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First-principles study of the electrical resistivity in zirconium dichalcogenides with multivalley
bands: Mode-resolved analysis of electron-phonon scattering
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Based on first-principles calculations, we study the electron-phonon scattering effect on the resistivity in
the zirconium dichalcogenides, ZrS2 and ZrSe2, whose electronic band structures possess multiple valleys at
the conduction band minimum. The computed resistivity exhibits nonlinear temperature dependence, especially
for ZrS2, which is also experimentally observed on some transition metal dichalcogenides such as TiS2 and
ZrSe2. By performing the decomposition of the contributions of scattering processes, we find that the intravalley
scattering by acoustic phonons mainly contributes to the resistivity around 50 K. Moreover, the contribution of
the intravalley scattering by optical phonons becomes dominant even above 80 K, which is a sufficiently low
temperature compared with their frequencies. By contrast, the effect of the intervalley scattering is found to
be not significant. Our study identifies the characteristic scattering channels in the resistivity of the zirconium
dichalcogenides, which provides critical knowledge to microscopically understand electron transport in systems
with multivalley band structure.
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I. INTRODUCTION

Transition metal dichalcogenides (TMDCs) [1–4] are lay-
ered materials of the form MX2, where M and X are transition
metal and chalcogen atoms, respectively. The TMDCs have
been extensively investigated due to a wide range of phys-
ical properties and potential applications originating from
the unique band structures, such as superconductivity [5–9],
magnetic ordering [10–13], charge density waves (CDWs)
[14–23], exciton dynamics [24–30], topological semimetal
states [31–41], and thermoelectricity [42–51]. In some typ-
ical TMDCs, the electronic band structure shows multiple
valleys around the Fermi level, where a valley implies a lo-
cal extremum of the band structure; the manipulation of the
valley degree of freedom has attracted considerable attention
for valleytronics applications [52–64]. In addition, the effect
of scattering between valleys, namely, intervalley scattering,
have been investigated from various perspectives such as ex-
citonic electron-hole exchange interaction [24–26,30], CDW
instability [14–18,22], and electrical transport [42,44,65–73].

The effect of intervalley scattering is also considered
to be a key factor in the thermoelectric performance
[74–77]. Higher valley degeneracy leads to higher carrier
density but, at the same time, results in a higher pos-
sibility of electron scattering, which in turn suppresses
the electrical conductivity. In particular, it has been ar-
gued that intervalley scattering induced by acoustic phonons
strongly affects the electrical transport in addition to in-
travalley scattering by acoustic phonons, and it may cause
the quadraticlike temperature dependence of electrical re-
sistivity of TiS2 observed over a wide temperature range
[42,44,68,73]. The quadraticlike temperature dependence has
been observed not only in TiS2 [42,44,65–69,73,78–80]

but also in some other TMDCs such as ZrSe2 [69–71],
HfSe2 [70], and MoTe2 [72], and the electron scatter-
ing mechanism is still controversial. Other than intervalley
scattering by acoustic phonons, some other scattering mech-
anisms such as optical phonon scattering [69,70,78–81],
electron-electron scattering [67,82], electron-hole scattering
[80,82,83], and ionized impurity scattering [71] have also
been proposed as crucial mechanisms determining the trans-
port properties. Although some first-principles studies of the
intervalley scattering effect in some TMDCs and other materi-
als have recently been performed in terms of electron-phonon
scattering [84–88], they have not pursued the cause of the
quadratic temperature dependence of resistivity. Elucidating
the origin of the temperature dependence will lead to acquir-
ing knowledge essential for controlling transport properties
such as thermoelectric performance.

Given this background, in this paper, we theoretically
investigate the electron-phonon scattering effect on the re-
sistivity in the zirconium dichalcogenides, ZrS2 and ZrSe2,
by means of first-principles calculations. The theoretical ap-
proach employed in this paper can take into account the
electron-phonon scattering by all the phonon modes. We shall
show that the intravalley scattering is a dominant contributor
to the resistivity in a wide temperature range and that the
contribution from the intravalley scattering by optical phonons
increases with increasing temperature. Our detailed analysis
unambiguously identifies the phonon states which strongly
scatter the electrons and thus dominantly contribute to the
resistivity at both low and high temperatures, 50 and 300 K.
Based on these results, we reveal that the intravalley scattering
caused by optical phonons is a primary factor in making
the temperature dependence of resistivity nonlinear. We also
conclude that the electrical resistivity of ZrSe2 exhibits a
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temperature dependence that is closer to linear than that of
ZrS2 because the frequencies of optical phonons of ZrSe2 are
lower.

The paper is organized as follows: In Sec. II we show
the details of the calculation methods we used in this paper.
Sections III A and III B present calculation results for ZrS2

and ZrSe2, respectively. We discuss the nonlinear temperature
dependence of the resistivity in ZrS2 in Sec. III A and the
difference in the temperature dependence between ZrS2 and
ZrSe2 in Sec. III B. Finally, a summary of the present study is
presented in Sec. IV.

II. METHODS OF CALCULATIONS

All the first-principles calculations were performed us-
ing the QUANTUM ESPRESSO package [89–91] (version 6.3).
Perdew-Burke-Ernzerhof parametrization adapted for solids
of the generalized gradient approximation (PBEsol-GGA)
[92,93] was used. Spin-orbit coupling was not included in
the calculations. First, we determined the crystal structures
through structural optimization, and then we performed the
band-structure calculations. We used the optimized norm-
conserving Vanderbilt (ONCV) pseudopotentials [94] ex-
tracted from the PSEUDODOJO library [95] and an 18×18×12 k
mesh for both materials. The plane-wave cutoff was set as
100 Ry. After the band-structure calculations, we performed
phonon calculations within the density-functional perturba-
tion theory (DFPT) on a 6×6×4 q-mesh sampling. Hereafter,
the vector k implies the electronic wave-number vector, and
the vector q is the phonon wave-number vector in this paper. In
order to construct the effective models by using the maximally
localized Wannier functions [96] and obtain the electron-
phonon matrix elements on ultrafine k and q grids, we em-
ployed the EPW code [97–100] (version 5.2) of the QUANTUM

ESPRESSO distribution, which is in conjunction with the WAN-
NIER90 library [101–104] (version 3.0). We chose Zr s and S
(Se) p orbitals as initial guesses for the Wannier functions and
constructed 11-orbital effective models using a 12×12×8 k-
mesh sampling. We interpolated the electron-phonon matrix
elements to 96×96×72 k and q grids to calculate the resis-
tivity. Indeed, as for the k grid, only the 57,109 k points in
the irreducible wedge were used. In this paper, we focus on
the in-plane resistivity of both materials. For this purpose, we
calculated the electrical conductivity tensor by the Boltzmann
transport equation within the relaxation time approximation
(RTA) as follows:

σ = 2 × e2

�

∑
k,n

τknvkn ⊗ vkn

(
−∂ fkn

∂ε

)
(1)

with the Fermi-Dirac distribution function

fkn = 1

eβ(εkn−μ)+1
. (2)

The factor 2 at the head of the right-hand side of Eq. (1) comes
from spin degeneracy. � is the volume of the crystal, e (>0)
is the elementary charge, β is the inverse temperature defined
as β = (kBT )−1 with the Boltzmann constant kB, and μ is
the Fermi level. τkn, εkn, and vkn are the relaxation time, the
energy level of the electron, and the group velocity on the nth

band at a certain k point, respectively. Here, the Fermi level
μ was determined so as to provide a fixed electron carrier
density of 1.0×1020 cm−3 for each temperature. The in-plane
electrical resistivity was obtained by taking the inverse of
the corresponding diagonal component of the electrical con-
ductivity tensor σ. In this paper, we compute the scattering
rate, which is the inverse of the relaxation time, by using the
following equation:

1

τkn
= 2π

Nph̄

∑
q,ν

∑
n′

|gn′nν (k, q)|2

× [
W (−)

n′nν (k, q) + W (+)
n′nν (k, q)

]
(3)

with

W (±)
n′nν (k, q) =

{
fk+qn′ + nqν

1 − fk+qn′ + nqν

}
δ(εkn − εk+qn′ ± h̄ωqν ),

(4)

where Np is the total number of q points in the first Brillouin
zone, nqν = (eβ h̄ωqν − 1)−1 is the Bose-Einstein distribution
function, and ωqν is the frequency of the phonon on the νth
phonon branch at a certain q point. gn′nν (k, q) is the electron-
phonon matrix element, which represents the scattering from
the initial electronic state |kn〉 to the final state |k + qn′〉 via
a phonon in the state (q, ν). We have confirmed that the size
of the k and q grids adopted in this paper, 96×96×72, is large
enough to achieve the convergence for the electrical resistivity
as presented in Appendix B 2. Equation (3) coincides with the
expression of the scattering rate given by Fermi’s golden rule
[105–107].

III. RESULTS AND DISCUSSION

A. ZrS2

Figure 1 presents the calculated electron and phonon band
structures of ZrS2. As shown in Fig. 1(a), the band structure
of the effective model well reproduces the band structure
obtained with first-principles calculations. Since n-type con-
ductor behavior has been experimentally reported in related
materials, TiS2 [42,44,68,73] and ZrSe2 [69–71], we focus on
the transport properties of electron-doped ZrS2 in this paper.
As shown in Fig. 1(c), there exist three Fermi pockets of
electrons in the first Brillouin zone. The schematic illustration
of Fermi surfaces is shown in Fig. 1(d). We note that the Fermi
pockets are situated around the L points, and the scattering
between the states on different pockets is the intervalley scat-
tering.

Figure 2 presents the calculated electron-phonon matrix
elements, where the Wannier-interpolated ones and those ex-
plicitly obtained by DFPT calculations are shown by blue
dots and black squares, respectively. It is seen that the q de-
pendence of the interpolated electron-phonon matrix elements
well reproduces the dependence obtained from DFPT calcu-
lations on most q paths. However, for some q points along the
�-A line, the interpolated electron-phonon matrix elements
are larger than the ones obtained from DFPT calculations.
This is due to the fact that the interpolation is not completely
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FIG. 1. (a) Electronic band structures of ZrS2 obtained from first-principles calculation (dashed gray lines) and the effective model
constructed by Wannier orbitals (solid blue lines). (b) The phonon dispersion. The optical modes in the long-wavelength limit are specified by
Mulliken symbols [108]. (c) The Fermi surface for the electron carrier density of 1.0×1020 cm−3 at 300 K, which was plotted with XCRYSDEN

software [109]. (d) Schematic illustration of the Fermi surfaces in the Brillouin zone. The red arrows correspond to the scattering vectors.
(e) Illustration of the condition |q| � |q�M|/2, which is used to sum over wave vectors q only corresponding to intravalley scattering vectors.

successful. We have confirmed that this difference has little
effect on the electrical resistivity. (See Appendix B 1.) We
note that discontinuous jumps in Fig. 2 come from switchings
between phonon branches at their crossing points. As can be
seen in Fig. 2(d), the electron-phonon matrix elements diverge
in the long-wavelength limit q → 0 because the correspond-
ing coupling indicates that electrons couple with longitudinal
optical (LO) phonons inducing macroscopic fields.

1. Temperature dependence of the electrical resistivity

From the interpolated electron-phonon matrix elements,
we calculated the scattering rate and the electrical resistiv-
ity. To clarify which phonons mainly scatter electrons and
whether intravalley scattering or intervalley scattering plays
a significant role in the resistivity, we decomposed the scat-
tering rate in terms of the q-space region and the phonon
branches as follows:

1

τ
(intra-ac)
kn

= 2π

Nph̄

∑
|q|�|q�M|/2

3∑
ν=1

∑
n′

|gn′nν (k, q)|2[W (−)
n′nν (k, q) + W (+)

n′nν (k, q)
]
, (5)

1

τ
(intra-op)
kn

= 2π

Nph̄

∑
|q|�|q�M|/2

9∑
ν=4

∑
n′

|gn′nν (k, q)|2[W (−)
n′nν (k, q) + W (+)

n′nν (k, q)
]
, (6)

1

τ
(inter-ac)
kn

= 2π

Nph̄

∑
|q|>|q�M|/2

3∑
ν=1

∑
n′

|gn′nν (k, q)|2[W (−)
n′nν (k, q) + W (+)

n′nν (k, q)
]
, (7)

1

τ
(inter-op)
kn

= 2π

Nph̄

∑
|q|>|q�M|/2

9∑
ν=4

∑
n′

|gn′nν (k, q)|2[W (−)
n′nν (k, q) + W (+)

n′nν (k, q)
]
, (8)

where |q| = (q2
x + q2

y + q2
z )1/2 and we regard the first three

branches from the lowest frequency as acoustic-phonon
branches. The summation with respect to q is taken over the
first Brillouin zone. For example, τ

(intra-ac)
kn can be regarded
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FIG. 2. The q dependence of calculated electron-phonon matrix elements gn′nν (k, q) obtained with Wannier interpolations (blue dots) is
compared with that of the elements obtained from direct DFPT calculations (black squares). In the calculation of gn′nν (k, q), the initial state
ukn is set to the bottom of the conduction band at the L point, and the final states uk+qn′ are set to the lowest conduction band. The phonon
branch ν is set to (a) the first (lowest), (b) the seventh, (c) the eighth, and (d) the ninth (highest). The electron-phonon matrix elements from
direct DFPT calculations were obtained only along �-M-K-�-A. Mulliken symbols [108] are shown for the q → 0 optical modes in (b)–(d).

as the contribution of the intravalley scattering by acoustic
phonons to the relaxation time. Since the distance between
the centers of the nearest Fermi surfaces is equal to the dis-
tance between the � and M points, i.e., |q�M|, the scattering
processes with q � |q�M|/2 can be regarded as intravalley
scattering as shown in Fig. 1(e). By using the relaxation times
τ

(intra-ac)
kn , τ

(intra-op)
kn , τ

(inter-ac)
kn , and τ

(inter-op)
kn , instead of the total

relaxation time τkn in Eq. (3), we calculated the decomposed
resistivities, respectively, and compared them with the total
resistivity, which includes all the contributions as shown in
Fig. 3(a). We can see that the intravalley scattering processes
by optical phonons play a significant role in the resistivity
above 80 K. It is apparent that the temperature dependence of
the resistivity, which includes all the contributions, is slightly
curved, as shown in Fig. 3(a). (See also the logarithmic
plots presented in Appendix D.) This behavior mainly comes
from the intravalley scattering processes by optical phonons.
Similar behavior also has been experimentally observed in

the resistivity of TiS2 [42,44,67,68,73] and in that of ZrSe2

[69–71].
To investigate how the wave vector and frequency depen-

dencies of the electron-phonon matrix elements gn′nν (k, q)
contribute to the results, we also calculated the resistivity and
the decomposed resistivities by substituting a constant value
into the electron-phonon matrix elements (g = 50 meV) as
presented in Fig. 3(b). Comparing this with Fig. 3(a), it is clear
that the contribution of the intravalley scattering by optical
phonons is vastly underestimated, compared with other kinds
of scattering. Thus we can conclude that the large intravalley
scattering by optical phonons shown in Fig. 3(a) is due to a
large electron-phonon coupling. In fact, we have seen a sharp
increase in |gn′nν (k, q)| for some optical phonons near q = 0
in Fig. 2. We can see that the temperature dependence of
the total resistivity by regarding the electron-phonon matrix
elements as a constant value is closer to a linear behavior
than that obtained with explicit consideration of the matrix
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FIG. 3. The temperature dependence of the in-plane electrical resistivity of ZrS2. The resistivity is calculated (a) with the electron-phonon
matrix element obtained from first-principles calculations and (b) with the constant electron-phonon matrix element (g = 50 meV). We
assumed that the electron carrier density is 1×1020 cm−3. The inset in (a) shows a closer view in the lower-temperature region.

elements. Therefore, to understand the temperature depen-
dence of the resistivity, the phonon wave vector and frequency
dependence of the electron-phonon matrix elements cannot be
ignored.

2. The wavelength- and frequency-resolved resistivity

Using the decomposition of the scattering rate as repre-
sented in Eqs. (5)–(8), the temperature dependence of each
contribution was obtained, and it was found that the intraval-
ley scattering makes a dominant contribution to resistivity in
a wide temperature range. However, since we took partial
summations over phonon branches and wave-number vectors,
it is difficult to identify the wave-number vectors of phonons

that scatter the electrons strongly just from the results shown
above. We thus calculated the wavelength- and frequency-
resolved resistivity as follows:

ρ(qcutoff, ωcutoff )

=
[

2e2

�

∑
k,n

τkn(qcutoff, ωcutoff ) v2
kn

(
−∂ fkn

∂ε

)]−1

. (9)

We used the following relaxation time, where only the phonon
modes satisfying |q| < qcutoff and ωqν < ωcutoff are taken into
account:

τkn(qcutoff, ωcutoff ) =
[

2π

Nph̄

∑
n′,q,ν

|gn′nν (k, q)|2[W (−)
n′nν (k, q) + W (+)

n′nν (k, q)
]
θ (qcutoff − |q|)θ (ωcutoff − ωqν )

]−1

, (10)

where θ (x) is the Heaviside step function, whose value
is 1 if x > 0 and 0 otherwise [110]. We note that
ρ(qcutoff, ωcutoff ) is a monotonically increasing function for
qcutoff and ωcutoff; it is equal to the original ρ if qcutoff

is greater than the maximum value of the norm of the
phonon vector |q|, which corresponds to the distance be-
tween the � and H points |q�H| in this case, and ωcutoff is
greater than the maximum value of the phonon frequency
ωqν . One can regard that the phonon states corresponding
to (qcutoff, ωcutoff ) where ρ(qcutoff, ωcutoff ) changes abruptly
make a significant contribution to the electrical resistivity.
We thus calculated ρ(qcutoff, ωcutoff ) and the derivative of
ρ(qcutoff, ωcutoff ), namely, ∂2ρ(qcutoff, ωcutoff )/∂qcutoff∂ωcutoff

for T = 50 K and T = 300 K as shown in Fig. 4. The
derivative ∂2ρ(qcutoff, ωcutoff )/∂qcutoff∂ωcutoff was calculated

by using the finite-difference method. Figure 4 reveals that
the contributions to the resistivity are large within the ra-
dius 2kF from the � point, where kF denotes the length of
the semimajor axis of the Fermi surface along the A-L line.
Thus the strong intensity of ∂2ρ(qcutoff, ωcutoff )/∂qcutoff∂ωcutoff

for qcutoff < 2kF in Figs. 4(b) and 4(d) is consistent with the
strong intravalley scattering presented in Fig. 3(a). While the
acoustic phonons have the dominant contribution at 50 K
as shown in Fig. 4(b), the contribution of optical phonons
becomes dominant at 300 K as shown in Fig. 4(d). This
switching can be naturally understood by the increased oc-
cupation of high-frequency phonons at high temperature. We
note that, however, as shown in Fig. 3, this switching takes
place at around 80 K, which is much lower than the opti-
cal phonon frequencies ∼30–40 meV. This is because some
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FIG. 4. (a) and (c) The cutoff dependences of the resolved electrical resistivities ρ(qcutoff, ωcutoff ) of ZrS2 and (b) and (d) those of their
derivatives ∂2ρ(qcutoff, ωcutoff )/∂qcutoff∂ωcutoff with an electron carrier density of 1×1020 cm−3. (a) and (b) show the cutoff dependences at 50 K,
and (c) and (d) show them at 300 K. kF is defined in the text.

optical phonons bring about strong electron-phonon coupling
as we shall discuss in the next paragraph. On the other hand,
the intervalley scattering is of less importance because fewer
phonons occupy the states near the q�M points than the states
of acoustic phonons at q ∼ 0, and also the electron-phonon
matrix elements coupled with phonons near the q�M points
are not significant.

As mentioned above, the electron-phonon coupling
|gn′nν (k, q)| with some optical phonons becomes quite large
around q = 0. In particular, the coupling with polar LO (Eu

and A2u) modes diverges in the long-wavelength limit (q → 0)
as shown in Fig. 2(d). Several theoretical studies have also
pointed out that the interaction between polar LO phonons
and electrons, which was first investigated by Fröhlich [111],
plays an important role in the electronic transport also in
other polar materials such as bulk GaAs [112–114], mono- or
multilayer InSe [115,116], and monolayer MoS2 [84]. Some
previous studies also have indicated that the homopolar scat-
tering induced by A1g phonons whose eigenmode corresponds
to the vibration of chalcogen layers in counterphase in the
direction vertical to the layer plane (so-called “Fivaz”-mode
phonons [81]) is the primary scattering mechanism that de-

termines the resistivity of TiS2 [69,78–80] or ZrSe2 [69,70].
Since our calculations do not correctly treat the electron-
phonon matrix elements corresponding to the A1g mode as
shown in Fig. 2(c), the contribution of the A1g mode to the
resistivity cannot be accurately estimated. Therefore we re-
frain from discussing the scattering caused by the A1g mode
phonons in this paper.

Here, we discuss the nonlinear temperature dependence
of the resistivity shown in Fig. 3(a). The Bose distribution
nqν = (eβ h̄ωqν − 1)−1 in Eqs. (3) and (4) can be approximated
as (kB/h̄ωqν )T if the temperature is higher than the phonon
frequency (h̄ωqν < kBT ), and thus the scattering rate and
the resistivity give a linear temperature dependence. When
acoustic phonons mainly contribute to the scattering rate, the
resistivity shows a linear temperature dependence except in
an extremely low temperature range. The linear temperature
dependence of the resistivity is often observed in materials
whose scattering can be considered to come from acoustic
phonons. On the other hand, when optical phonons have a
significant contribution, since their frequencies are high, the
linear approximation to the Bose factor is not valid even at
moderate temperatures, and hence the resistivity can exhibit
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FIG. 5. (a) The cutoff dependence of the resolved electrical resistivity ρ(qcutoff, ωcutoff ) of ZrS2 and (b) that of its derivative
∂2ρ(qcutoff, ωcutoff )/∂qcutoff∂ωcutoff at 300 K with the electron carrier density of 1×1020 cm−3. The wavelength cutoff qcutoff is applied to
(q2

x + q2
y )1/2 instead of |q| = (q2

x + q2
y + q2

z )1/2. kF is defined in the text.

a nonlinear temperature dependence. In fact, in the case of
ZrS2, above 80 K (even though the temperature is still sev-
eral times lower than the frequencies of the Eu and A2u LO
phonons and the A1g optical phonons), the optical phonons
already play a significant role, and the nonlinear temperature
dependence is observed in a wider temperature range. The
present analysis may provide an (at least partial) explanation
for the nonlinear temperature dependence on the resistivity
of TiS2 [42,44,67,68,73] or that of ZrSe2 [69–71]. We note
that the RTA, which is symbolized by Eq. (3) and adopted in
this paper, can overestimate the forward scattering effects by
phonons at q ∼ 0 (and hence the electrical resistivity). This is
because when the group velocity of the electrons changes little
by the scattering process, it should not significantly affect the

electrical current, while this effect is not taken into account
within the RTA. This problem can become significant when
the size of the Fermi surfaces, limiting the size of q required
to change the direction of the electron group velocity, is much
larger than wave vectors of phonons that mainly scatter the
electrons. However, in our calculation, the scale of scattering
vectors is the same length as the size of the Fermi surface
(∼2kF) as shown in Fig. 4. Therefore we can regard that the
velocity of the electrons changes its direction by intravalley
scattering.

Since we discuss the in-plane electrical resistivity in the
layered compound, we also calculated the wavelength- and
frequency-resolved resistivity ρ̃(qcutoff, ωcutoff ) with the fol-
lowing relaxation time:

τ̃kn(qcutoff, ωcutoff ) =
[

2π

Nph̄

∑
n′,q,ν

|gn′nν (k, q)|2[W (−)
n′nν (k, q) + W (+)

n′nν (k, q)
]
θ
(

qcutoff −
√

q2
x + q2

y

)
θ (ωcutoff − ωqν )

]−1

, (11)

where all the qz are considered but the qcutoff is applied to√
q2

x + q2
y . Comparing Figs. 5(a) and 5(b) with Figs. 4(c)

and 4(d), the results turned out to be almost the same as

those calculated with applying qcutoff to |q| =
√

q2
x + q2

y + q2
z .

Therefore we can conclude that it is acceptable to compare |q|
with |q�M| and kF as done in the above discussion, while the
q�M and kF are defined in the qxqy (kxky) plane.

B. ZrSe2

We also investigated the electrical resistivity of ZrSe2,
which is one of the TMDCs whose electrical resistivity has
been measured in previous studies [69–71]. Figure 6 presents
the calculated electron and phonon band structures of ZrSe2.
Similar to ZrS2, there also exist three Fermi pockets of elec-
trons in the first Brillouin zone. As shown in Fig. 6(b), the

frequencies of optical phonons of ZrSe2 are lower than those
of ZrS2.

3. Analysis of the electrical resistivity

To see the effect of the atomic substitution from sulfur
atoms to selenium atoms on the resistivity, we calculated
the in-plane resistivity of n-type ZrSe2, which is determined
from the electron scattering by phonons. For comparison,
we also calculated the electrical resistivity using a constant
value for the electron-phonon matrix element (g = 40 meV)
instead of the calculated matrix elements gn′nν (k, q). Note
that the result obtained from the calculated matrix elements is
roughly consistent with the experimental value of resistivity,
which is 1.25×10−2 � cm for a Hall carrier concentration
of 3.97×1019 cm−3 at room temperature, reported by Ōnuki
et al. [69]. As shown in Fig. 7, the nonlinear behavior of the
temperature dependence of the resistivity is weakened com-
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FIG. 6. (a) Electronic band structures of ZrSe2 obtained from first-principles calculations (dashed gray lines) and the effective model
constructed by Wannier orbitals (solid blue lines). (b) The phonon dispersion. The optical modes at the � point are distinguished by Mulliken
symbols [108].

pared with the dependence in ZrS2 (see also Appendix D); the
temperature dependence appears to be almost linear in a wide
temperature range. One may expect that a similar analysis as
in the case of ZrS2 can be performed, but the scattering rate
of ZrSe2 cannot be decomposed into the contributions coming
from acoustic and optical phonons as represented in Eqs. (5)–
(8), because the phonon branches of acoustic phonons are
entangled with those of optical phonons, as shown in Fig. 6(b).
To understand the difference in the temperature dependence
of the resistivity between ZrS2 and ZrSe2, we calculated
the wavelength- and frequency-resolved resistivity given by

FIG. 7. The temperature dependence of the in-plane electrical re-
sistivity of ZrSe2. The resistivity calculated with the electron-phonon
(e-ph) matrix element obtained from first-principles calculations
(solid black line) and that calculated with the constant electron-
phonon matrix element (g = 40 meV) (dashed red line). We assumed
that the electron carrier density is 1×1020 cm−3.

Eqs. (9) and (10) for 50 and 300 K shown by Fig. 8. First,
the difference in the temperature dependence can be under-
stood as follows. The reason for the linearlike temperature
dependence in ZrSe2 is that the frequencies of optical phonons
decrease compared with those of ZrS2, and the Bose factor
(eβ h̄ωqν − 1)−1 can be regarded as (kB/h̄ωqν )T in a wider
temperature range. Here, we should understand the reason
why the value of resistivity is lower than that of ZrS2. Since
the frequencies of the optical phonons become lower, and
hence their states are more occupied, one would expect that
the resistivity becomes higher. However, the calculated results
in Figs. 3 and 8 show the opposite trend. One of the possible
reasons is that the electron-phonon matrix elements coupled
with the polar LO phonons in ZrSe2 at q → 0 are smaller than
those in ZrS2. The divergent behavior of the electron-phonon
matrix elements for q → 0 depends on the electrostatic po-
tential, which is screened by the electronic permittivity. The
in-plane components of dielectric constants ε∞ obtained from
the DFPT calculations are 11.99 for ZrS2 and 18.39 for ZrSe2;
the cross-plane components are 5.93 and 9.29, respectively.
Therefore it can be considered that the resistivity of ZrSe2 is
lower than that of ZrS2 due to the smaller electron-phonon
matrix elements coming from the stronger screening effect on
the electrostatic potential.

IV. CONCLUSION

In summary, we have investigated the electron-phonon
scattering effect on the resistivity of ZrS2 and ZrSe2. We
have found that the calculated resistivity exhibits a nonlin-
ear temperature behavior, and the tendency is stronger in
ZrS2 than in ZrSe2. According to our analysis of the mode-
resolved electrical resistivity, the intravalley scattering by
optical phonons mainly contributes to the resistivity at around
room temperature. Although optical phonons are less excited
than acoustic phonons, the contributions of optical phonons
become more extensive than the contributions of the acoustic
phonons due to the larger electron-phonon matrix elements
coupled with some optical phonons in the higher-temperature
range. The intervalley scattering is less significant than the
intravalley scattering in both ZrS2 and ZrSe2. Conversely,

235144-8



FIRST-PRINCIPLES STUDY OF THE ELECTRICAL … PHYSICAL REVIEW B 104, 235144 (2021)

FIG. 8. (a) and (c) The cutoff dependences of the resolved electrical resistivities ρ(qcutoff, ωcutoff ) of ZrSe2 and (b) and (d) those of their
derivatives ∂2ρ(qcutoff, ωcutoff )/∂qcutoff∂ωcutoff with an electron carrier density of 1×1020 cm−3. (a) and (b) show the cutoff dependences at 50 K,
and (c) and (d) show them at 300 K. The definition of kF is the same as that for ZrS2, but the value was determined from the size of the Fermi
surface of ZrSe2.

the intervalley scattering can have a large contribution to the
resistivity if the following conditions are satisfied: (1) The
temperature is much lower than the energy scale of optical
phonons, but the low-frequency phonon states whose vector
connects between electronic valleys are sufficiently occupied,
and (2) the electron-phonon matrix elements coupled with
optical phonons are not large even at q ∼ 0. The difference
in the temperature dependence of the resistivity between ZrS2

and ZrSe2 can be explained by the difference in the strength of
the screening effect on the electron-phonon matrix elements.
The present study deepens our understanding of the electron-

TABLE I. Optimized crystal structures of ZrS2. Lattice con-
stants: a = 3.627 Å, c = 5.887 Å.

Wyckoff Site
Element Multiplicity letter symmetry Atomic position

Zr 1 a −3m. 0, 0, 0
S 2 d 3m. 1/3, 2/3, 0.2470

phonon scattering effect on the transport properties not only
for zirconium dichalcogenides but also for other materials
possessing multiple valleys in the electronic band structure.
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FIG. 9. (a) and (b) The q dependence of calculated electron-phonon matrix elements gn′nν (k, q) obtained by Wannier interpolations of the
sampling data on the 6×6×4 q grid (blue dots) and on the 6×6×12 q grid (red dots). The electron-phonon matrix elements obtained from
direct DFPT calculations are also shown by the black squares. The panels show the q dependence of electron-phonon matrix elements for the
two modes, (a) ν = 3 and (b) ν = 8, in which the difference before and after interpolation is noticeable along the �-A line.

APPENDIX A: OPTIMIZED CRYSTAL STRUCTURES

Tables I and II present the structural parameters of target
materials obtained by our first-principles calculations.

APPENDIX B: CONVERGENCE TESTS

This Appendix provides the results of some convergence
tests for the calculations of ZrS2.

1. The sampling q grid used in the DFPT calculations

Figure 2(c) shows that the interpolated matrix elements
are not perfectly reproduced by the Wannier interpolation for

some q points. To check the effect of this deviation on the
electrical resistivity, we first calculated the electron-phonon
matrix elements using different q grids for Wannierization and
compared them [117]. The electron-phonon matrix elements
interpolated from a 6×6×4 q grid and those from a 6×6×12
q grid are shown in Fig. 9. As shown in Fig. 9, even if
we take a finer sampling q grid, we cannot completely get
rid of the deviations from the ones obtained by the DFPT
calculations around the � point. However, we can see that
the denser 6×6×12 q grid better reproduces the direct DFPT
result. Nevertheless, there is no large difference between the
electrical resistivity obtained with the 6×6×4 q-grid sam-
pling and that obtained with the 6×6×12 q-grid sampling as

FIG. 10. The temperature dependence of the in-plane electrical resistivity of ZrS2. (a) The data obtained by interpolation with the 6×6×4 q-
grid sampling, and (b) the data obtained with the 6×6×12 q-grid sampling.
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FIG. 11. The temperature dependence of (a) the in-plane electrical resistivity and (b) the in-plane electrical conductivity in ZrS2 with
several different grids for calculating the electrical conductivity tensor.

shown in Fig. 10. For both cases, the electrical resistivity was
calculated using the 72×72×64 k and q grids after Wannier
interpolation. The same applies to the electrical conductivity
decomposed for each contribution of scattering processes.
Therefore we have concluded that the 6×6×4 q grid is suf-
ficient for convergence of the calculation of resistivity, and
thus employ it in this paper.

2. The k and q grids for interpolation

To check carefully what sizes of the k and q grids for the
calculation of Eqs. (1) and (3) are needed to achieve conver-
gence of resistivity, we have calculated the in-plane electrical
resistivity and conductivity with some different sizes of grids
for interpolation as shown in Fig. 11. The results show that
the resistivity calculated even with 64×64×48 k and q grids
almost achieved convergence. Given these results, we adopt
96×96×72 k and q grids in this paper, which are large enough
to analyze the resistivity even for the low temperature, ∼50 K.

APPENDIX C: NORMAL MODES
OF LATTICE VIBRATIONS

In the long-wavelength limit q → 0, the nine normal vibra-
tion modes in ZrS2 and ZrSe2 can be expressed by using the
irreducible representations of point group D3d as follows:

�vib = A1g + Eg + 2A2u + 2Eu, (C1)

where E modes are twofold degenerate. The atomic displace-
ments of each optical mode in the long-wavelength limit are
presented in Fig. 12. The electron-phonon matrix elements
coupled with the Eu and A2u LO phonons are divergently large

in the long-wavelength limit, as shown in Fig. 2(d), since they
macroscopically induce an electric field.

APPENDIX D: DOUBLE LOGARITHMIC PLOTS OF THE
ELECTRIC RESISTIVITY AGAINST THE TEMPERATURE

This Appendix includes additional figures to show the tem-
perature dependence of the resistivity in both materials on a
logarithmic scale (Fig. 13).

FIG. 12. Atomic displacements in each optical vibration mode of
ZrS2. This figure was created using VESTA software [118].
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FIG. 13. The temperature dependence of the in-plane electrical resistivity of (a) ZrS2 and (b) ZrSe2. The logarithmic scale is used for both
the vertical and horizontal axes, and some power-law curves are also represented in each panel. The resistivity calculated with the electron-
phonon matrix element obtained from first-principles calculations (solid black line) and that calculated with the constant electron-phonon
matrix element (dashed red line), which is set as 50 meV for ZrS2 and 40 meV for ZrSe2. We assumed that the electron carrier density is
1×1020 cm−3.
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