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We develop two numerical schemes to study the conductance of the two-wire junction of inequivalent
Tomonaga-Luttinger liquids. In the first scheme we use the static current-current correlation function across
the junction to extract the linear conductance through a relation that is derived via the bosonization method.
In the second scheme we apply a voltage bias and evaluate the time-dependent current across the junction to
obtain the current-voltage characteristic. The conductance is then extracted from the small bias result within
the linear response regime. Both schemes are based on the infinite-size matrix product state to minimize the
finite-size effects. Due to the lack of the translational invariance, we focus on a finite-size window containing
the junction. For time-independent calculations, we use infinite boundary conditions to evaluate the correlations
within the window. For time-dependent calculations, we use the window technique to evaluate the local currents
within the window. The numerical results obtained by both schemes show excellent agreement with the analytical
predictions.
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I. INTRODUCTION

Transport properties of the strongly correlated quasi-one-
dimensional (1D) quantum systems have been the subject of
intensive investigation in recent years due to the potential
applications in nanoelectronics. In these systems, electron-
electron interaction has drastic effects and the Fermi liquid
theory breaks down. Instead, the system is described by the
Tomonaga-Luttinger liquid (TLL) theory, which is parameter-
ized by a Luttinger parameter g [1–3]. Experimentally, TLL’s
characteristic behavior has been observed experimentally in a
variety of quasi-1D systems [4–8]. In this work we focus on
an important class of the quasi-1D transport problem: junc-
tions of multiple TLL wires. The simplest setup is a two-wire
junction of equivalent TLL. It consists of two TLL wires
with the same Luttinger parameter connected by a weak link.
Theoretically, it is well known that in this case, the system
renormalizes either to the single fully connected wire fixed
point or to the two disconnected wires fixed point, depending
on the sign of the interaction [9–12]. For three-wire Y junc-
tions of equivalent TLL, more conductance fixed points begin
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to emerge [13–15]. From the perspective of the experiment, it
is also important to study the influence of the contact as well
as the Fermi liquid leads [16] and the multiwire junction with
inequivalent TLLs [17,18–20].

In the above-mentioned studies, the bosonization method
has been used extensively to draw important conclusions
[9–11,14,15,17,18,21–23]. However, in order to go beyond
the perturbative regime to reach a comprehensive understand-
ing of quasi-1D systems’ transport properties, other methods
are called for. Analytically, an exact solution method based
on Bethe ansatz has been developed and applied success-
fully to several systems [12,24,25]. However, it is restricted
to integrable models. On the other hand, many numerical
methods have been developed. Within fermion representation,
methods based on renormalization group equations [26–28]
and functional renormalization group (fRG) technique [29,30]
have been developed to evaluate the one-particle Green’s
function from which the linear conductance can be extracted.
Numerical renormalization group (NRG) method [31], which
is originally developed for the equilibrium properties of quan-
tum impurity systems, has also been generalized to study the
transport properties of nanodevices with noninteracting leads
[32–34]. However, it is difficult to generalize the NRG based
method to study a junction with interacting leads.

The method developed here is based on the density matrix
renormalization group (DMRG) technique, which is a pow-
erful and versatile numerical tool to study quasi-1D systems
[35]. Over the years, several DMRG based methods have been
developed to study the transport properties of quasi-1D sys-
tems. One of the earliest approaches uses a ring geometry and
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extracts the conductance from the current induced by the flux
[36–38]. Another approach uses the linear response theory to
relate the conductance and the dynamical correlation func-
tions, which can be evaluated via the correction vector DMRG
method [39] or the dynamical DMRG method [39–41]. In
Refs. [18,42,43] a general method to extract the conductance
tensor of the multiwire junction is proposed and is used to
study the multiwire junction of equivalent and inequivalent
TLLs. By using boundary conformal field theory, the conduc-
tance tensor is related to the static correlation function of a
semi-infinite system. A conformal transformation is then used
to connect the correlators of a finite system to a semi-infinite
one, making it possible to extract the conductance tensor from
the static current-current correlator of a finite system. We
note in passing that in this approach it is necessary to add
a mirror-image junction during the transformation. However,
the Hamiltonian of the mirror-image junction can be rigor-
ously derived only for the case of noninteracting wires. On
the other hand, since the invention of time-dependent DMRG
(tDMRG), various approaches have been developed to sim-
ulate the time-dependent current of the multiwire junction,
from which the linear response and the full current-voltage
characteristics can be obtained [44–53]. Recently, a relation
between the static charge correlations and the linear has also
been put forward [54]. Typically, a finite-size system with
open boundary condition is simulated. However, this may
lead to strong finite-size effects. In order to reduce the finite-
size effects, modified boundary conditions have also been
explored [45,47,50,55].

In this work, we develop two novel numerical schemes to
study the linear and the nonlinear conductance of the mul-
tiwire junctions. Our main strategy is to always work with
an infinite system to minimize the finite-size effects but only
perform measurements within a finite size window to make
the simulation feasible. This also removes the need to per-
form the conformal transformation to obtain an effective finite
size system and the addition of the mirror-image junction.
Specifically, we revisit the problem of the two-wire junc-
tion of inequivalent TLLs to benchmark our methods. It is
known that in this case the conductance is determined by a
single effective Luttinger parameter [17,18–20]. In the first
scheme, we use the method recently proposed by some of
us in Ref. [56] to calculate the static current-current corre-
lation function of the two-wire junction and use the method
proposed in Refs. [18,42,43] to extract the linear conduc-
tance. However, we find that the key relation between the
conductance and the static current-current correlation function
derived in Refs. [18,42,43] needs minor modification when
the Luttinger parameters on two wires are different. While
we only measure the correlation function within a finite size
window, we show that a moderate window size already al-
lows us to observe the asymptotic behavior. Our results agree
excellently with the theoretical prediction and verify that the
conductance is indeed governed by the effective Luttinger
parameter.

To probe the nonlinear conductance, we incorporate the
window technique developed in Ref. [57] to evaluate di-
rectly the local currents within a finite size window, after a
source-drain bias is applied to the system. We show that after
the transient time, we can obtain a very flat quasistationary

FIG. 1. Sketch of the two-wire junction and the bias profile.

current up to a time scale that is limited by the window size
and the carrier velocity. This allows us to define an average
current with very small error, from which the current-voltage
characteristics can be obtained. Our results show a wide range
of linear response regime, and the linear conductance can
be extracted from a small bias calculation. Furthermore, we
verify that the linear conductance obtained from the nonequi-
librium setup is highly consistent with the results via static
correlations.

The rest of the paper is organized as follows. In Sec. II,
we set up the notation and define the Hamiltonian of the
model. In Sec. III, we use the bosonization method to derive
the modified key relationship between the conductance and
the static current-current correlation function. In Sec. IV, we
discuss the main ingredients of our numerical method and
outline the steps. In Sec. V, we present our numerical results
from the time-independent calculation, while in Sec. VI we
present our numerical results from the time-dependent calcu-
lations. Finally, we summarize in Sec. VII and discuss future
directions.

II. MODEL

We consider a two-wire junction which consists of two
semi-infinite long TLL wires connected by a weak link as
sketched in Fig. 1. To model such a junction, we start from
two semi-infinite long wires with the Hamiltonian

Hμ

wire =
∑

i∈Z+ 1
2

−(cμ†
i cμ

i+1 + H.c.) + U μñμ
i ñμ

i+1, (1)

where cμ†
i (cμ

i ) with μ ∈ α, β is the creation (annihilation)
operator at the site i of the wire μ and ñμ

i ≡ cμ†
i cμ

i − 1
2 . We

note that the hopping strength is set to unity as the energy
scale. Furthermore, Hμ

wire can also be expressed in the form of
a translational invariant matrix product operator (MPO) [58]

Hμ

wire = . . .W μ

− 3
2

W μ

− 1
2

W μ
1
2

W μ
3
2

. . . , (2)

where

W μ
i = W μ =

⎡⎢⎢⎢⎢⎣
1i 0 0 0 0
cμ

i 0 0 0 0
cμ†

i 0 0 0 0
ñμ

i 0 0 0 0
0 −cμ

i −cμ†
i U ñμ

i 1i

⎤⎥⎥⎥⎥⎦. (3)

When |U μ| < 2, the wire is in the TLL phase. At half filling,
its Luttinger parameter gμ is determined by U μ through the
relation

gμ = π

2 arccos(−U μ/2)
, (4)
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while the carrier velocity reads

vμ = π

√
1 − (U μ/2)2

arccos(U μ/2)
. (5)

We note that U μ = 0 corresponds to a noninteracting wire
with g = 1, while positive and negative interaction correspond
to g > 1 and g < 1, respectively.

We form a two-wire junction by connecting a semi-infinite
long wire with label α extending to the left and a semi-infinite
long wire with label β extending to the right at site i = ±1/2
by a link of strength t ′. The Hamiltonian of the link reads:

Hlink = −t ′(cα†
−1/2cβ

1/2 + cβ†
1/2cα

−1/2), (6)

while the Hamiltonian of the junction reads

Hjunc = Hlink +
∑

i∈Z�+ 1
2

−(cα†
−i c

α
−(i+1) + H.c.) + U α ñα

−iñ
α
−(i+1)

+
∑

i∈Z�+ 1
2

−(cβ†
i cβ

i+1 + H.c.) + U β ñβ
i ñβ

i+1, (7)

where Z� denotes the set of non-negative integers. In the form
of the MPO the Hjunc is expressed as

Hjunc = . . .W α

− 5
2
W α

− 3
2
W̃− 1

2
W β

1
2

W β
3
2

. . . , (8)

where W̃− 1
2

is associated with the Hlink as follows:

W̃−1/2 =

⎡⎢⎢⎢⎢⎣
1−1/2 0 0 0 0
cα
−1/2 0 0 0 0

cα†
−1/2 0 0 0 0

ñα
−1/2 0 0 0 0
0 −t ′cα†

−1/2 −t ′cα
−1/2 0 1−1/2

⎤⎥⎥⎥⎥⎦. (9)

In the following we denote the ground state of Hjunc by |�junc〉.
We define the current operator J (r) as

J (r) =

⎧⎪⎪⎨⎪⎪⎩
i(cα†

r− 1
2

cα

r+ 1
2
− cα†

r+ 1
2

cα

r− 1
2
) = Jα (−|r|), r < 0

i(cβ†
r− 1

2

cβ

r+ 1
2

− cβ†
r+ 1

2

cβ

r− 1
2

) = Jβ (+|r|), r > 0

it ′(cα†
− 1

2

cβ
1
2

− cβ†
1
2

cα

− 1
2
) = Jlink, r = 0,

(10)
where we define the current operator across the link as Jlink.
Furthermore, the static current-current correlation function is
defined as

〈J (−r)J (r)〉junc ≡ 〈�junc|J (−r)J (r)|�junc〉. (11)

It is also convenient to define a r-dependent conductance

Gαβ (r) ≡ −e2(2π2)

h

(
vα + vβ

vαvβ

)2

r2〈J (−r)J (r)〉junc. (12)

It will be shown in Sec. III that Gαβ (r) approaches the linear
conductance Gαβ as r goes to infinity, i.e.,

Gαβ = lim
r→∞ Gαβ (r). (13)

We note that Eq. (12) is different from the result in
Refs. [18,43] except when vα = vβ . In Sec. V we shall report
numerical results that support Eqs. (12) and (13).

To probe the nonlinear response and determine the current-
voltage characteristics, we turn on a bias at time t = 0 and

apply a voltage of ±V/2 to the left and right wires, respec-
tively. We then evaluate the time-dependent local current

〈J (r, t )〉V = 2πe

h
〈�junc(V, t )|J (r)|�junc(V, t )〉, (14)

where

|�junc(V, t )〉 = ei(Hjunc+Hbias (V ))t |�junc〉 (15)

and

Hbias(V ) = V

2

∑
i∈Z�+ 1

2

(ñα
−i − ñβ

i ) (16)

is the bias Hamiltonian. Formally we define the steady state
current across the link as

J (V ) = lim
t→∞〈Jlink(t )〉V = lim

t→∞〈J (r = 0, t )〉V . (17)

Numerically it is difficult to reach the infinite time limit. In
practice we expect that after a transient time the local current
across the link will become quasistationary, from which we
can define a time-averaged local current

J̄link(V ) = 1

t2 − t1

∫ t2

t1

dt〈Jlink(t )〉V (18)

within a time window [t1, t2]. Here we show explicitly the
V dependence for clarity. If one can simulate accurately the
local current up to a large enough time to contain a window
such that that t1 is larger than the transient time scale and
t2 − t1 is large enough to obtain a good average, then the
current-voltage characteristics can be accurately extracted.
Furthermore, the linear conductance Gαβ can be obtained by

Gαβ = lim
V →0

J̄link(V )

V
(19)

from a time-dependent calculation. We note in passing that
this provides a consistency check by comparing with results
from the time-independent calculations.

III. BOSONIZATION

In this section we first review known results in the litera-
ture, then we derive Eqs. (12) and (13) via the bosonization
method. It is shown in Ref. [17] that the conductance Gαβ of
a junction of inequivalent TLLs depends only on an effective
Luttinger parameter ge, where

1

ge
= 1

2

(
1

gα
+ 1

gβ

)
. (20)

Combined with the result for a junction of equivalent TLLs
[9,10] one finds: When ge > 1 the conductance takes a uni-
versal value

Gth = ge
e2

h
, ge > 1 (21)

regardless the link strength of the junction. In contrast, when
ge < 1 one has

Gth = 0, ge < 1. (22)

It is worth commenting on the case of ge = 1. In general, the
effective theory is given by the boundary sine-Gordon theory
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with the marginal boundary interaction. For the free fermion
(gμ = 1), the coefficient of the boundary interaction can be
determined exactly and it is related to the exact conductance.
This results in [9,10]

Gth = e2

h

4(t ′)2

(1 + (t ′)2)2
, gμ = 1. (23)

In the presence of the interaction (gμ 	= 1), the effective
theory is still the same if ge is still 1. While there is no
reason to expect a strong renormalization of the coefficient
of the marginal boundary interaction, the conductance should
stay approximately the same as in the free fermion limit.
The conductance is, however, eventually determined by the
nonuniversal coefficient of the operator in the field theory. We
hence suspect that the coefficient is renormalized weakly by
the interaction, resulting in a weak change of the conductance.
It will been shown later that our numerical results do support
such a scenario. Unfortunately, there is no simple way to
determine analytically the weak change of the coefficient and
the conductance using the field theory.

In the literature, the relation between the conductance and
the static current-current correlation function has been derived
within the framework of boundary conformal field theory for
the case of (i) multiple wires with the same Luttinger parame-
ter and carrier velocity [42], (ii) multiple wires with the same
Luttinger parameter but different carrier velocities [43], and
(iii) multiple wires with different Luttinger parameters and
different carrier velocities [18]. We note that the form of the
velocity dependence in Ref. [43] and Ref. [18] is the same, and
it falls back to the results in Ref. [42] if all the velocities are
the same. However, as will be shown below, we find that this
velocity dependence needs to be modified. On the other hand,
in Ref. [18] it is shown that by rescaling the bosonic fields, the
junction of two wires with different Luttinger parameters can
be mapped to a junction with a single effective Luttinger pa-
rameter ge, in agreement with Ref. [17]. We confirm that this
stands valid even when the two wires have different charge
velocities, because the charge velocities can be absorbed by a
proper rescaling.

We first follow the derivation in Refs. [18,43] to obtain
the result for the case of vα = vβ = 1. We then pay special
attention to the case of inequivalent TLLs with different Fermi
velocities and identify the proper way to rescale the equation.
We start from the Kubo formula for the conductance Eq. (38)

Gαβ = lim
ω→0+

−e2

h

1

ωl

∫ ∞

−∞
dτ eiωτ

×
∫ l2

l1

dx 〈T Jα (y, τ )Jβ (x, 0)〉, (24)

where the electric field is applied uniformly on the finite
segment l1 < −y, x < l2 of the infinite system, and l = l2 − l1
is the length of the segment. Here T indicates imaginary-time
ordering. When the two wires are inequivalent with two dif-
ferent Luttinger parameters gα 	= gβ but still vα = vβ = 1,

〈T Jα (z1, z̄1)Jβ (z2, z̄2)〉

= ge

4π2

[
Aαβ

B
1

(z̄1 − z2)2
+ Aβα

B
1

(z1 − z̄2)2

]
, (25)

where z ≡ τ + ix, z̄ ≡ τ − ix, and the coefficients Aαβ

B are
universal and determined by the conformally invariant bound-
ary condition on the real axis. By using the identity∫ ∞

−∞
dτ

eiωτ

(τ − iu)2
= −2πωH (u)e−ωτ , (26)

where H (u) is the Heaviside step function, and Eq. (25) (with
z1 = τ − iy and z2 = ix), Eq. (24) is reduced to

Gαβ = gee2

h

1

l

∫ l2

l1

dx [Aαβ

B H (x − y) + Aβα

B H (−x + y)]

(27)

= gee2

h
Aαβ

B . (28)

This relates the conductance with the universal coefficient Aαβ

B
for each conformally invariant boundary condition.

For a nonchiral (time-reversal invariant) junction,

Aαβ

B = Aβα

B , (29)

and thus the conductance is related to the asymptotic behavior
of the current-current correlation function as

Gαβ = Gβα ∼ −e2

h
(8π2)r2〈Jα (−r)Jβ (r)〉, (30)

for sufficiently large r. In fact, in the present problem of the
junction of two wires, for generic values of the Luttinger
parameters, we only need to consider the Dirichlet boundary
condition

Aαβ

B = Aβα

B = 1 (31)

and the Neumann boundary condition

Aαβ

B = Aβα

B = 0. (32)

They are stable when ge > 1 and ge < 1, resulting in the con-
ductance as in Eqs. (21) and (22), respectively. Because the
asymptotic current-current correlation function is dominated
by the subleading corrections in the latter case, in this paper
we are mostly interested in the Dirichlet boundary condition
(31) which represent maximally conducting junction realized
for ge > 1. So far we have just followed Refs. [18,43].

Now let us resurrect the carrier velocity of each wire. When
the velocity is v, the holomorphic/antiholomorphic variables
z, z̄ should be proportional to vτ ± ix. In other words, we can
either

(i) define the rescaled coordinate x̃ = x/v, so that z = τ +
ix̃, or

(ii) define the rescaled time τ̃ = vτ , so that z = τ̃ + ix.
For a single, uniform wire, these two formulations are

equivalent under a rescaling by the factor of v. However,
when multiple inequivalent wires are coupled, they are not
equivalent. In our problem, the wires are coupled at a single
junction, and both wires share the same time. Namely, the
electron hops from one of the wires at time t should appear
on the other side of the junction at the same time t . If one
scales the time differently for the two wires, the electron
transfer at the junction becomes nonlocal in the rescaled time
variable. We should better avoid such a complication and
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instead rescale the spatial coordinate of each wire to define
holomorphic/antiholomorphic variables:

z1 ≡ τ1 + i
−y

vα
, z̄1 ≡ τ1 − i

−y

vα
(33)

z2 ≡ τ2 + i
x

vβ
, z̄2 ≡ τ2 − i

x

vβ
. (34)

This means that the same holomorphic/antiholomorphic co-
ordinate corresponds to different distances from the origin

(junction). However, this does not pose a problem, as the two
wires are connected only at the junction.

With this rescaling, the current J remains unchanged, while
the charge density ρ in each wire is multiplied by the velocity
vμ. This is because the current measures the charge passing
through a specific point per unit time, while the charge density
measures the charge per unit length. Only the latter is renor-
malized by the rescaling of the length.

Thus, including the velocity, the current-current correlation
function Eq. (25) appearing in the Kubo formula Eq. (24)
reads (with τ1 = τ and τ2 = 0)

〈T Jα (y, τ )Jβ (x, 0)〉 = ge

4π2

[
Aαβ

B
1(

τ − i( −y
vα + x

vβ )
)2 + Aβα

B
1(

τ + i( −y
vα + x

vβ )
)2

]
. (35)

Upon integration, one has

Gαβ = gee2

h

1

l

∫ l2

l1

dx
[
Aαβ

B H
( x

vβ
+ −y

vα

)
+ Aβα

B H
(
− x

vβ
− −y

vα

)]
(36)

= gee2

h
Aαβ

B . (37)

Thus the conductance remains the same universal value
independent of the velocities vα, vβ . On the other hand, the
real-space correlation function depends on the velocity factor.
The equal-time correlation function of currents is given by
setting τ = 0 in Eq. (35) as

〈Jα (y, 0)Jβ (x, 0)〉 ∼ − ge

4π2
(Aαβ

B + Aβα

B )
1(−y

vα + x
vβ

)2 . (38)

Setting x = r, y = −r, we find

〈Jα (−r)Jβ (r)〉 ∼ − ge

4π2
(Aαβ

B + Aβα

B )
( vαvβ

vα + vβ

)2 1

r2
. (39)

Therefore, we find

Gαβ = Gβα ∼ −e2

h
(2π2)

(
vα + vβ

vαvβ

)2

r2〈Jα (−r)Jβ (r)〉.
(40)

This is to be compared with Eqs. (72) and (76) of Ref. [43]
or Eq. (4.4) of Ref. [18] under time-reversal invariance and in
the thermodynamic limit:

Gαβ = Gβα ∼ −e2

h
(8π2)

1

vαvβ
r2〈Jα (−r)Jβ (r)〉. (41)

That is, our result is different from the result in Ref. [43] by
the factor of (

vα + vβ

2
√

vαvβ

)2

. (42)

Two results are identical if and only if vα = vβ . In the next
section, we will demonstrate that the present results (38) and
(40) are indeed consistent with numerical simulations.

We shall also emphasize that derivation above only con-
sider the universal and dominant part of the correlation
function. In general there are also nonuniversal parts which

decay faster. That is why in the numerical simulation, the con-
ductance is extracted from the asymptotic behavior of Gαβ (r)
as defined in Eq. (13).

IV. NUMERICAL METHOD

We note that the linear conductance and the stationary cur-
rent, which are defined by Eq. (13) and Eq. (17), respectively,
are well defined for an infinite system and at infinite time
limit. However, due to the lack of translational invariance, in
general it is difficult to simulate a two-wire junction in the
thermodynamic limit. In order to extract the conductance from
a finite size calculation, various approaches have been pro-
posed. One approach is to map an infinite multiwire junction
to a finite strip by a conformal mapping [42,43]. The map-
ping enables one to relate the linear conductance to the static
current-current correlation function in a finite system. How-
ever, in this approach it is necessary to apply an ad hoc mirror
boundary condition, which can be rigorously proved only for
the case of noninteracting wires. Time-dependent DMRG has
also been used to simulate the time-dependent local current.
Typically a finite-size system with open boundary condition
is studied. However, it has been show that finite-size effects
can be severe [45]. On one hand, the current will completely
reverse its direction after a finite period of time. On the other
hand, the quasistationary current may have oscillation due
to the presence of the boundary. This makes it difficult to
obtain a well defined averaged current. It is known that these
finite-size effects can be reduced by using damped boundary
condition, which has been applied to the quantum dot systems
connected to metallic leads [49] and fractional quantum Hall
systems [50].

In this work we develop a framework to evaluate the static
correlation functions and time-dependent currents for an in-
finite two-wire system. Before we outline the major steps,
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we briefly describe the key points of our approach. The main
strategy of our approach is to work with an infinite system
to minimize the finite-size effects but only perform measure-
ments within a finite size window to make the simulation
feasible. To proceed, we always assume that the wave function
is in the form of an infinite matrix product state (iMPS). For
translationally invariant systems the corresponding iMPS can
be represented by only a few matrices. In contrast, in principle
infinite many different matrices are needed for the iMPS rep-
resentation of the ground state of Hjunc, since the translation
invariance is broken. For impurity or interface systems, some
of us propose an iMPS ansatz that only requires a finite num-
ber of matrices in Ref. [56]. The main assumption is that far
away from the impurity or interface, the wave function should
be almost the same as the bulk system without the impurity or
interface. We hence consider a finite size window. Outside the
window, the wave function is assumed to be the same as the
corresponding bulk one. Inside the window, we need to opti-
mize the wave function with an effective Hamiltonian, which
is obtained by attaching infinite boundary conditions (IBCs)
at the left and right boundary of the window. It is shown in
Ref. [56] that the static correlation functions within the win-
dow can be evaluated accurately. Furthermore, we ensure that
the window size is large enough such that the current-current
correlation has reached its asymptotic behavior.

In this work, we further extend the method to the time-
dependent problem by applying the technique proposed in
Ref. [57]. By using this technique, we can evaluate accurately
the time-dependent local currents within a finite-size window.
We show that the amplitude of the residual oscillation in the
quasistationary region is extremely small, and an excellent
time-averaged current can be obtained. In addition, while a
small amount of current still reflects at the window boundary,
the current never totally reverse its direction. Finally, it will
be shown later that a longer quasistationary region can be
reached by simply enlarging the window size.

Now we are in a position to outline the major steps of our
framework. We start from the iMPS ansatz with window size
2L for the two-wire junction:∣∣�2L

junc(t )
〉 =

∑
�n

. . . Aα
n−L− 3

2

(t )Aα
n−L− 1

2

(t )Mn−L+ 1
2
(t ) . . .

. . . Mn
L− 1

2
(t )Bβ

n
L+ 1

2

(t )Bβ
n

L+ 3
2

(t ) . . . |�n〉, (43)

where Aα
i (t ) = Aα (t ) and Bβ

i (t ) = Bβ (t ) are site-independent
D × D matrices, Mα

i (t ) are site-dependent D × D matrices,
|�n〉 = | . . . n− 3

2
n− 1

2
n 1

2
n 3

2
. . .〉 is the product basis, and D is

the maximum virtual bond dimension. We assume a one site
unit cell but it is straightforward to allow a multisite unit
cell. When t � 0, we assume |�2L

junc(t � 0)〉 is the variational
ground state of Hjunc. When t � 0, we time evolve |�2L

junc(0)〉
with Hjunc + Hbias(V ).

To find Aα (t � 0), Bβ (t � 0), and Mi(t � 0) we first use
infinite-size DMRG algorithms [59] to obtain the ground state
|ψμ

wire〉 of wire μ with Hamiltonian Hμ

wire as an iMPS in the
mixed canonical form [35]:

|�μ

wire〉 =
∑

�n
. . . ÃμÃμλB̃μB̃μ . . . |�n〉, (44)

where λ is a D × D diagonal matrix while Aμ and Bμ are D ×
D matrices. Furthermore, Ãμ satisfy the left canonical form
constraint

∑
μ Ãμ†Ãμ = I , and B̃μ satisfy the right canonical

form constraint
∑

μ B̃μB̃μ† = I [35]. We then assume Aα (t �
0) = Ãα and Bβ (t � 0) = B̃β . We next construct an effective
2L-sites Hamiltonian as

H2L
junc = W̃LW α

−L+ 1
2
. . .W α

− 3
2
W̃− 1

2
W β

1
2

. . .W β

L− 1
2

W̃R, (45)

where W μ
i is defined in Eq. (3) for the infinite wires, W̃− 1

2

is defined in Eq. (9), and W̃L (W̃R) represents the left (right)
infinite boundary condition (IBC). We note that the left IBC
W̃L is constructed from Aα and W α , while the right IBC W̃R is
constructed from Bβ and W β . The detail of the procedure to
construct IBC can be found in Ref. [56]. We use the finite-size
DMRG algorithm to obtain the ground state of H2L

junc as a finite
MPS: ∑

�n
M̃n−L+ 1

2
. . . M̃n

L− 1
2
|�n〉. (46)

We then assume Mi(t < 0) = M̃i.
At this stage we have obtained |�2L

junc(t � 0)〉, from which
we can evaluate the ground-state current-current correlation
function 〈J (−r)J (r)〉junc. We note that due to the left and right
canonical conditions of the A and B matrices, the correlation
functions within the window can be evaluated using only M
matrices. We next calculate the position dependent conduc-
tance Gαβ (r) and use the asymptotic behavior of Gαβ (r) to
estimate the conductance according to Eq. (13). This con-
cludes the time-independent part of the calculation.

To find Aα (t � 0), Bβ (t � 0), and Mi(t � 0), we first break
the time-evolution operator into products of time-evolution
operator with a small time step dt 
 1. At each time step,
we use second-order Suzuki-Trotter decomposition to approx-
imate the evolution operator as products of local gates. Due
to the lack of translational invariance we perform the time
evolution in three substeps:

(i) Perform infinite-size TEBD update for Aα (t ) and Bβ (t )
with bulk Hamiltonian Hα

wire and Hβ

wire, respectively. We note
that they are site independent (up to a unit cell) and standard
infinite size TEBD update is used.

(ii) Perform finite-size TEBD update for Mi(t ) with the
effective Hamiltonian H2L

junc, except M∓n
L± 1

2
(t ) at the boundary

of the window.
(iii) Perform special update for M∓n

L± 1
2
(t ) as described in

Ref. [57].
At this stage we have obtained Aα (t + dt ), Bβ (t + dt ), and

Mi(t + dt ). We then evaluate 〈J (r, t + dt )〉 and iterate the
procedure.

Some comments are in order. While the wave function
is always represented by an iMPS, only finite numbers of
matrices need to be updated at each time step. In principle
the window can co-move with the wave front. Here we fix
the window size for simplicity. There are two main factors
that limit the time scale that one can simulate accurately the
time-dependent current. First, TEBD update will eventually
break down. Typically, by increasing the maximum virtual
bond dimension, a larger time scale can be reached. Second,
due to the finite virtual bond dimension, the reflection at the
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FIG. 2. Equal-time current-current correlation functions
〈Jα (y)Jβ (x)〉 versus −y/vα + x/vβ . Although three different sets of
parameters giving different values of carrier velocities and Luttinger
parameters are used, they all give the same effective Luttinger
parameter ge = 1.2. The numerical data of 〈Jα (y)Jβ (x)〉 are shown
in (a) and (c), for the set of coordinates (x, y) as shown in (b) and
(d), respectively. They collapse into a single line in the log-log plot
with respect to the scaling variable −y/vα + x/vβ , in agreement
with the theoretical prediction (38) with (31) (dotted line).

boundary cannot be complete removed. One can reduce the
amount of reflection by increasing the maximum virtual bond
dimension of the IBC or one can increase the window size to
delay the time of reflection. In this work we always check how
our results depend on maximum virtual bond dimension and
window size to ensure the convergence of the results.

V. TIME-INDEPENDENT RESULTS

In this section we present our results of the static current-
current correlation function and the linear conductance. We
first focus on the case of a two-wire junction with an effective
Luttinger parameter ge > 1. In this case it is expected that the
system renormalizes to a single fully connected wire with a
linear conductance Gth = gee2/h, regardless of the Luttinger
parameter of each individual wire and the link strength t ′.
Specifically we consider three combinations of gα and gβ that
give rise to ge = 1.2: (i) gα = 0.8 and gβ = 2.4, (ii) gα = 1.0
and gβ = 1.5, and (iii) gα = 1.10, and gβ = 1.32.

In the left column of Fig. 2 we plot the static current-
current correlation function 〈Jα (y)Jβ (x)〉 as a function of
−y/vα + x/vβ on a log-log scale, where the variable x and
y are restricted to the corresponding lines in the right column.
This choice of the scaling variable is motivated by the theo-
retical analysis in Sec. III. Here we set link strength t ′ = 0.7,
maximum virtual bond dimension D = 800, and window size
2L = 400. We observe that the correlation function quickly
converges to Eq. (38) (dotted black line) with the condition
(31), regardless of the parameters used, in excellent agree-
ment with the theoretical prediction. Furthermore, we also
perform simulation with t ′ = 0.9 and we find that the results
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FIG. 3. (a) Gαβ (r)/ e2

h and (b) [Gth − Gαβ (r)]/ e2

h vs r for the case
of ge = 1.2. Black dashed line represents the theoretical prediction.
(c) (t ′)−2Gαβ (r)/ e2

h vs r for the case of ge = 0.8.

are indistinguishable from the results shown above. We note
in passing that this also verifies that the window size and
maximum virtual bond dimension are large enough to capture
the asymptotic behavior.

Let us make a more quantitative comparison between the
theory and the numerical data, in terms of the conductance
estimated using Eq. (40). In Fig. 3(a) we show the distance
dependent conductance G(r) (in units of e2/h) as a function
of r. We observe that for all combinations of gα,β and t ′,
G(r) quickly approaches the theoretical prediction (dashed
black line). To investigate how G(r) approaches its asymptotic
value, in Fig. 3(b) we show Gth − G(r) vs r on a log-log
scale. We find that asymptotically it decays nearly as a power
law. We note that the bump at large distance is due to the
finite window effect, which can be eliminated by enlarging
the window size.

We next study the case of a two-wire junction with an
effective Luttinger parameter ge < 1. In this case it is expected
that the system renormalizes to two disconnected wires fixed
point with Gth = 0. Specifically, we use two combinations of
gα and gβ : (i) gα = 0.6, gβ = 1.2 and (ii) gα = 0.72, gβ = 0.9
that give rise to ge = 0.8. To probe the disconnected wires
behavior we use two values of link strength t ′ = 0.3 and
t ′ = 0.5. Smaller t ′ is used here to ensure that the correlation
function can reach its asymptotic behavior within the window.
In Fig. 3(c) we show t ′−2G(r) as a function of r on a log-log
scale. We observe a nonuniversal behavior and the value of
G(r) depends on gα,β and t ′. However, asymptotically G(r)
always decays as a power law. While our data is limited by
the window size, we expect that limr→∞ G(r) = 0, consistent
with the broken wire interpretation.

Finally we investigate the case of ge = 1. Here we use three
combinations of gα,β that give rise to ge = 1: (a) gα = 0.75,
gβ = 1.5, (b) gα = 0.9, gβ = 1.125, and (c) gα = gβ = 1. In
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FIG. 4. The r-dependent dimensionless conductance Gαβ (r)/ e2

h
rescaled by 4t ′2/(1 + t ′2)2 vs r for the cases of ge = 1. The black
dashed lines represent the theoretical prediction.

Fig. 4 we plot Gαβ (r)/Gth as a function of r. The ratio
approaches one regardless of the parameters used, but we also
find a tiny deviation when the wires are interacting.

VI. TIME-DEPENDENT RESULTS

In this section we present our time-dependent results. We
first benchmark our method with a junction of two equivalent
wires with gμ = 1.2. The hopping strength t ′ between wires is
set to 0.8. We use second order Suzuki-Trotter expansion with
dt = 0.002 to perform the time evolution. The window size
2L is set to 100 and the maximum virtual bond dimension
D is 200. In Fig. 5(a), we plot 〈J (r, t )〉V (in units of e2/h)
on the r − t plane after a small bias V = 0.002 is applied to
the system at t = 0. It is expected that the current will first
appear in a location where the voltage is reversed. Indeed we
observe that the current emerges at the junction(r = 0) once
we turn on the bias. After that, the fronts propagate in both
directions and a light cone is formed. In Fig. 5(a) we also plot
r = ±vμt as dashed lines, where vμ is the carrier velocity. It
is evident that the slope of the light cone agrees well with the
carrier velocity. While the window technique can minimize
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60 (b)
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FIG. 5. Color density plot of the J (r, t )/ e
h in a space-time rep-

resentation for the case of (a) gα = gβ = 1.2 and (b) gα = 0.8, gβ =
2.4. The dashed lines correspond to r = ±vμt , where vμ is the carrier
velocity.

FIG. 6. 〈Jlink(t )〉V /V e2

h with V = 0.002 vs t for the case of gα =
gβ = 1.2. The vertical dashed and dash-dot lines corresponds to t1

and t2, respectively, where [t1, t2] is the time interval over which the
time average of the current is taken.

the reflection at the window boundary, partial reflection still
occurs due to the finite virtual bond dimension. We find that
the front hits the window around t ≈ L/vμ ≈ 30. However,
the partial reflection does not appear until around t ≈ 37.

We next turn our attention to the time-dependent current
across the link. In Fig. 6(a) we plot 〈Jlink(t )〉V /V (in units of
e2/h) as a function of time. We observe a fast increase from
zero once we turn on the bias, followed by the transiently
decaying oscillations. This oscillation is bias dependent and
due to the backward scattering and Andreev-type reflection at
the junction [60–63]. After that, the current becomes quasis-
tationary until t ≈ 70. At this time the fronts of the partially
reflected current reach r = 0 and unphysical oscillations start
to emerge. However, the current across the link never reverses
its direction in our simulation. This is in contrast to the simula-
tions with open boundary condition, in which the current will
change direction periodically. It is worth mentioning that the
amplitude of residual oscillations in the quasistationary region
is extremely small. This is because we work with an infinite
system and the finite-size induced oscillation is eliminated. To
obtain the averaged current we identify a time interval (t1, t2)
as follows: We first set t2 to be a time that is slightly before the
reflected front reaches the center. We then move t1 away from
t2 until the estimated error is minimized. In Fig. 6(a) we draw
t1 and t2 as vertical dashed and dashed-dotted lines, respec-
tively. From the time-averaged current we find J̄link/V e2

h =
1.200 ± 0.004, which agrees excellently with the expected
results of Gth = e2

h ge(= 1.2 e2

h ).
In general, there are two simulation parameters which de-

termine the accuracy of the time-averaged current J̄link. The
window size L determines the maximal time scale before the
unphysical oscillations appears. The maximum virtual bond
dimension D determines the amount of reflection as well as
the quality of time evolution. To investigate how our numer-
ical results depend on L and D, we first fix D and run the
simulations with various L as shown in Fig. 6(b). We observe
that results from different L almost collapse into a single curve
before the unphysical oscillation occurs. Next we fix L = 50
and run the simulations with various D. As shown in Fig. 6(c),
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TABLE I. The numerical results of the conductances and the
estimate error in units of e2/h, which are obtained from the time-
dependent calculations, for the case of gα = gβ = 1.2, with V =
0.002.

D J link/V ε

40 1.199 0.009
80 1.200 0.009
120 1.200 0.004
200 1.200 0.004

we find that both the amplitude of the residual oscillations in
the quasistationary region and the amplitude of the unphysical
oscillation decrease as D increases. This is consistent with the
picture that quality of time evolution increases as D increases.
In Table I, we list our numerical results of J̄link/V e2

h and the
estimated error, which are obtained with various D. We find
that results obtained with D = 40 already agree well with the
theoretical prediction and the estimated error is already small.
Furthermore, the error continues to decrease as D increases.
It is worth mentioning that this is one of the advantages of
the method proposed in this work. For a similar simulation
in Ref. [47], the tDMRG results are not convergent until
D � 300.

We note that while the finite-size induced oscillations are
eliminated in the quasistationary regime, 〈Jlink(t )〉V /V e2

h still
has residual oscillations. We find that, however, the ampli-
tude of the residual oscillation is almost independent of the
bias. Consequently, for larger bias the residual oscillations
for 〈Jlink(t )〉V /V e2

h are invisible. In contrast for a very small
bias the residual oscillation becomes visible, leading to a
larger error in J̄link/V e2

h . In order to ensure that the system
is in the linear response region with minimized error, in the
following we will use V = 0.002 when evaluating the linear
conductance.

Now we are in a position to study the case of two in-
equivalent wires with an effective ge > 1. Three combinations
of gα,β with ge = 1.2 are considered: (a) gα = 0.8, gβ = 2.4,
(b) gα = 1.0, gβ = 1.5, and (c) gα = 1.1, gβ = 1.32, where
we use the convention of gα � gβ . Two hopping strengths
t ′ = 0.7 and t ′ = 0.9 are used. In Fig. 5(b) we show the
time-dependent local current on the r − t plane. Due to the
different propagation velocities, the light cone is asymmetric.
Since a smaller Luttinger parameter implies larger carrier
velocity, the current reflected by the left boundary will come
back first. In Fig. 7, we show 〈Jlink(t )〉V /V e2

h as a function of
time. We observe that in all cases it converges to the expected
result of Gth = e2

h ge(= 1.2 e2

h ), which is denoted by the dotted
horizontal line. By averaging the current between the dashed
and the dash dot vertical lines, we obtain the conductance
as summarized in Table II. The results are highly consistent
with the theoretical prediction as well as the results from the
current-current correlation function as presented in Sec. V.

To probe the nonlinear response, we set D = 200, L = 50
and run the simulations with various V . We use gα = gβ = 1.2
and gα = 0.8, gβ = 2.4, both with ge = 1.2. In Fig. 6(d) we
show 〈Jlink(t )〉V /V e2

h as a function of time. A long period of

0 10 20 30 40 50 60
0.0

0.6

1.2

(a) gα=0.8, gβ=2.4

0.0

0.6

1.2

〈J
li
n
k
(t

)〉 V
/V

e2 h

(b) gα=1.0, gβ=1.5

0 20 40 60
t

0.0

0.6

1.2

(c) gα=1.1, gβ=1.32
t′=0.7
t′=0.9

FIG. 7. 〈Jlink(t )〉V /V e2

h vs time for the cases of gα 	= gβ, ge =
1.2. The dotted horizontal lines represent the theoretical predictions.
The vertical dashed and dash-dot lines correspond to t1 and t2, respec-
tively, where [t1, t2] is the time interval over which the time average
of the current is taken.

quasistationary region is observed for all cases except when
V is close to 1. This is due to the finite-window effect and
can be eliminated by enlarging the window. In Fig. 8 we show
the time-averaged current J link in units of e2/h as a function
of V on a log-log scale. Two hopping strengths t ′ = 0.7 and
t ′ = 0.9 are considered. We also plot a straight line that corre-
sponds to the linear response J̄ = GthV = e2

h geV . We observe
a universal linear response up to V ≈ 0.2 while at large bias
the deviation becomes substantial. As has been pointed out in
Ref. [64], the deviation at large bias is due to the finite band
width of the model.

We now investigate the case of ge < 1. We consider two
combinations (a) gα = 0.6, gβ = 1.2 and (b) gα = 0.72, gβ =
0.9, which give rise to ge = 0.8. It is expected that in this
case the junction will flow to the broken wire fixed point
with zero conductance. In order to observe the broken wire
behavior within the time window, we use smaller link strength,
t ′ = 0.3 and 0.5. From the perturbation theory we expect
that the current might scale as (t ′)−2. In Fig. 9 we plot
(t ′)−2〈Jlink(t )〉V /V e2

h on a log-log plot. At short time, we
observe a universal rise of the rescaled current. After that, it
decays as a power law but the decay exponent is parameter
dependent. These results indicate that at large time one has
Gαβ = 0, which is in agreement with the theoretical predic-
tions and the results of the time-independent method.

TABLE II. The numerical results of the conductances and the
estimate error in units of e2/h, which are obtained from the time-
dependent calculations, for the case of gα 	= gβ, ge = 1.2, with V =
0.002.

Gαβ (t ′ = 0.7) Gαβ (t ′ = 0.9)

gα = 0.8, gβ = 2.4 1.1955 ± 0.0008 1.1975 ± 0.0013
gα = 1.0, gβ = 1.5 1.1845 ± 0.0020 1.2028 ± 0.0034
gα = 1.1, gβ = 1.32 1.1783 ± 0.0017 1.1998 ± 0.0076
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FIG. 8. J link(V )/ e2

h vs bias V for the cases of ge = 1.2. The solid
black line represents the linear response predicted by the theory. The
dashed and dotted lines are guides to the eye.

Finally we investigate the case of ge = 1. In Fig. 10 we
show our results of the conductance obtained by the time-
dependent calculation as a function of link strength. For
junction of equivalent noninteracting wires (gμ = 1), the re-
sults agree excellently with the theoretical prediction which is
shown as the dotted line. For junction of inequivalent wires
(gα 	= gβ), the results are very close to the case of noninter-
acting wires. However, we do observe a small but systematic
deviation. The results agree with our theoretical conjecture
that only a weak change of the conductance is expected in
this case.

VII. SUMMARY AND DISCUSSION

In summary, we have developed a numerical framework
to study the transport properties of two-wire junctions with
inequivalent TLL wires, based on a finite window embedded
in an infinite wire. Within this framework, we implemented
two schemes. In the first scheme, the linear conductance is ex-
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FIG. 10. The conductance in units of e2/h obtained by the time-
dependent calculation vs link strength t ′ for the case of ge = 1.
The dotted line corresponds to the exact solution for the case of
noninteracting wires.

tracted from the asymptotic value of the static current-current
correlation function, through a relation which is derived via
the bosonization method. It is worth mentioning that the rela-
tion derived in this work corrected a subtle error in Ref. [43].
Our result agrees with Ref. [43] if and only two TLL wires
have the same charge velocity, but it is generically different
for two inequivalent wires. In the second scheme, we evaluate
the time-dependent local current across the junction after a
bias is applied. The current-voltage characteristic is then ex-
tracted by averaging the local current across the junction in the
quasistationary region. In particular, the linear conductance is
estimated by applying a small bias.

The main advantage of our schemes is to always work
with an infinite system to eliminate the finite-size effects
but only perform measurements within a finite window to
make the calculation tractable. We benchmark our schemes
against known theoretical results. For the time-independent
calculations, we show that the asymptotic behavior of the
current-current correlation function can be obtained with a
moderate window size. Furthermore, the linear conductance
extracted agrees excellently with the theoretical prediction.
For the time-dependent calculations, we show that with mod-
erate window size and maximum virtual bond dimension, a
long quasistationary region can be reached. By averaging the
current within the quasistationary region one can accurately
determine the current-voltage characteristics. Furthermore,
we obtain the linear conductance by applying a small bias, and
the results agree excellently with the theoretical prediction as
well as the results via the time-independent method. It is worth
pointing out that computationally it is less demanding to use
the time-dependent method to reach the same accuracy. This
is because for the time-independent method, it is essential
to have high precision results of the correlation function at
large distance to obtain its asymptotic behavior. However, the
values of large distance correlations are quite small, mak-
ing it more demanding to calculate accurately. On the other
hand, for the time-dependent method accurate results can be
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obtained as long as a long quasistationary region with small
residual oscillations can be reached.

Some comments are now in order. First, it is straight-
forward to generalize both schemes to study the transport
properties of complex multiwire junctions. For complex ge-
ometry, one can study the Y junction with three TLL wires.
By changing the enclosing magnetic flux and the Luttinger
parameters, many conductance fixed points can be reached.
It is also possible to include spin degrees of freedom and
study the conductance of nanostructures. Going beyond linear
response, it is interesting to study the single impurity Ander-
son model, where Kondo physics is important. In summary,
our schemes allow one to determine accurately the correlation
functions to a very large distance, simulate the dynamics to
a very large time scale, and the results are free of finite size
effects. We believe that these schemes can become important

tools to study the transport properties of strongly interacting
nanoscopic systems.
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