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Calculating dynamical mean-field theory forces in ab initio ultrasoft pseudopotential formalism
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In this paper, we show how to calculate analytical atomic forces within the self-consistent density functional
theory + dynamical mean-field theory (DFT + DMFT) approach in the case when ultrasoft or norm-conserving
pseudopotentials are used. We show how to treat the nonlocal projection terms arising within the pseudopotential
formalism and circumvent the problem of nonorthogonality of the Kohn-Sham eigenvectors. Our approach is, in
principle, independent of the DMFT solver employed and was tested with the Hubbard I solver. We benchmark
our formalism by comparing it against the forces calculated for Ce2O3 and PrO2 by numerical differentia-
tion of the total free energy as well as by comparing the energy profiles against the numerically integrated
analytical forces.
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I. INTRODUCTION

The ability to calculate atomic forces in quantum sys-
tems allows for efficient exploration of the energy landscape.
This, in turns, is the origin of several crucial approaches in
condensed-matter physics: structural optimization, new ma-
terial design, molecular dynamics, and so on. Within density
functional theory (DFT), the calculation of forces is based on
the variational properties of the DFT total energy functional,
on the one hand, and on the Hellmann-Feynman theorem,
on the other. As a result, the forces within the all-electron
DFT can be calculated based on the explicit dependence of
the ion-ion and ion-electron interaction terms on the atomic
positions.

On the other hand, practical DFT calculations rely on ap-
proximate exchange-correlation functionals, which handicaps
the ability of DFT to reproduce strongly correlated physics
in many materials, notably those containing open d or f
shell elements. Many strongly correlated materials exhibit
properties useful for technological applications [1–3]. For ex-
ample, copper oxides and iron pnictides are high-temperature
superconductors [4–6], and cobaltates exhibit colossal ther-
moelectric power [7], which is useful for energy conversion.
Several vanadates have peculiar room-temperature metal-
insulator transitions, allowing the realization of a so-called
intelligent window, which becomes insulating as the external
temperature drops [8–11].

The failure of DFT’s exchange-correlation functionals to
capture strong correlation physics severely limits its use for
nanoscale design of such important functional materials. In
contrast to DFT, great progress has been made in describing
strongly correlated materials with the dDynamical mean-field
theory (DMFT) [12–20]. DMFT is a sophisticated method
which offers a higher level of theoretical description than

*evgeny.plekhanov@kcl.ac.uk
†cedric.weber@kcl.ac.uk

DFT and bridges the gap between DFT and Green’s function
approaches. Within DMFT, the treatment of local electronic
correlation effects is formally exact, although the nonlocal
electronic correlation effects are neglected. DMFT can be
combined with DFT, giving rise to the DFT + DMFT method
[14,16,17,21–24], in which the DMFT is applied to selected
“correlated” d and/or f orbitals, while the rest of the system
is treated at the DFT level. Moreover, within DFT + DMFT,
a variational principle for the total free energy can be derived
[16,25], and it can be shown that at self-consistency, the
DFT + DMFT solution corresponds to a stationary point.

There have been several approaches to the calculation of
forces within DFT + DMFT. In the work of Savrasov and
Kotliar [26] the second derivatives of the DFT + DMFT func-
tional were calculated at a finite q vector while neglecting
some terms; the work of Leonov et al. [27] proposed the force
calculation, which was not based on a stationary functional
and required calculation of the two-particle vertex at all fre-
quencies and implied building an effective Hubbard model to
be solved by the DMFT method.

Recently, a method for analytical calculation of the atomic
forces within the DFT + DMFT all-electron linearized aug-
mented plane-wave (LAPW) formalism was proposed [28].
Compared to earlier approaches [26,27], it allowed the deriva-
tion of a general expression for the atomic forces which is
independent of the DMFT solver used. It was shown [28]
that the use of the total free energy functional at charge
self-consistency greatly simplifies the final expression since
several terms cancel out. The use of all-electron formalism al-
lows us to consider only the standard terms in the Hamiltonian
(ion-ion, ion-electron, electron-electron), which are local. On
the other hand, the formalism employing the pseudopotentials,
which would allow us to significantly extend the system size
and would be capable of calculating the forces within the
DFT + DMFT method, is still missing. In addition, the use of
the nonorthogonal LAPW basis introduces additional terms
into the formalism, and it would be desirable to extend the
formalism to a simpler case of the plane-wave basis set.
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Motivated by the above considerations, in this paper, we
show that the formalism developed in Ref. [28] can be ef-
ficiently extended to a case of both norm-conserving and
ultrasoft pseudopotential DFT, derive all the necessary formu-
las and benchmark our formalism on real systems. The main
difficulties outlined above will be addressed in detail in the
subsequent sections.

This paper is organized as follows: in Secs. II and III
we show how the theory of ultrasoft pseudopotentials can
be combined with the DFT + DMFT formalism and how the
atomic forces can be derived starting from the resulting free-
energy functional; in Sec. IV we present the benchmark of our
formalism for examples of Ce2O3 and PrO2, and we give the
conclusions in Sec. V.

II. GENERATING FUNCTIONAL

The DFT + DMFT total free energy functional was derived
in Refs. [14,16,17,29] and is reported here for completeness.
The starting point is the Baym-Kadanoff (or Luttinger-Ward)
functional (for a review see Ref. [16]), which is a functional
of the electronic density ρ(r) and the lattice Green’s function
Gν,ν ′ (k, iωn) ≡ G:

�[ρ, G] = Tr ln G + U (R)

−
∫

dr[Vxc(r) + VH (r)]ρ(r) − Tr
(
G−1

0 − G−1
)
G

+ EH [ρ] + Exc[ρ] +
∑

I

(�DMFT[G] − �DC[G]).

(2.1)

Here, EH [ρ] is the Hartree density functional, Exc[ρ] is
the exchange-correlation functional, U (R) is the ion-ion
Coulomb interaction energy, and G0 is the DFT Green’s
function,

G−1
0 = iωn + μ − T̂ − vKS,

where μ is the system’s chemical potential, T̂ is the kinetic
energy operator, and vKS is the Kohn-Sham (KS) potential,

vKS = V ion + Vxc + VH ,

where V ion is the periodic potential of the ions. �DMFT[G]
is the DMFT interaction functional, and �DC[G] is the
double-counting functional. For a detailed discussion of these
functionals see Refs. [28,30]. Expression (2.1) for the � func-
tional corresponds to the following expression for the free
energy:

F = Tr lnG + EH − Tr(VHρ) + Exc − Tr(Vxcρ)

+
∑

I

(�DMFT[G] − �DC[G])

− TrGloc(� − V DC) + U (R) + μN . (2.2)

Here, N is the number of electrons in the unit cell, and the
reason why the term μN was added to the free energy expres-
sion in the context of the force calculation will be explained
in the subsequent sections. Vxc and VH are the exchange and

Hartree potentials, respectively, while � is the self-energy and
V DC is the double-counting potential:

Vxc = δExc

δρ
, (2.3)

VH = δEH

δρ
, (2.4)

� = δ�DMFT[G]

δG
, (2.5)

V DC = δ�DC[G]

δG
. (2.6)

Finally, Gloc is the local Green’s function, which will be de-
fined below.

The trace operator appearing in Eqs. (2.1) and (2.2) for a
general matrix function (or operator) A is defined as

TrA = T
∑
n,l

All (iωn)eiωn0+
; (2.7)

that is, it is traced over both orbital and imaginary-time indices
at temperature T .

The lattice Green’s function G and the electronic density ρ

are obtained, respectively, as

G(k, iωn) = [iωn + μ − T̂ − vKS − �B(k, iωn)]−1,

ρ(r) = Tr〈r|Ĝ|r〉. (2.8)

Here, �B is the lattice self-energy obtained from � and V DC

using the so-called upfolding transformation:

�B
ν,ν ′ (k, iωn) =

∑
L,L′

P	
ν,L(k)(� − V DC)L,L′PL′,ν ′ (k). (2.9)

Within DFT + DMFT, �B acquires k dependence, unlike the
pure DMFT case, in which the self-energy is local. Here, we
have implicitly introduced the projectors onto the localized
states {βI

m}:
PL,ν (k) = 〈

βI
m

∣∣S|φk,ν〉 = 〈βL|S|φk,ν〉, (2.10)

where the index L comprises the atom position I and the
orbital index m: L ≡ {m, I}. The projectors are defined as
the overlaps between localized states βL and the KS orbitals
φk,ν with a metric S, which takes care of the nonorthogonal-
ity of the β states, as was pointed out in Ref. [21]. It will
become evident in the following section that this matrix is
the same S matrix introduced in the formalism of the ul-
trasoft pseudopotentials with the same scope. The opposite
operation—downfolding—is required in order to obtain the
local Green’s function Gloc appearing in Eq. (2.2):

Gloc
L,L′ (ω) =

∑
k,ν,ν ′

PL,ν (k)Gν,ν ′ (k, ω)P	
ν ′,L′ (k). (2.11)

We would like to stress that the above formulas were derived
for the all-electron case, as opposed to the pseudopotential
case considered in the present work. As will be shown in the
next section, in the latter case an additional nonlocal density
dependent potential appears in the Hamiltonian, so that the
above formalism cannot be applied in its present form. The
scope of the present paper is to adapt the force formalism
derived in Ref. [28] to the pseudopotential case.
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III. VANDERBILT’S FORMALISM

Here, we extend the all-electron DFT + DMFT formalism
to the case when the pseudopotentials are used. Ultrasoft pseu-
dopotentials (USPPs) were first proposed in Refs. [31,32].
The advantage of USPPs over the norm-conserving pseudopo-
tentials consists of lowering the cutoff energy for the plane
waves thanks to relaxing the condition of norm conservation
and allowing for nonorthogonality of the local projectors.
The norm-conserving pseudopotentials can be viewed as a
limiting case of USPPs if the norm conservation is imposed.
With regard to the force calculation, several difficulties arise
in the case when the pseudopotentials are employed within
DFT + DMFT: (i) the DFT Hamiltonian contains a nonlocal
projection term which implicitly depends on the density, (ii)
the KS eigenvectors become nonorthogonal, (iii) the elec-
tronic density contains the augmentation part in addition to
the usual plane-wave one, and (iv) the USPP method is for-
mulated by using the total internal energy, while, for the force
calculation, the total free energy is preferable. We show below
how these points can be addressed and notice regarding point
(ii) that Ref. [21] showed how the nonorthogonality of the
local basis within DFT + DMFT can be efficiently taken into
account using the projection overlap matrix S as a metric. We
start by rewriting the USPP total energy; proceed by showing
that the DFT forces, derived from this expression, are identical
to the usual USPP formula; and, finally, extend the formalism
to the case of DFT + DMFT.

1. Reformulating USPP free energy and forces

By using the KS eigenvalues∑
k,ν

ok,νεk,ν =
∑
k,ν

ok,ν〈φk,ν | − ∇2 + V (0)
NL |φk,ν〉

+
∫

drVeff (r)ρ(r), (3.1)

the USPP total energy can be rewritten (at self-consistency) as
follows (in the notations of Ref. [32]):

Etot =
∑
k,ν

ok,νεk,ν + EH [ρ] − Tr(VHρ)

+ Exc[ρ] − Tr(Vxcρ) + U (R). (3.2)

Here, ok,ν is the νth KS level occupancy at momentum k,
V (0)

NL is the “unscreened” nonlocal potential, and Veff (r) is the
effective potential,

Veff (r) = V ion(r) + VH (r) + Vxc(r). (3.3)

Finally, U (R) is the interatomic Coulomb interaction energy,
and ρ represents the full electronic charge density (plane wave
plus augmentation).

Variating Etot with respect to an atomic position Rμ, we
obtain

Fμ = − ∂Etot

∂Rμ

= −
∑
k,ν

ok,ν

δεk,ν

δRμ

+ Tr

(
δ(VH + Vxc)

δRμ

ρ

)
− ∂U

∂Rμ

.

(3.4)

δεk,ν

δRμ
can easily be obtained from the Schrodinger equation by

using the Hellmann-Feynman theorem:

H |φk,ν〉 = εk,νS|φk,ν〉
δεk,ν

δRμ

= 〈φk,ν | δH

δRμ

|φk,ν〉 − εk,ν〈φk,ν | δS

δRμ

|φk,ν〉.

Here, H is the effective (nonphysical) Hamiltonian defined
with the “screened” nonlocal part as

H = −∇2 + VNL + Veff (r), (3.5)

S = 1 +
∑
n,m,I

qnm

∣∣βI
n

〉〈
βI

m

∣∣, (3.6)

with VNL being the self-consistent nonlocal projection
operator,

VNL =
∑
n,m,I

DI
nm

∣∣βI
n

〉〈
βI

m

∣∣, (3.7)

as opposed to the “bare” nonlocal projectors,

V (0)
NL =

∑
n,m,I

D(0)
nm

∣∣βI
n

〉〈
βI

m

∣∣. (3.8)

DI
nm and D(0)

nm are connected through the charge augmentation:

DI
nm = D(0)

nm +
∫

drVeff (r)QI
nm(r). (3.9)

Here, the quantities D(0)
nm and QI

nm(r) are the properties of
the pseudopotential, as explained in Ref. [32], and D(0)

nm does
not change when the atomic positions are varied. The local
functions βI

n are also part of the pseudopotential definition,
although they are centered at the ions and do move rigidly with
the atoms. The matrix S is the cause of the nonorthogonality
of the KS eigenvectors.

In Eq. (3.4), we neglected the variation of ok,ν because
within the DFT USPP formalism the force calculations are
carried out at zero temperature, and the occupancies are as-
sumed to be step-function-like. Below, within DFT + DMFT
formalism, the variation of DMFT occupancies will be shown
to cancel out if the forces are derived from the total free
energy.

Recording that

δH

δRμ

= δVeff (r)

δRμ

+ δVNL

δRμ

and after some simplifications, we get∑
k,ν

ok,ν〈φk,ν | δH

δRμ

|φk,ν〉

= Tr

(
δVeff

δRμ

ρ

)
+

∑
n,m,I

∫
drVeff (r)

∂QI
nm(r)

∂Rμ

ρI
nm

+
∑
n,m,I

DI
nm

∂ρI
nm

∂Rμ

. (3.10)

Here, we have used the following properties: (i) the definition
of DI

nm [Eq. (3.9)], (ii) the fact that δD(0)
nm/δRμ = 0, and (iii)
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the definitions of the full density ρ(r), the quantity ρI
nm, and

its derivative ∂ρI
nm

∂Rμ
from the Ref. [32]:

ρI
nm =

∑
k,ν

ok,ν

〈
φk,ν

∣∣βI
n

〉〈
βI

m

∣∣φk,ν

〉
, (3.11)

ρ(r) =
∑
k,ν

ok,ν |φk,ν (r)|2 +
∑
n,m,I

QI
nm(r)ρI

nm, (3.12)

∂ρI
nm

∂Rμ

=
∑
k,ν

ok,ν

[〈
φk,ν

∣∣∣∣ ∂βI
n

∂Rμ

〉〈
βI

m

∣∣φk,ν

〉
+ 〈

φk,ν

∣∣βI
n

〉〈 ∂βI
m

∂Rμ

∣∣∣∣φk,ν

〉]
. (3.13)

With these definitions, it is easy to derive Eq. (3.10).
On the other hand, the metrics part (containing the deriva-

tive of S) becomes∑
k,ν

ok,νεk,ν〈φk,ν | δS

δRμ

|φk,ν〉 =
∑
n,m,I

qnm
∂ωI

nm

∂Rμ

.

Here, once again, we have used the definitions of ωI
nm

and ∂ωI
nm

∂Rμ
from Ref. [32] with �k,ν;k′,ν ′ = εk,νδk,ν;k′,ν ′ , which

corresponds to the equilibrium condition, as explained
therein:

ωI
nm =

∑
k,ν

ok,νεk,ν

〈
φk,ν

∣∣βI
n

〉〈
βI

m

∣∣φk,ν

〉
, (3.14)

∂ωI
nm

∂Rμ

=
∑
k,ν

ok,νεk,ν

[〈
φk,ν

∣∣∣∣ ∂βI
n

∂Rμ

〉〈
βI

m

∣∣φk,ν

〉
+ 〈

φk,ν

∣∣βI
n

〉〈 ∂βI
m

∂Rμ

∣∣∣∣φk,ν

〉]
. (3.15)

Putting all the terms together, we, indeed, obtain the stan-
dard USPP force formula (see Ref. [32]):

Fμ = − ∂U

∂Rμ

− Tr

(
δV ion

δRμ

ρ

)
−

∑
n,m,I

∫
drVeff (r)

∂QI
nm(r)

∂Rμ

ρI
nm −

∑
n,m,I

DI
nm

∂ρI
nm

∂Rμ

+
∑
n,m,I

qnm
∂ωI

nm

∂Rμ

. (3.16)

This expression is identical to Eq. (43) of Ref. [32].

2. Formulating USPP DFT + DMFT free energy

Now, we turn to Eq. (3.2). We can easily generalize it
to the DFT + DMFT case and directly write the generating
functional � and the free energy F :

�[G] = Tr lnĜ − Tr
({

Ĝ−1
0 − Ĝ−1

}
Ĝ

) + EH + Exc

+
∑

I

�DMFT[G] −
∑

I

�DC[G] + U (R), (3.17)

F = Tr lnĜ + EH − Tr(VHρ) + Exc − Tr(Vxcρ)

+
∑

I

�DMFT[G] −
∑

I

�DC[G] − Tr[(� − V DC)G]

+ U (R) + μN . (3.18)

In passing from �[G] to F the following expression for Ĝ was
obtained:

Ĝ(k, iωn) = [iωn + μ − εk,ν − �B(k, iωn)]−1,

where, by definition, εk,ν = Ekin + V ion + VNL + VH + Vxc in
the KS basis and we cast G0 (the Green’s function in the
absence of � and VDC, the DFT Green’s function) as

Ĝ−1
0 = iωn + μ − T − V ion − VNL − VH − Vxc

= iωn + μ − εk,ν .

Here, Ekin is the electron’s kinetic energy, μ is the system’s
chemical potential, and N is the number of electrons in the
unit cell. The reason why the +μN term is added is because
the free energy is defined as F = E − T S − μN , with S being
the system’s entropy, and we do not want the −μN term to
contribute to the forces. Comparing Eqs. (2.1) and (2.2) and
Eqs. (3.17) and (3.18), we can see that the nonlocal projection
term can be absorbed into the definitions of G and G0, so that

the final expressions for � and F are identical to those for the
all-electron DFT + DMFT. In addition, we note that a Dyson
equation holds in Bloch space:

Ĝ−1(k, iωn) = Ĝ−1
0 (k, iωn) − �B(k, iωn). (3.19)

Now, we can check the limiting case of DFT forces by
deriving them directly from F :

F DFT = Tr lnĜ + EH − Tr(VHρ)

+ Exc − Tr(Vxcρ) + U (R) + μN .

In the DFT case, obviously, the KS Hamiltonian, expressed
in the KS basis is a diagonal matrix with the corresponding
eigenvalues εk,ν on the diagonal. Variating with respect to an
ionic coordinate Rμ, we obtain

Fμ = − Tr

(
G

δεk,ν − δμ

δRμ

)
+ Tr

(
δ(VH + Vxc)

δRμ

ρ

)
− ∂U

∂Rμ

− N δμ

δRμ

.

Once again, in the DFT case, εk,ν does not depend on ω, and
hence, the sum on the ω part of the trace can be done, giving

Tr

(
G

δ

δRμ

(εk,ν − μ)

)
=

∑
k,ν

ok,ν

δ

δRμ

(εk,ν − μ)

=
∑
k,ν

ok,ν

δεk,ν

δRμ

− N δμ

δRμ

.

Putting everything together, we obtain

FDFT
μ = −

∑
k,ν

ok,ν

δεk,ν

δRμ

+ Tr

(
δ(VH + Vxc)

δRμ

ρ

)
− ∂U

∂Rμ

,
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which is identical to Eq. (3.4). Here, the occupancies are
defined according to definition (2.7) (except for the omitted
summation on ν) as ok,ν = TrGν,ν (k, iωn).

Let us see how the number of particles is calculated in
Vanderbilt’s pseudopotential formalism:

N =
∫

ρ(r)dr =
∑
k,ν

ok,ν

∫
dr

{
|φk,ν (r)|2 +

∑
n,m

Qn,m(r)
〈
φk,ν

∣∣βI
n

〉〈
βI

m

∣∣φk,ν

〉}

=
∑
k,ν

ok,ν

{
〈φk,ν |φk,ν〉 +

∑
n,m

qn,m
〈
φk,ν

∣∣βI
n

〉〈
βI

m

∣∣φk,ν

〉}

=
∑
k,ν

ok,ν{〈φk,ν |φk,ν〉 + 〈φk,ν |S − 1|φk,ν〉} =
∑
k,ν

ok,ν〈φk,ν |S|φk,ν〉 =
∑
k,ν

ok,ν .

Here, we used the fact that qn,m = ∫
Qn,m(r)dr and the

definition of S from Ref. [32].

3. USPP DFT + DMFT forces

Variating with respect to Rμ and using the above defini-
tions, we obtain

FDMFT
μ = − Tr

∑
k,ν,ν ′

δ̃ενν ′ (k, iωn)

δRμ

Gν ′ν (k, iωn)

+ Tr

(
ρ

δ

δRμ

(VH + Vxc)

)
− ∂U

∂Rμ

+ Tr

(
Gloc δ

δRμ

(� − V DC)

)
, (3.20)

where ε̃νν ′ (k, iωn) ≡ εk,νδνν ′ + �B
νν ′ (k, iωn) and the Green’s

function, density, and self-energy are expressed in the KS
basis.

Therefore,

δ̃ενν ′ (k, iωn)

δRμ

= δν,ν ′
δεk,ν

δRμ

+ δ�B

δRμ

= δν,ν ′ 〈φk,ν | δH

δRμ

|φk,ν〉

− δν,ν ′εk,ν〈φk,ν | δS

δRμ

|φk,ν〉

+ δP	
ν,L(k)

δRμ

(� − V DC)L,L′PL′,ν ′ (k)

+ P	
ν,L(k)(� − V DC)L,L′

δPL′,ν ′ (k)

δRμ

+ P	
ν,L(k)

δ

δRμ

(� − V DC)L,L′PL′,ν ′ (k).

The last term in this expression, when substituted into FDMFT
μ ,

cancels out the last term in Eq. (3.20), and we note that the
first line, involving δH

δRμ
and δS

δRμ
, is independent of frequency,

so that the trace on ω can be evaluated, giving the DMFT
occupancy:

oDMFT
k,ν = TrGν,ν (k, iωn).

Moreover, the expression

∑
k,ν

oDMFT
k,ν

{
〈φk,ν | δH

δRμ

|φk,ν〉 − εk,ν〈φk,ν | δS

δRμ

|φk,ν〉
}

has the same functional form as in Vanderbilt’s theory of
USPPs and can be brought into the form of Eq. (3.16), where
ok,ν is substituted by oDMFT

k,ν . In doing that, we have to remem-
ber that in Eq. (3.16) the terms Tr[ρ δ

δRμ
(VH + Vxc)] − ∂U

∂Rμ
are

already taken into account and, in particular, the former is
partially canceled out, leaving the −Tr( δV ion

δRμ
ρ) term.

The final formula for the DFT + DMFT forces can be
expressed as follows, in analogy with Ref. [28]:

FDMFT
μ = F̃DFT

μ + Fdyn
μ , (3.21)

where F̃DFT
μ is the force, calculated according to Eq. (3.16)

with occupancy oDMFT
kν instead of oDFT

kν in the total density ρ(r)
(shown below) and in the following expressions (which is the
reason for the tilde):

ρ̃I
nm =

∑
k,ν

oDMFT
k,ν

〈
φk,ν

∣∣βI
n

〉〈
βI

m

∣∣φk,ν

〉
,

ω̃I
nm =

∑
k,ν

oDMFT
k,ν

〈
φk,ν

∣∣βI
n

〉〈
βI

m

∣∣φk,ν

〉
εk,ν .

Now, the full charge self-consistency DFT + DMFT implies

ρ(r) =
∑
k,ν

oDMFT
k,ν

{
|φk,ν (r)|2+

∑
n.m

QI
n,m(r)

〈
φk,ν

∣∣βI
n

〉〈
βI

m

∣∣φk,ν

〉}

=
∑
k,ν

oDMFT
k,ν |φk,ν (r)|2 +

∑
n,m

QI
n,m(r )̃ρI

nm.

On the other hand, Veff , depending on the full electronic den-
sity ρ(r) and entering into F̃DFT

μ explicitly and through DI
n,m,

has to be taken at the “self-consistency,” as was pointed out in
Ref. [28].
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Fdyn
μ can be expressed as

Fdyn
μ = −Tr

∑
k,ν,ν ′
L,L′

{
δP	

ν,L(k)

δRμ

(� − V DC)L,L′PL′,ν ′ (k) + P	
ν,L(k)(� − V DC)L,L′

δPL′,ν ′ (k)

δRμ

}
Gν ′ν (k, iωn)

= −Tr
∑
L,L′

(�(iωn) − V DC)L,L′
∑
k,ν,ν ′

{
PL′,ν ′ (k)Gν ′ν (k, iωn)

δP	
ν,L(k)

δRμ

+ δPL′,ν ′ (k)

δRμ

Gν ′ν (k, iωn)P	
ν,L(k)

}
= −Tr

∑
L,L′

(�(iωn) − V DC)L,L′�L′,L(iωn), (3.22)

where we have defined the function �:

�L′,L(iωn) =
∑
k,ν,ν ′

{
PL′,ν ′ (k)Gν ′ν (k, iωn)

δP	
ν,L(k)

δRμ

+ δPL′,ν ′ (k)

δRμ

Gν ′ν (k, iωn)P	
ν,L(k)

}
. (3.23)

The use of the time reversal symmetry in the numer-
ical evaluation of the Matsubara sums is exemplified in
Appendix B.

4. Derivation of the projectors derivatives

In this section, we summarize the formulas necessary to
calculate the derivatives of the projectors to the localized
states PL,ν (k). From definition (2.10) we have

δPL,ν (k)

δRμ

= δ〈βL|S|φk,ν〉
δRμ

(3.24)

=
〈
δβL

δRμ

∣∣∣∣S|φk,ν〉 + 〈βL| δS

δRμ

|φk,ν〉, (3.25)

where

δ

δRμ

|φk,ν〉 = 0 (3.26)

since the KS orbitals do not depend explicitly on atomic coor-
dinates [33–35]. The derivative of S can be readily calculated,
starting from definition (3.6):

δS

δRμ

=
∑
n,m,I

qnm

(∣∣∣∣ δβI
n

δRμ

〉〈
βI

m

∣∣ + ∣∣βI
n

〉〈 δβI
m

δRμ

∣∣∣∣). (3.27)

At this point, we would like to recall that the objects qnm

and |βI
n〉 are determined at the pseudopotential generation

stage and remain unchanged during DFT + DMFT density
optimization. The only dependence on Rμ in |βI

n〉 comes from
the fact that these localized orbitals move rigidly with their

corresponding ions, so that the derivatives | δβI
n

δRμ
〉 can be calcu-

lated by going into momentum representation, exactly as done
in Refs. [31,32] and in Ref. [28].

IV. BENCHMARKS AND RESULTS

A. Forces in cerium sesquioxide

The results presented in this section are obtained by im-
plementing the formulas presented above within the DFT +
DMFT method implemented previously [21,22] in the widely
used plane-wave DFT code CASTEP [36,37]. In order to bench-
mark our formalism, we apply it to cerium sesquioxide Ce2O3,
which has been studied for a long time [38–41]. It is known

to be an antiferromagnetic insulator with a Néel temperature
of TN = 9 K and a gap of 2.4 eV. DFT + DMFT calculations
in the literature normally address the high-temperature para-
magnetic phase, so to benchmark our force calculations we
also set the temperature to T = 0.01 eV. Ce2O3 crystallizes
in a hexagonal unit cell with space group P3̄m1. The ex-
perimental parameters for the unit cell are a = 3.89 Å and
c/a = 1.557, with the Wyckoff positions [42] Ce 2d ( 1

3 , 2
3 , ξ ),

O 2d ( 1
3 , 2

3 , η), and O 1a (0, 0, 0), with ξ = 0.24543 and
η = 0.6471. On the other hand DFT predicts a = 3.81 Å at
the experimental ratio c/a = 1.557 and experimental ξ and η.
We have performed calculations for both lattice constants a =
3.81 Å (minimum energy for the DFT + DMFT method) and
a = 3.89 Å (the experimental value) while maintaining the
ratio c/a = 1.557. We have used the norm-conserving Ce and
O pseudopotential (NCP17 set), local density approximation
(LDA) exchange-correlation potential, and a 31 × 31 × 17
Monkhorst-Pack k-point mesh. We have also checked that
similar results are obtained with the ultrasoft pseudopotentials
too. The plane-wave basis cutoff was automatically deter-
mined to be 1012 eV. The values of Hubbard U and Hund
J parameters were chosen to be U = 6 eV and J = 0.7 eV,
respectively. The results for the Ce2O3 density of states at
the experimental geometry were given in our previous work
[21] and exhibit excellent agreement with the reference cal-
culations of Ref. [17]. As in our previous paper, the DMFT
calculations were performed with the Hubbard I solver (ex-
tensions to the other types of solvers, e.g., Hubbard III [43,44]
can be done) with a fixed occupancy of n = 1 per Ce atom (in
the sense explained in Ref. [17]) within the fully localized
limit (FLL) double-counting scheme.

For the benchmark to be fair, we compare the analytical
forces calculated within our formalism against the numerical
ones obtained from finite increment derivative of the free
energy. On the other hand, we also compare the numerical free
energy profiles against the curves obtained from the spline in-
tegration of the analytical forces. With regard to the evaluation
of the numerical forces, we first note that most internal atomic
coordinates are fixed by symmetry. We vary the remaining
coordinates, which are the z coordinates of Ce 2d and O 2d
atoms (the ones established from experiment). Obviously, the
forces of the atoms related by symmetry are, in turn, related.
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FIG. 1. Energy profiles (blue points) in Ce2O3 when displacing Ce (top row) and O (bottom row) along the z direction. The left column
corresponds to a = 3.89 Å, while the right column corresponds to a = 3.81 Å. The red curves correspond to the free energy profiles derived
from integrating the analytical DFT + DMFT forces.

During the finite increment of relevant atomic coordinates, we
tested several �z values in order to be sure that the free energy
varies linearly over the length scale of �z. The results of these
tests are shown in Fig. 8 of Ref. [21], and in this work we
fix �z = 1% in units of the c dimension of the unit cell. The
numerical forces were determined as follows:

Fzi = −∂Ftot

∂zi
. (4.1)

In addition, we emphasize that the total free energy as a
function of �z is a smooth differentiable function, thanks to
the fact that both DFT (CASTEP) and DMFT subsystems in
our calculations are well behaved, giving small responses to
small perturbations. In order to be consistent with the formal-
ism developed in the previous section, in the present work,
the DFT + DMFT was self-consistently converged until the
energy became stationary up to 10−6 eV.

A comparison between the analytical forces, calculated
within the formalism presented in the previous section, and
the numerical forces, derived from the total free energy ac-
cording to Eq. (4.1), is shown in Figs. 1 and 2. The energy
profiles are presented in Fig. 1, while the force comparison is
illustrated in Fig. 2. The overall agreement appears to be very
good, taking into account the inevitable numerical bias of the
DFT + DMFT total free energy. The forces calculated within
our formalism are correct for both Ce (correlated ion) and O

(“uncorrelated ion”), on which the dynamical force is identi-
cally zero. We note that the local minimum (where the force
is zero) with respect to the Ce displacement along the z axis is
approximately +0.06 Å with respect to the experimental po-
sition for the a = 3.89 Å unit cell, while it is about +0.017 Å
for the a = 3.81 Å unit cell. In the case of O displacement, the
order of magnitude of forces is smaller, while the minimum
positions are roughly −0.02 Å for both unit cells considered.
Compared to the DFT forces (Table II of Ref. [21]), the Ce
DFT + DMFT forces presented here are larger, while the O
forces are smaller. Compared to the one-shot DFT + DMFT
forces (Table II of Ref. [21]), the full charge self-consistency
modifies significantly the resulting force: for Ce it is increas-
ing, while for O it is decreasing. We conclude, therefore, that
the one-shot DFT + DMFT somehow overshoots the forces
with respect to the full self-consistent DFT + DMFT. It was
shown in Ref. [17] that the full self-consistent DFT + DMFT
gives somewhat better agreement with the experiment for
the Ce2O3 equilibrium volume compared to the one-shot
DFT + DMFT, thanks to the spectral weight redistribution.
In addition, the difference between the DFT and the DMFT
forces is larger on the correlated ions, although the uncorre-
lated ones are also modified due to the fact that the density is
distributed differently in DFT + DMFT with respect to DFT.
On the other hand, we have checked that the total vector sum
of all the forces acting on all the atoms in the unit cell is
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FIG. 2. Comparison of the DFT + DMFT forces. Red points: analytical forces; blue points: numerical derivative extracted from the
numerical free energy profiles reported in Fig. 1. Forces acting on Ce (top row) and O (bottom row) along the z direction. The left column
corresponds to a = 3.89 Å, while the right column corresponds to a = 3.81 Å.

zero within both DFT and DFT + DMFT, as it should be in
equilibrium.

B. Forces in praseodymium dioxide

In order to enforce the validity of our approach, we
have benchmarked the DMFT forces in yet another sys-
tem: praseodymium dioxide (PrO2). We consider PrO2 in the
rhombohedral unit cell (symmetry group Fm3̄m) with a =
4.0482 Å and the following Wyckoff positions of the atoms:
Pr at (0,0,0) and two oxygen atoms at ( 1

4 , 1
4 , 1

4 ) and ( 3
4 , 3

4 , 3
4 )

[45,46]. Here, we have used ultrasoft pseudopotentials for
both Pr and O (C17 set), the LDA exchange-correlation po-
tential, and a 25 × 25 × 25 Monkhorst-Pack k-point mesh.
The plane-wave basis cutoff was automatically determined
to be 653 eV. The values of the Hubbard U and Hund J
parameters were chosen to be U = 6 eV and J = 0.7 eV, re-
spectively. At the above Wyckoff positions, the net DFT +
DMFT forces are zero due to symmetry, and the finite forces
appear if the corresponding atoms are pushed away from
their positions. Since both Pr and O atoms are placed on
the cubic cell diagonal, in carrying out the finite displace-
ments it is important to conserve the threefold axis along
the diagonal. That is why in the present section, we per-
form the finite displacements of the Pr atom along the (111)

direction. The free energy increment between two atomic
positions R1 and R2 is then estimated by using the following
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FIG. 3. Energy profiles (blue points) of PrO2 when displacing
the Pr atom along the (111) direction. Fint stands for the spline-
integrated forces along the displacement path, while FDMFT stands for
the system’s free energy calculated at given atomic positions using
full charge self-consistency.
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formula:

Ftot (R2) − Ftot (R1) = −
∫ R2

R1

∑
μ

Fμ(R)dRμ, (4.2)

where Fμ(R) is the μ component of the force at the atomic
position vector R, while Rμ is the μ Cartesian coordinate
of the displaced Pr atom. The excellent agreement between
δFtot derived from the analytical forces and the free energy
profiles calculated in the vicinity of the high-symmetry Wyck-
off position of the Pr atom is shown in Fig. 3. The forces
appear to be symmetric with respect to the displacements
of the atoms along the diagonal in the positive and negative
directions off the exact Wyckoff positions, and so does the
free energy profile. We would like to point out that in the
case of PrO2 the order of magnitude of forces and energy
increments associated with the atomic displacements are an
order of magnitude smaller than those in the Ce2O3 case,
which required additional accuracy in deriving a smooth free
energy profile.

V. CONCLUSIONS

In conclusion, we have presented a formalism for ana-
lytic calculation of the atomic forces within the full charge
self-consistent pseudopotential DFT + DMFT approach. Our
approach extends that of Ref. [28] by taking into account
the nonlocal projections terms in the KS Hamiltonian, which
depend implicitly on charge distribution and arise from the
pseudoization procedure. It inherits the useful properties of
the DFT + embedded DMFT functional [28], in particular
δP
δG = 0, and therefore, the terms most difficult to calcu-
late cancel out in the final result. The plane-wave basis,
employed within our implementation, greatly simplifies the
formalism by avoiding the calculation of the augmentation
charges. Our formalism is implemented within the DMFT
framework inside the CASTEP ab initio code, which in the
past already allowed for precise total free energy calculations
within DFT + DMFT [21]. Our approach is general and suit-
able for both norm-conserving and ultrasoft pseudopotentials.
The pseudopotential approach has the advantage of speeding
up the calculations with respect to the all-electron methods by
considering the core electrons to be frozen, while the ultra-
soft pseudopotentials further speed up the calculations with
respect to the norm-conserving pseudopotentials by relaxing
the norm-conserving condition [31,32].

In addition, our approach does not use any specific DMFT
solver property and hence would work equally well with all
solvers. We have presented the benchmark of our approach
using the example of Ce2O3, which showed excellent agree-
ment between the forces analytically calculated within our
approach and the forces obtained from numerical differen-
tiation of the total free energy at very low temperature. In
addition, we have compared the total free energy profiles
against the integrated forces profiles, which also showed ex-
cellent agreement. We analyzed the differences of atomic

forces within DFT, one-shot DFT + DMFT, and full charge
self-consistent DFT + DMFT for the examples of Ce2O3 and
PrO2, with the applicability to the correlated metal close to the
Mott transition being the subject of our future studies. Our ap-
proach allows for quick and reliable force calculations within
the fully self-consistent pseudopotential DFT + DMFT and
paves the way to the structural optimization and phonon and
molecular dynamics calculations within DFT + DMFT.
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APPENDIX A: CALCULATION OF THE FREE ENERGY

We start from Eq. (3.18) for the total free energy. We
also report for completeness the formula for the total internal
energy, used, e.g., in our past work [21] (taking into account
the ion-ion interaction energy):

E =
∑

εk,νNν,ν (k) + EH − Tr(VHρ) + Exc − Tr(Vxcρ)

+ 1

2
Tr�G −

∑
I

�DC[G] + U (R), (A1)

where Nν,ν (k) = T
∑

n G(k, iωn) is the DMFT occupancy
matrix and εk,ν are the DFT eigenvalues calculated at the
DMFT density. With respect to the total internal energy cal-
culation, the changes are the following:

(i) The term
∑

εk,νNν,ν (k) is substituted with the following
expression:

Tr ln Ĝ + μN − Tr(� − V DC)G. (A2)

(ii) The term 1
2 Tr�G is substituted with

�DMFT = Fimp − Tr ln Gimp + Tr�impGimp. (A3)

The calculation of Tr ln G with a general Green’s function
G is performed following the procedure outlined in Ref. [25],
namely, the summation is split into two parts: the numerical
sum up to a cutoff Matsubara frequency iωc with the most di-
vergent part subtracted and an expression equal to the known
analytical sum of the most divergent part. In this case, the most
divergent part is

−T
∑

n

ln(−iωn + ε)eiηωn

∣∣∣∣∣
η→0

= −T ln
(
1 + e− ε

T
)
. (A4)

Therefore, the summation Tr ln Ĝ is evaluated as follows:
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Tr ln Ĝ = −T
∑

|ωn|<ωc
k

Tr
{
ln

[ − iωn + εk,ν − μ + �B
ν,ν ′ (k, iωn) − V DC

ν,ν ′
] − ln[−iωn + εν,ν ′ (k,∞)]

}
(A5)

−T
∑

k

ln

[
1 + exp

(
−εν,ν ′ (k,∞)

T

)]
, (A6)

where εν,ν ′ (k,∞) = εk,ν − μ + �B
ν,ν ′ (k,∞) − V DC

ν,ν ′ .
On the other hand, the summation Tr ln Gimp is evaluated as

Tr ln Gimp = −T
∑

|ωn|<ωc

Tr
{
ln

[ − iωn + ε
imp
m,m′ + �

imp
m,m′ (iωn)

] − ln
[ − iωn + ε

imp
m,m′ (∞)

]}
(A7)

−T ln

[
1 + exp

(
−ε

imp
m,m′ (∞)

T

)]
, (A8)

where this time ε
imp
m,m′ (∞) = ε

imp
m,m′ + �

imp
m,m′ (∞). Here, the no-

tation Tr stands for the trace over the ν, ν ′ or m, m′ indices
(without the summation over Matsubara frequencies).

APPENDIX B: THE USE OF TIME REVERSAL
SYMMETRY IN THE MATSUBARA SUMS

When doing sums like −Tr�(iωn)G(iωn), one usually
makes use of the symmetry properties of � and G upon
changing iωn → −iωn:

Gm,m′ (−iωn) = G	
m′,m(iωn),

�m,m′ (−iωn) = �	
m′,m(iωn),

so that
−T

∑
n,m,m′

�m,m′ (−iωn)Gm′,m(−iωn)

= −T
∑

n,m,m′
G	

m,m′ (iωn)�	
m′,m(iωn)

and hence

−T
∑

n,m,m′
Gm,m′ (iωn)�m′,m(iωn)

= −2T Re
∑

m,m′,ωn>0

Gm,m′ (iωn)�m′,m(iωn).

Considering the definition of �(iωn) given by Eq. (3.23), we
see that indeed

�m,m′ (−iωn) = �	
m′,m(iωn).

Therefore, we can still use the Green’s function’s sym-
metry properties and restrict the summation in Eq. (3.22)
to the positive Matsubara frequencies, while the fi-
nal formula for the DFT + DMFT forces is given by
Eq. (3.21).
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