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Magnetic correlation between two local spins in a quantum spin Hall insulator
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Two spins located at the edge of a quantum spin Hall insulator may interact with each other via indirect
spin-exchange interaction mediated by the helical edge states, namely, the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction, which can be measured by the magnetic correlation between the two spins. By means
of the newly developed natural orbitals renormalization group (NORG) method, we investigated the magnetic
correlation between two Kondo impurities interacting with the helical edge states, based on the Kane-Mele
model defined in a finite zigzag graphene nanoribbon (ZGNR) with spin-orbital coupling (SOC). We find that
the SOC effect breaks the symmetry in spatial distribution of the magnetic correlation, leading to anisotropy in
the RKKY interaction. Specifically, the total correlation is always ferromagnetic (FM) when the two impurities
are located at the same sublattice, while it is always antiferromagnetic (AFM) when at the different sublattices.
Meanwhile, the behavior of the in-plane correlation is consistent with that of the total correlation. However,
the out-of-plane correlation can be tuned from FM to AFM by manipulating either the Kondo coupling or
the interimpurity distance. Furthermore, the magnetic correlation is tunable by the SOC, especially that the
out-of-plane correlation can be adjusted from FM to AFM by increasing the strength of SOC. Dynamic properties
of the system, represented by the spin-staggered excitation spectrum and the spin-staggered susceptibility at the
two impurity sites, are finally explored. It is shown that the spin-staggered susceptibility is larger when the two
impurities are located at the different sublattices than at the same sublattice, which is consistent with the behavior
of the out-of-plane correlation. On the other hand, our study further demonstrates that the NORG is an effective
numerical method for studying the quantum impurity systems.
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I. INTRODUCTION

The quantum spin Hall insulator (QSHI), namely, the
two-dimensional topological insulator, has been intensively
investigated in recent years after its theoretical prediction [1,2]
and first discovery in HgTe/CdTe quantum wells [3]. The
spin-orbital coupling (SOC) plays an essential role [4,5] in
the QSHI. As a consequence, there is a full insulating gap in
the bulk, but there exist one-dimensional gapless conducting
edge states with quantized conductance of G = 2e2/h and
opposite spins counterpropagating at each edge, called the
helical liquid [6]. The time-reversal symmetry (TRS) protects
the helical edge states from backscattering, thus they are ro-
bust against weak interactions and perturbations preserving
the TRS [6–8]. The situation may change when a quantum im-
purity interacts with the helical edge states, since the backscat-
tering with spin flip is allowed. The effect of a quantum im-
purity on the transport properties of the helical edge states has
been investigated [6,9–14]. It is argued that [9] the conduc-
tance of a helical edge state preserves the quantized value e2/h
at zero temperature due to the formation of a Kondo singlet
with a complete screening of the impurity spin. On the other
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hand, the SOC may influence the Kondo effect in the QSHIs
[15–22]. Furthermore, the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction between two local spins, which interact
with a QSHI, will be mediated by the helical edge states.

The RKKY interaction, mediated by conduction electrons,
is an indirect spin-exchange interaction between two local
spins. To the second-order perturbation in J , the Kondo
exchange coupling between two localized spins S1,2 and con-
duction electrons, the effective RKKY interaction has the
form of

HRKKY = K (R)S1 · S2. (1)

Here the coupling K (R) depends on the distance R between
the two spins and K (R) ∝ J2 for weak coupling J . The physics
of a Kondo system with two local spins is determined by the
competition between the RKKY interaction and the Kondo
effect, which is governed by the ratio of K (R) with respect
to the Kondo temperature TK ∝ e−1/ρJ with ρ denoting the
electronic density of states at the Fermi level. Generally, when
|K (R)| � TK (for small J), the RKKY interaction dominates
over the direct Kondo exchange interaction and the two local-
ized spins will be locked into a singlet [for K (R) > 0] without
the Kondo effect or a screened triplet state (i.e., the two
spins align parallel) with weak Kondo effect [for K (R) < 0]
[23–25]. On the other hand, when the coupling K (R) becomes
comparable to the Kondo temperature TK , i.e., K (R) ∼ TK ,
a second-order quantum phase transition, controlled by a
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non-Fermi-liquid fixed point separating the Kondo-screened
phase from the interimpurity singlet phase, may occur when
the system preserves the particle-hole symmetry [26–29].

It has been proposed that controllable RKKY interaction
can be used to manipulate the quantum states of local spins,
which is very helpful for spintronics as well as quantum
computing [23,24,30]. Recently, the RKKY interactions in
graphene [31–37] and spin-orbital systems [38–46] have been
intensely investigated. It has been demonstrated that [33,34]
for a honeycomb lattice at half filling, with hopping only
between different sublattices, the RKKY interaction is ferro-
magnetic (FM) for impurities located at the same sublattice
and antiferromagnetic (AFM) for impurities at the differ-
ent sublattices. As a comparison, theoretical analysis on the
RKKY interaction mediated by the helical edge states, based
on the noninteracting low-energy approximation model of the
helical edge states and the second-order perturbation theory,
shows that the exchange coupling between two local spins is
in-plane and noncollinear, and the angle between the two spins
depends on the Fermi level of the system [40]. In particular,
when the Fermi level is near the Dirac point, the exchange
coupling becomes a constant and is always AFM [40]. This
indicates that the helicity of edge states prohibits out-of-plane
coupling. Nevertheless, breakdown of this behavior arises in
a finite system [46], due to the fact that the helical edge states
can come back by traversing the whole edge of the finite sys-
tem. Considering that the RKKY interaction can be measured
by the magnetic correlation between two magnetic impurities,
it is thus quite intriguing to investigate the magnetic corre-
lation between two local impurities in a QSHI. Accordingly,
the magnetic correlation between two Anderson impurities lo-
cated at the same sublattice in a graphene nanoribbon with the
SOC has been studied by the quantum Monte Carlo simulation
at finite temperatures [47], which shows that the in-plane
components of correlations favor ferromagnetism but the out-
of-plane correlation can be tuned from ferromagnetism to
antiferromagnetism by the SOC. Here with a numerical sim-
ulation method, we further study the magnetic correlation
between two Kondo impurities interacting with the helical
edge states, not yet reported in the literature.

In the study, we calculated the magnetic correlation be-
tween two Kondo impurities in a QSHI, described by the
ground state of the Kane-Mele (KM) model [1] defined in a
finite ZGNR, by using the newly developed NORG method
[48]. In particular, the magnetic correlation, including the
total correlation as well as its out-of-plane and in-plane
components, vs the Kondo coupling and the interimpurity
distance were both studied. We further illustrate the influ-
ence of relative positions of the two impurities as well as
the SOC effect on the magnetic correlation. Additionally, the
dynamic properties, represented by the spin-staggered excita-
tion spectrum and the spin-staggered susceptibility at the two
impurity sites, were also calculated using the correction vector
method [49–51].

This paper is organized as follows. In Sec. II the KM model
and the NORG numerical method are introduced. The energy
spectrum of the KM model is shown in Sec. III A. In Secs.
III B and III C, the magnetic correlation with regard to the
Kondo coupling and the interimpurity distance are presented,
respectively. Sublattice influence on the magnetic correlation,

namely, the effect of relative positions of the two impurities,
is illustrated in Sec. III D. In Sec. III E the SOC effect on the
magnetic correlation is further investigated. Finally, dynamic
properties of the system are presented in Sec. III F. Section IV
gives a short discussion and summary of this work.

II. MODEL AND NUMERICAL METHOD

A. Model

The ground state of the KM model defined in a graphene
nanoribbon describes a QSHI with two edge states of opposite
spins counterpropagating along each edge, namely, the helical
edge states. The KM model can be considered as two copies of
the spinless Haldane model [52], which breaks the TRS. Thus,
the KM model preserves the TRS. In addition, the helical
edge states correspond to the noninteracting limit KL = 1 of
a helical Luttinger liquid with KL representing the Luttinger
parameter. In experiment, since the KM model was proposed
to describe the quantum spin Hall effect in graphene, exten-
sive strategies have been proposed and developed to enhance
the SOC in graphene employing interface or intercalation or
doping [53–56].

Here we consider the Hamiltonian HKM of the KM model
as follows:

HKM = −t
∑
〈i j〉σ

c†
iσ c jσ + iλSO

∑
〈〈i j〉〉αβ

νi jc
†
i,ασ z

αβc j,β . (2)

Here c†
iσ creates an electron at site i with spin component

σ =↑,↓. 〈i j〉 denotes the nearest-neighbor (NN) hopping and
t is the corresponding hopping parameter. 〈〈i j〉〉 marks the
next-nearest-neighbor (NNN) hopping with a complex hop-
ping integral. λSO represents the strength of the SOC with
λSO = 0.1t in our calculations without additional statement.
For a smaller value of λSO = 0.03t , our calculations give the
same physics as well. The parameter νi j = −ν ji = ±1 de-
pends on the orientation of the two NN bonds that an electron
hops from site j to i, namely, νi j = +1 if the electron turns left
in the hopping from site j to i and νi j = −1 if it turns right, as
shown in Fig. 1. In the SOC part HSO, σ z

αβ is the z Pauli matrix
which further distinguishes the spin-up and spin-down states
with opposite NNN hopping amplitude.

Due to the fact that the edge states are localized at the
edges and exponentially decay into the bulk, we set the two
Kondo impurities only located at the top edge of a ZGNR, as
presented in Fig. 1. The total Hamiltonian of the system is
given by H = HKM + HKondo with

HKondo = J
∑
i=1,2

Si · s(ri ), (3)

where HKondo describes the Kondo exchange interactions be-
tween the two spin- 1

2 impurities and the electrons in the helical
edge states. Here each local spin Si interacts directly with
the conduction electron spin density s(ri ) = 1

2

∑
αβ c†

iασαβciβ

located at position ri with AFM Kondo coupling J > 0, where
σ represents the vector of Pauli matrices. Previous works
[57,58] demonstrate that the edge states along the top edge
reside mainly in sublattice A. We thus keep one of the im-
purities coupled to a site of sublattice A, while the other is
coupled to another site of either sublattice A or B, i.e., the two
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FIG. 1. Sketches of the KM model with two Kondo impurities
located at the top edge. The ZGNR is periodic (open) along the x (y)
direction with length Nx = 4 and width Ny = 4. The width Ny of a
nanoribbon is defined by the number of zigzag lines. The unit cell of
the ZGNR is shown as the dotted black rectangle. The black filled
(open) circles denote sublattice A (B) of the nanoribbon. The black
lines denote the NN hopping connecting sites of the different sublat-
tices AB. The SOC term connecting sites of the same sublattice AA
or BB is denoted as the red dashed arrows, and its sign is associated
with νi j . The two spin- 1

2 impurities are marked by the filled green
circles and they interact directly with the sites of sublattice A or
B at the top edge. The distance between the impurities is given as
R ≡ |rx

12| with r12 = r1 − r2. The two impurities are located at (a) the
same sublattice AA with R = a and (b) the different sublattices AB
with R = a/2. Here a is the lattice constant. J > 0 is the AFM Kondo
coupling strength.

impurities are located at the same sublattice AA [Fig. 1(a)] or
the different sublattices AB [Fig. 1(b)].

As we see, the total Hamiltonian H breaks the spin rotation
SU(2) symmetry by the SOC term with [S, H] 
= 0, but it
preserves both charge U(1)charge symmetry and spin U(1)spin

symmetry. Thus the z component of the total spin is still
conserved with [Sz

total, H] = 0. Furthermore, the whole system
preserves the TRS.

In the calculations, we set the NN hopping parameter t
as the energy unit with t = 1.0 and kept half-filling for the
conduction band. All the calculations were carried out in the
ground-state subspace of Sz

total = 0. Here the system size was
always L = Nx × Ny = 28 × 6 without additional statement,
Nx (Ny) denoting the length (width) of the ZGNR. The peri-
odic (open) boundary condition was adopted along the x (y)
direction, as schematically shown in Fig. 1.

B. Numerical method

We employed the NORG approach (see Ref. [48] for
details), a newly developed numerical many-body approach
without perturbation, to study the magnetic correlation be-
tween the two Kondo impurities. It has been demonstrated
that the NORG method works efficiently on quantum im-
purity models in the whole coupling regime [29,48,58–60].
Moreover, the NORG method preserves the whole geometric
information of a lattice and its effectiveness is independent of
any topological structure of a lattice.

Generally, the realization of the NORG method essentially
involves a representation transformation from the site rep-
resentation into the natural orbitals representation through
iterative orbital rotations. As a result, the NORG method
works in the Hilbert space constructed from a set of natural

FIG. 2. Energy spectrum of the KM model in a ZGNR with SOC
(a) λSO = 0.1 and (b) λSO = 0, respectively. The edge-state bands in
(a) cross with each other at the Fermi level ε(kx = π ) = 0, and each
band is doubly degenerate. For λSO = 0 in (b), the flat bands related
with the edge states emerge. The size of the nanoribbon adopted in
the calculation, as sketched in Fig. 1, is L = Nx × Ny with length
Nx = 256 and width Ny = 40.

orbitals, which correspond to the eigenvectors of the single-
particle density matrix (or the correlation matrix) [48,61–67]
defined by Di j = 〈
|c†

i c j |
〉 with |
〉 a normalized many-
body wave function of the system and c†

i the creation operator
in the site representation.

More specifically, one performs the representation trans-
formation from site representation into natural orbitals
representation by d†

m = ∑N
i=1 U †

mic
†
i , here d†

m represents the
corresponding creator in the natural orbitals representa-
tion and U is an N × N unitary matrix diagonalizing the
single-particle density matrix D = U�U † with � denoting
a diagonal matrix and N the system size. In practice, to ef-
ficiently realize the NORG approach, only the bath orbitals
are transformed into a natural orbitals representation, namely,
we rotate only the orbitals of the bath. Therefore, by using
the NORG method, we can solve hundreds of noninteracting
bath sites with any topological structures, while the computa-
tional cost is about O(N3

bath) with Nbath denoting the number of
bath sites.

As a detailed example, after the representation transfor-
mation involved in the NORG method, the Kondo interaction
HKondo = J

∑
i=1,2 Si · s(ri ) [Eq. (3)] is given by the following

forms:

HKondo = J

2

∑
i=1,2

{∑
mn

UimU †
inSz

i (d†
m↑dn↑ − d†

m↓dn↓)

−
∑
mn

UimU †
inc†

i↑dn↑d†
m↓ci↓

−
∑
mn

UimU †
ind†

m↑ci↑c†
i↓dn↓

}
(4)

with c†
i↑ (ci↑) denoting the creation (annihilation) operator

with spin up at the ith impurity site.

III. NUMERICAL RESULTS

A. Band structure

Figure 2(a) shows the energy spectrum of the KM model in
a ZGNR with SOC λSO = 0.1. The two edge-state bands in the
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FIG. 3. (a) Energy spectrum of the KM model in a ZGNR of
size L = Nx × Ny = 28 × 6 and (b) the finite-size energy gap �εy at
kx = π with respect to the width Ny for λSO = 0.1. �εy decays expo-
nentially with the nanoribbon width Ny as expected. The nanoribbon
length Nx is fixed to Nx = 28 in (b).

spectrum in Fig. 2(a) cross with each other at the Fermi level
ε(kx = π ) = 0, and each band is doubly degenerate according
to the Kramers degeneracy. Meanwhile, we also plot the en-
ergy spectrum for the vanishing SOC λSO = 0 in Fig. 2(b). As
expected, the flat bands related with the localized edge states
emerge when the SOC vanishes.

On the other hand, in realistic systems, the edge states
decay exponentially into the bulk. Consequently, for a ZGNR
with a finite width, the helical edge states coming from the
two edges can couple together with a finite overlap to produce
a small energy gap at kx = π , destroying the QSH effect.
In Fig. 3 we show the energy spectrum of the KM model
in a ZGNR of size L = Nx × Ny = 28 × 6, as well as the
finite-size gap �εy at kx = π with respect to the nanoribbon
width Ny. As we see in Fig. 3(b), the energy gap �εy de-
cays exponentially with the nanoribbon width Ny as expected.
Specifically, the finite-size energy gap �εy(Ny = 6) ≈ 10−4,
indicating that the ground state of the KM model defined in
a ribbon with width Ny = 6 is appropriate to simulate the
helical edge states.

B. Magnetic correlation vs the Kondo coupling

In order to explore the magnetic correlation between the
two impurities, which measures the RKKY interaction medi-
ated by the edge states, we first calculate the static spin-spin
correlation 〈S1 · S2〉 vs the Kondo coupling J . In the large
Kondo coupling regime, we expect that the Kondo effect dom-
inates over the RKKY interaction, with the two local spins
being screened separately. This leads to the interimpurity
correlation 〈S1 · S2〉 → 0, indicating that the two impurities
decouple from each other. As the Kondo coupling J decreases,
the behavior of the interimpurity correlation 〈S1 · S2〉 is intri-
cate and expected to depend on the relative positions of the
two magnetic impurities. In the following calculations in this
section, the interimpurity distance is fixed to R = a when the
two impurities are located at the same sublattice and that is
fixed to R = a/2 when at the different sublattices.

We plot the calculated 〈S1 · S2〉 as a function of J for
R = a/2 and R = a in Figs. 4(a) and 4(b), respectively. As
we see, 〈S1 · S2〉 < 0 for R = a/2, which demonstrates that
the total correlation between the two impurities located at the
different sublattices is AFM. Moreover, in the weak-coupling

FIG. 4. Spin-spin correlation 〈S1 · S2〉 and the corresponding
components along the z direction 〈Sz

1Sz
2〉 and the x (y) direction

〈Sx
1Sx

2〉 (〈Sy
1Sy

2〉) as functions of Kondo coupling J for fixed interimpu-
rity distances (a) R = a/2 and (b) R = a, respectively. 〈S1 · S2〉 → 0
in the large J regime, indicating that the two impurities are screened
separately and thus decouple from each other. In comparison, in the
weak J regime, the behavior of the magnetic correlation depends on
the interimpurity distance R.

limit J → 0, the spin correlation 〈S1 · S2〉 → 0 for R = a/2,
meaning that the two impurities decouple from each other.
Hence when the two impurities are located at the different
sublattices, the Kondo effect overwhelms the RKKY interac-
tion in the weak-coupling regime. In contrast, 〈S1 · S2〉 > 0
for R = a, indicating that the magnetic correlation between
the two impurities at the same sublattice is FM. Furthermore,
〈S1 · S2〉 → 1

4 when J → 0 for R = a. This means that the two
spins are locked into a triplet in the weak-coupling limit. The
resulting triplet may be then screened in a weak two-stage
Kondo effect [68]. As the Kondo coupling J increases, the
Kondo effect tends to dominate over the RKKY interaction.
In consequence, the correlation 〈S1 · S2〉 decays smoothly to
0 in the large J regime, as shown in Fig. 4(b).

On the other hand, the SOC effect, which breaks the spin-
rotation SU(2) symmetry of the total Hamiltonian H , should
influence the symmetry in spatial distribution of the magnetic
correlation. We thus study the components along the x, y,
and z directions of the total correlation, namely, the in-plane
components and out-of-plane component, respectively. When
the two impurities are located at the same sublattice, as we
see from Fig. 4(b) for distance R = a, the symmetry in spatial
distribution is preserved with isotropic correlations in the
weak-coupling J limit, i.e., 〈Sz

1Sz
2〉 = 〈Sx

1Sx
2〉 (〈Sy

1Sy
2〉) when

J → 0. This symmetry is then broken as J increases, due to
the SOC effect. In contrast, when the two impurities are at
the different sublattices, this symmetry is slightly broken and
tends to recover in the large J regime, as shown in Fig. 4(a)
that 〈Sz

1Sz
2〉 = 〈Sx

1Sx
2〉 (〈Sy

1Sy
2〉) when J is large.

Moreover, we find that the behavior of the in-plane correla-
tion is consistent with that of the total correlation. Specifically,
the in-plane components 〈Sx

1Sx
2〉 and 〈Sy

1Sy
2〉 are always AFM

when the two impurities are located at the different sublattices,
while they are always FM at the same sublattice. For the
out-of-plane correlation 〈Sz

1Sz
2〉, as we can see from Fig. 4(a),

it is always AFM when the two impurities are located at
the different sublattices with fixed R = a/2. However, when
the two impurities are at the same sublattice with fixed R =
a, it changes from FM to weakly but not negligibly AFM
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FIG. 5. (a) Spin-spin correlation 〈S1 · S2〉 and its corresponding
components along the (b) z direction 〈Sz

1Sz
2〉 (out-of-plane correla-

tion) as well as the (c) x (y) direction 〈Sx
1Sx

2〉 (〈Sy
1Sy

2〉) (in-plane
components) in regard of the interimpurity distance R, respectively.
The ratio 〈Sz

1Sz
2〉/〈Sx

1Sx
2〉, which exhibits the effect of SOC on the

symmetry in spatial distribution of the magnetic correlation, is pre-
sented in (d). The numerical results are denoted by open (solid)
symbols for interimpurity distance R that is of half-integral (integral)
multiple of the lattice constant, i.e., when the two magnetic impuri-
ties are located at the different sublattices (same sublattice).

as the Kondo coupling J increases. As a consequence, the
out-of-plane correlation can be tuned from FM to AFM by
manipulating the Kondo coupling J .

C. Magnetic correlation vs interimpurity distance

Considering that the RKKY interaction is sensitive to the
distance, we then study the magnetic correlation in regard to
the interimpurity distance with fixed Kondo couplings J = 0.1
and J = 1.0, namely, in the weak and intermediate Kondo
coupling regimes. Corresponding numerical results are shown
in Fig. 5.

In Fig. 5(a) we present the total spin-spin correlation
〈S1 · S2〉 as a function of the interimpurity distance R. In
both cases of J = 0.1 and 1.0, when R is of half-integral
multiple of the lattice constant, the correlation 〈S1 · S2〉 < 0
and its magnitude decays with R but does not change its sign,
as presented by open symbols in Fig. 5(a). This indicates
that when the two impurities are at the different sublattices,
the total correlation between the two impurities is always
AFM. While when R is of integral multiple of the lattice
constant, the correlation 〈S1 · S2〉 is always positive, mean-
ing FM correlation. Specifically, 〈S1 · S2〉 ≈ 1

4 for J = 0.1,
demonstrating that the two impurities are locked into a triplet.
Meanwhile, 〈S1 · S2〉 decays smoothly as the distance R in-
creases for J = 1.0. As a result, when the two impurities are
located at the same sublattice, the total magnetic correlation is
always FM.

Figure 5(b) shows the out-of-plane correlation, i.e., z com-
ponent 〈Sz

1Sz
2〉 of the spin-spin correlation. When the two

impurities are located at the different sublattices, namely, R
is of half-integral multiple of the lattice constant, 〈Sz

1Sz
2〉 < 0

at short distance and then it changes the sign as R increases,
meaning that the out-of-plane correlation turns from AFM to
FM. In the case of R being integral multiple of the lattice con-
stant, i.e., the two impurities are located at the same sublattice,
the out-of-plane correlation is always FM with 〈Sz

1Sz
2〉 > 0.

As a comparison, 〈Sz
1Sz

2〉 remains nearly unchanged with the
interimpurity distance R for J = 0.1, while it decays within
short distance and increases afterwards as R further increases
for J = 1.0. Hence, the out-of-plane magnetic correlation can
be adjusted by manipulating the interimpurity distance, es-
pecially when the two impurities are located at the different
sublattices.

As shown in Fig. 5(c), the in-plane magnetic correlation,
namely, the x (y) component 〈Sx

1Sx
2〉 (〈Sy

1Sy
2〉) of the total cor-

relation, is always AFM when the two impurities are located
at the different sublattices, while it is always FM when at the
same sublattice. As we see, the behavior of in-plane compo-
nents is consistent with that of the total correlation, implying
that the behavior of the total magnetic correlation is mainly
determined by that of the in-plane components.

The ratio 〈Sz
1Sz

2〉/〈Sx
1Sx

2〉, which exhibits the effect of SOC
on the symmetry in spatial distribution of the magnetic corre-
lation, is presented in Fig. 5(d). We see that when the two
impurities are located at the different sublattices, the SOC
always breaks the symmetry in spatial distribution with the
ratio 〈Sz

1Sz
2〉/〈Sx

1Sx
2〉 < 1 and 〈Sz

1Sz
2〉/〈Sx

1Sx
2〉 then decays to −1

at long distance R. On the other hand, when the two im-
purities are located at the same sublattice for J = 0.1, the
spatial isotropy is nearly preserved with 〈Sz

1Sz
2〉/〈Sx

1Sx
2〉 ≈ 1.

However, the symmetry in spatial distribution is broken for
J = 1.0 at short distance, which tends to recover at very long
distance afterwards. Thus, at very long distance R when the
two impurities are located at the same sublattice, the effect of
SOC on the symmetry in spatial distribution of the magnetic
correlation vanishes with 〈Sz

1Sz
2〉/〈Sx

1Sx
2〉 = 1.

D. Sublattice influence on the magnetic correlation

It has been shown above that when the two impurities are
located at the same sublattice, the behavior of magnetic cor-
relation is distinct from that when at the different sublattices.
We attribute the difference to the fact that the edge states along
the top edge reside mainly in sublattice A [57,58], namely,
the local density of states (LDOS) ρA at the Fermi energy at
sublattice A is relatively larger than ρB at sublattice B, leading
to different effective couplings between the impurities and the
edge states JA

eff = ρAJ and JB
eff = ρBJ with JA

eff � JB
eff. Hence,

two different characteristic scales emerge when T A
K � T B

K
with TK ∝ Jeff in the system. On the other hand, in a finite
system with the finite-size gap � at the Fermi energy, the
finite-size effect may modify the Kondo physics.

Therefore when an impurity is located at sublattice B, for
weak Kondo coupling J with T B

K  �, the magnetic moment
may be underscreened or even completely decoupled from
the conduction electrons. Consequently, in the weak-coupling
limit, when the two impurities are located at the different
sublattices, the one located at sublattice B may decouple from
the system while the other at sublattice A is fully screened,
leading to the interimpurity correlation 〈S1 · S2〉 → 0 when
J → 0 with the two impurities decoupling from each other,
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as shown in Fig. 4(a). Moreover, a minimum point appears
in Fig. 4(a), which corresponds to the point where T B

K is of
the same order of magnitude as the finite-size gap �, namely,
T B

K ∼ �. Our further numerical results (not shown) indicate
that the coupling J at the minimum point is pushed to smaller
values as the length Nx increases, since the finite-size gap �

decreases.
As a supplement, we further study the single impurity

case, i.e., there is only one Kondo impurity coupled with the
edge states at the top edge. Our numerical results (calculated
in the Sz

total = 1
2 subspace) show that 〈Sz

imp,A〉 = 0 when the
impurity is located at sublattice A, indicating that no free
local moment at the impurity site can be polarized and hence
the impurity spin is completely screened by the conduction
electrons, consistent with our previous work [58]. In contrast,
when the impurity is located at sublattice B, the spin polariza-
tion 〈Sz

imp,B〉 
= 0 in the weak-coupling regime (e.g., J � 1.0),
meaning that the impurity may be completely decoupled from
the conduction electrons when J → 0. As the Kondo cou-
pling increases (e.g., J = 1.2), the impurity spin polarization
tends to vanish with 〈Sz

imp,B〉 = 0. Hence when the impurity is
located at sublattice B, the local moment can only be fully
screened by the conduction electrons for sufficiently large
Kondo couplings.

We proceed to calculate the ground-state energy fall after
coupling the impurity to the topological insulator, which is
defined as

�EA(B) = EA(B)
0 (J ) − EA(B)

0 (J = 0), (5)

where �EA(B) denotes the ground-state energy fall when the
impurity is located at sublattice A (B). If the impurity is
perfectly screened, �E can be identified as an estimate of
the Kondo temperature TK or the energy needed to break the
Kondo singlet. As expected, �E increases with the Kondo
coupling J and �EA > �EB, as plotted in Fig. 6. In compari-
son, we also present the ground-state energy fall after coupling
two Kondo impurities defined as

�EAA(AB) = EAA(AB)
0 (J ) − EAA(AB)

0 (J = 0), (6)

where �EAA(AB) represents the ground-state energy fall when
the impurities are located at the same sublattice (the differ-
ent sublattices) with interimpurity distance R = a (R = a/2)
shown in Fig. 1. Our numerical results, plotted in Fig. 6,
show that the ground-state energy fall �EAA > �EAB, in
accordance with the results in the single impurity case.

E. SOC effect on the magnetic correlation

Since the Kondo physics depends drastically on the DOS of
the conduction electrons surrounding the magnetic impurities,
the RKKY interaction may be modified by the DOS of the free
electrons. For the KM model defined in a ZGNR, the LDOS
at the Fermi energy at sublattices A and B along the top edge
are determined by the strength of SOC λSO. At sublattice A,
the LDOS of the edge states associated with the flat bands
with the vanishing SOC λSO = 0 displays a sharp peak, while
the peak is then suppressed and becomes smooth as the λSO

increases with the edge states being broadened. So we expect
that the effective coupling between the impurity at sublattice
A and conduction electrons will be weakened by the SOC

FIG. 6. The ground-state energy fall after coupling one impurity
or two impurities to the topological insulator. �EA(B) denotes the
energy fall when the impurity is located at sublattice A (B), and
�EAA(AB) represents that when two impurities are located at the
same sublattice (the different sublattices) with interimpurity distance
R = a (R = a/2). All calculations are carried out in ZGNRs of size
L = Nx × Ny = 28 × 6 with SOC λSO = 0.1.

effect. On the other hand, at sublattice B, the LDOS at the
Fermi level displays a small but finite value for a nonvanishing
λSO 
= 0 and it almost does not vary with the λSO. Thus we
propose that the RKKY interaction may be adjusted by the
SOC effect. In order to this end, we next study the effect
of SOC on the magnetic correlation between the impurities.
Numerical results with interimpurity distances R = a/2 and
R = a are depicted in Figs. 7(a) and 7(b), respectively.

It has been seen in Fig. 7 that the magnitude of the in-plane
correlation 〈Sx

1Sx
2〉 (=〈Sy

1Sy
2〉) increases with λSO, regardless

of the relative positions of the impurities. Meanwhile, in the
weak Kondo coupling regime (e.g., J = 0.1), 〈Sx

1Sx
2〉 almost

does not vary with λSO when the impurities are located at
the same sublattice with the interimpurity distance R = a.

FIG. 7. The magnetic correlation, including the in-plane and out-
of-plane correlations, between the Kondo impurities with respect to
the strength of SOC λSO when the impurities are located at (a) the
different sublattices with interimpurity distance R = a/2 and (b) the
same sublattice with R = a in various Kondo coupling regimes. The
length (width) of ZGNR used is Nx = 28 (Ny = 6).
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As a comparison, the out-of-plane correlation 〈Sz
1Sz

2〉 for the
interimpurity distance R = a/2 behaves distinctly from that
for R = a. In the case of R = a/2, the magnitude of 〈Sz

1Sz
2〉

increases with λSO except in the weak-coupling regime, where
it decreases with λSO. For the interimpurity distance R = a,
〈Sz

1Sz
2〉 declines with λSO, and it turns to negative from positive

in the strong-coupling regime (e.g., J = 4.0).
As a result, the magnetic correlation is tunable by the

strength of SOC. Specifically, the in-plane correlation is en-
hanced by the SOC, except that in the weak-coupling regime
when the impurities are located at the same sublattice, where
it almost does not vary. As for the out-of-plane correlation, its
behavior depends on the relative positions of the impurities.
When the impurities are located at the different sublattices,
the out-of-plane correlation is generally enhanced by the SOC,
whereas it is suppressed slightly in the weak-coupling regime.
In comparison, when the impurities are at the same sublattice,
it is overall suppressed as the SOC increases (it is nearly
unchanged in the weak-coupling regime), and further tuned
from FM to AFM by increasing the SOC in the strong-
coupling regime.

F. Dynamic properties

In this section, we explore the dynamic properties of the
system, represented by the spin-staggered excitation spectrum
and spin-staggered susceptibility at the two impurity sites.
We study the Green’s function in the Lehmann representation
defined at the two impurity sites, which has the form

Gst(ω) = 〈0|(Sz
1 − Sz

2

) 1

ω + iη − H + E0

(
Sz

1 − Sz
2

)|0〉. (7)

Here |0〉 and E0 denote the ground state and ground-state
energy, respectively. The parameter η → 0 stands for a
Lorentzian broadening factor. The Green’s function for a
given frequency ω + iη is calculated via the correction vector
method.

We first introduce the correction vector method concisely.
Consider the following general Green’s function G(A, z) in a
system with Hamiltonian H :

G(A, z) = 〈0|A† 1

z − H
A|0〉, (8)

where A is the applied operator in our system and z = ω +
iη. To do the correction vector method, we introduce the
first Lanczos vector |A〉 = A|0〉 and the correction vector
|x(z)〉 with

|x(z)〉 = 1

z − H
|A〉. (9)

We then split the correction vector |x(z)〉 into real and imagi-
nary parts |x(z)〉 = |xr (z)〉 + i|xi(z)〉. As a result, the equation
for the correction vector Eq. (9) is split into real and imagi-
nary parts |xr (z)〉 and |xi(z)〉, respectively. The imaginary part
|xi(z)〉 is obtained by solving the following equation:

[(H − ω)2 + η2]|xi(z)〉 = −η|A〉 (10)

using the conjugate gradient method. Furthermore, the
real part of the correction vector |xr (z)〉 is calculated

FIG. 8. Spin-staggered excitation spectrum χst(ω) at the two im-
purity sites for the interimpurity distances (a) R = a/2 and (b) R = a,
respectively. The length (width) of ZGNR used is Nx = 16 (Ny = 6)
with the Lorentzian broadening factor η = t/Nx .

directly by

|xr (z)〉 = −1

η
(H − ω)|xi(z)〉. (11)

Finally, the Green’s function can be obtained by
G(A, z) = 〈A|x(z)〉.

The spin-staggered excitation spectrum χst(ω) =
− 1

π
ImGst(ω) at the two impurity sites is first explored. The

behavior of spin-staggered excitation is expected to depend
on both the Kondo couplings and the relative positions of
the two magnetic impurities, as that of the interimpurity
magnetic correlation. As presented in Fig. 8, for the weak
Kondo coupling (J = 0.1), the spin-staggered excitation
is concentrated at the point of ω = 0 and decays with ω

increasing. In contrast, in the large Kondo coupling regime,
for example J = 4.0, the spin-staggered excitation spectrum
χst tends to vanish, especially when the two impurities are
located at the same sublattice (R = a), meaning that there is
no spin-staggered excitation at the two impurity sites. Here
the two impurities are screened separately and decouple from
each other for a large Kondo coupling J , indicated by the
spin-spin correlation 〈S1 · S2〉 → 0. As a comparison, for the
intermediate Kondo couplings, the spin-staggered excitation
is enhanced as ω → 0 when the two impurities are located
at the different sublattices (R = a/2), while it is suppressed
when at the same sublattice.

The spin-staggered susceptibility χ is then obtained by
χ = χst(ω = 0). Numerical results calculated in the ZGNRs
of different length Nx with fixed width Ny = 6 are plotted in
Fig. 9. We find that χ is larger when the two impurities are
located at the different sublattices (R = a/2) than at the same
sublattice (R = a). This is consistent with the behavior of the
out-of-plane correlation 〈Sz

1Sz
2〉 shown in Fig. 4, namely, it is

always AFM when the two impurities are located at the differ-
ent sublattices while it changes from FM to weakly AFM with
increasing the Kondo coupling J when at the same sublattice.
In the large Kondo coupling regime, as expected, influence
of the relative positions of the two magnetic impurities on
the staggered susceptibility χ tends to vanish, namely, χ → 0
when J is large, consistent with the interimpurity correlation
〈S1 · S2〉 → 0.
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FIG. 9. Spin-staggered susceptibility χ , calculated in the ZGNRs
of different length Nx with fixed width Ny = 6 and the Lorentzian
broadening factor η = t/Nx , as a function of the Kondo coupling J
for the interimpurity distances R = a/2 and R = a, respectively. χ is
larger when the two impurities are located at the different sublattices
with R = a/2 than at the same sublattice with R = a.

IV. DISCUSSION AND SUMMARY

In a QSHI, due to the SOC, one-dimensional gapless con-
ducting edge states with opposite spins counterpropagate at
each edge, called the helical edge states. Even though the
TRS protects the helical edge states from backscattering, it
allows the backscattering accompanied by a spin-flip scatter-
ing when quantum impurities interact with the helical edge
states. Therefore, two local spins in a QSHI may interact with
each other via the RKKY interaction, mediated by the helical
edge states. In contrast to the isotropic RKKY interaction in
normal metal, the helicity of edge states leads to vanishing
out-of-plane RKKY interaction for the spins along an edge in
a QSHI, whereas breakdown of this behavior occurs in a finite
system. Moreover, due to the spin-momentum locking, spin
current is realized in the helical edge states. This indicates
that this RKKY interaction is actually an exchange interac-
tion mediated by spin current in a QSHI system. In practical
applications, controllable RKKY interaction can be used to
manipulate the quantum states of local spins, which is helpful
for the spintronics and quantum-information processing. On
the other hand, the RKKY interaction can be measured by
the magnetic correlation between two local spins. Thus, it
is of great importance to investigate the magnetic correlation
between two local impurities in a QSHI.

In summary, employing the newly developed NORG
method, we investigate the magnetic correlation between two

Kondo impurities in a QSHI, based on the KM model defined
in a finite ZGNR. We find that the SOC effect breaks the
symmetry in spatial distribution of the magnetic correlation,
leading to anisotropy in the RKKY interaction. Specifically,
the total correlation and its in-plane components are always
FM when the two impurities are located at the same sublattice,
while they are always AFM when at the different sublattices.
However, the out-of-plane component can be tuned from FM
to AFM by manipulating either the Kondo coupling or the
interimpurity distance. Moreover, the magnetic correlation is
tunable by the SOC effect, especially that the out-of-plane
correlation can be adjusted from FM to AFM by increasing the
SOC when the impurities are located at the same sublattice.

Regarding the different behaviors of the magnetic correla-
tion associated with the relative positions of the impurities, it
is attributed to the fact that the edge states along the top edge
reside mainly in sublattice A. This means that the LDOS at the
Fermi energy at sublattice A is larger than that at sublattice B,
resulting in a larger effective coupling between the impurity
located at sublattice A and the conduction electrons. On the
other hand, the LDOS at the Fermi energy along the top edge
is influenced by the strength of SOC. At sublattice A, as the
strength of SOC increases, the LDOS is suppressed and then
becomes constant with the edge states being broadened. In
contrast, at sublattice B, the LDOS displays a small but finite
value at the Fermi energy for a nonvanishing SOC and almost
does not vary with the SOC. In consequence, the interimpurity
RKKY interaction as well as the magnetic correlation is thus
tunable by the SOC.

Additionally, dynamic properties of the system, repre-
sented by the spin-staggered excitation spectrum and the
spin-staggered susceptibility at the two impurity sites, are
finally explored. It is illustrated that the spin-staggered sus-
ceptibility is larger when the two impurities are located at
the different sublattices than at the same sublattice, which is
consistent with the behavior of the out-of-plane correlation.

On the other hand, our results further demonstrate that
the NORG, whose effectiveness is independent of any lattice
structures or topology of a system, is an effective numerical
method for studying the quantum impurity problems. Our
investigation will promote further theoretical studies on the
Kondo effect or the quantum phase transitions in the topologi-
cal systems by using quantum many-body numerical methods.
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