the BSE absorption spectrum with re-
spect to the number of plane waves using a four-times shifted
8 × 8 × 8 grid of k points.

spectra can be considered converged with at least 2048 k
points.

The final G0W 0+BSE and QSGW+BSE spectra presented
in Fig. 11 have been obtained with 0.02 Lorentzian broad-
ening and a 0.09-eV Gaussian broadening and the following
parameters: 2048 shifted k points, 8 occupied and 12 unoc-
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FIG. 17. Convergence of the G0W 0+BSE absorption spectrum
as a function of the number of k points in the full Brillouin zone with
a 0.1-eV Lorentzian broadening.

cupied bands. To calculate these spectra we have used the
Haydock iterative scheme [155,156]. For the exciton anal-
ysis, instead, we have performed a full diagonalization of
the excitonic Hamiltonian using a four-time shifted 6 × 6 × 6
Monkhorst-Pack k-point grid, 8 occupied bands and 6 unoc-
cupied bands.
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