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In this paper, we revisit the antiferromagnetic (AF) phase diagram of the single-band three-dimensional half-
filled Hubbard model on a simple cubic lattice studied within the dynamical mean field theory (DMFT). Although
this problem has been investigated extensively in the literature, a comprehensive understanding of the impact
of the different one- and, in particular, two-particle local correlation functions of DMFT on the AF transition
temperature is still missing. We have, hence, performed a fluctuation analysis of TN with respect to different
local bosonic fluctuations (charge, spin, particle-particle) contained in the two-particle vertex of DMFT. Our
results indicate that, beyond weak coupling, the screening of the DMFT vertex by local fluctuations leads to an
enhancement of TN with respect to a random phase approximation (RPA) like calculation where this vertex is
replaced by the bare interaction. The overall suppression of TN in DMFT with respect to RPA is then solely due
to the incoherence introduced by the DMFT self-energy in the one-particle Green’s functions. This illustrates
the Janus-faced role of the local moment formation in the DMFT solution of the Hubbard model, which leads to
completely opposite effects in the one- and two-particle correlation functions.
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I. INTRODUCTION

Transitions between different states of matter accompany
mankind since the earliest time of human culture. The techno-
logical utilization of phase transitions, such as the boiling of
water or the melting of metals, has often triggered substantial
progress in the development of societies and the quality of life.
This ascertainment still holds today where, e.g., a transition
from an insulating to a conducting state is of enormous tech-
nological interest. In particular, strongly correlated materials
often feature a great variety of such fascinating phenom-
ena such as correlation-driven metal-to-insulator transitions
[1], high-temperature superconductivity [2], or antiferromag-
netism [3].

Unfortunately, strongly correlated electron systems are
notoriously difficult to tackle theoretically. The strong inter-
action between the particles prevents any quasi-independent
particle description such as density functional theory [4] and
the exponential growth of the Hilbert space with the particle
number restricts an exact diagonalization of the correspond-
ing Hamiltonian to small systems sizes. In this respect, the
dynamical mean field theory (DMFT) [5] has presented a
big step forward in the understanding of strongly interact-
ing many-body systems. This approach includes all purely
local correlations between the particles by means of a lo-
cal frequency-dependent self-energy �(ν) and vertex �νν ′ω.
DMFT can be applied to systems with a purely local (Hub-
bard) interaction between the particles with a limited number
of orbitals per lattice site. A good example is the single-band
Hubbard model [6], which represents one of the most basic
model Hamiltonians for correlated many-particle systems.

In spite of its simplicity, the Hubbard model features—
apart from the paramagnetic state at high temperatures—a
variety of interesting phases such as ferromagnetism, super-
conductivity [7] or stripe orders [8,9]. At half filling, the
celebrated Mott metal-to-insulator transition [1] occurs at a
critical value of the Hubbard interaction U beyond which
stable local moments appear in the system. In three (or higher)
dimensions, this first-order phase transition is covered by an
antiferromagnetically (AF) ordered phase, which sets in at the
Néel temperature TN . At weak coupling, this second-order
phase transition is qualitatively well described by the ran-
dom phase approximation while in the limit of U → ∞ the
Hubbard model can be mapped onto an effective Heisenberg
model [10] with an exchange interaction J ∝ t2

U . Between these
two limiting cases, DMFT provides a reasonable estimate for
the transition temperature.

In spite of these successes, it has not been investigated
so far how the ingredients of DMFT, the self-energy �(ν)
and the vertex function �νν ′ω, affect the Néel temperature. In
general, it is commonly accepted that the local correlations of
DMFT and the gradual emergence of a local moment reduce
TN with respect to corresponding RPA calculations. This re-
duction has often been attributed to the screening of the static
bare interaction U by the frequency-dependent vertex �νν ′ω.
While this is indeed true at (very) weak coupling [11], the
situation is not so clear at larger values of U . In particular, the
lack of a detailed understanding of the vertex has prevented
deeper insights into the role of this two-particle correlation
function for the antiferromagnetic phase transition in the Hub-
bard model. This situation has changed in the last decade
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where a lot of the properties of two-particle vertex functions
have been uncovered [12]. More specifically, it has been re-
vealed how bosonic fluctuations determine important features
of the fermionic vertex [13–16] and how these fluctuations are
coupled to the fermionic degrees of freedom [17–19]. This
deeper understanding has, for instance, allowed to quantify
the impact of two-particle fluctuations in different channels on
the one-particle spectral function by means of a “Fluctuation
diagnostics” [14,19–21] or a parquet decomposition approach
[21–24]. In this paper, we extend the idea of the parquet
decomposition of the self-energy [23] to the study of phase
transitions. In particular, we investigate the contributions of
different local bosonic fluctuations in the DMFT vertex �νν ′ω

on the transition temperature TN . To this end we first approxi-
mate this vertex by just the leading bosonic fluctuations and in
a second step we perform a complementary analysis where we
sequentially subtract the various local fluctuations from �νν ′ω.
Our findings show that in the intermediate-to-strong-coupling
regime the frequency dependence of the vertex actually leads
to an enhancement of TN with respect to the bare interaction
U due to the increase of local spin fluctuations. Hence, the
suppression of TN with respect to the RPA originates solely
from the incoherence introduced in the one-particle Green’s
function via the self-energy �(ν). This shows the Janus-faced
role of the local-moment physics of DMFT in one- and two-
particle correlation functions.

Our paper is organized as follows: In Sec. II we introduce
the Hubbard model and the antiferromagnetic spin suscepti-
bility within DMFT and review the formalism for dissecting
the vertex function into different bosonic fluctuations. In
Sec. III we present and discuss our numerical data for the fluc-
tuation analysis of TN . In Sec. IV, we discuss the momentum
dependence of the (static) lattice susceptibility and Sec. V is
devoted to conclusions and an outlook.

II. MODEL AND FORMALISM

A. The Hubbard model and DMFT

The analytic technique, which we put forward in this paper,
can be, in principle, applied to a variety of model systems,
which feature fluctuations in different scattering channels.
Here, we demonstrate its validity and applicability for the
three-dimensional (3d) single-band Hubbard model on a sim-
ple cubic lattice with nearest-neighbor hopping

Ĥ = −t3d

∑
〈i j〉,σ

ĉ†
iσ ĉ jσ + U

∑
i

n̂i↑n̂i↓ − μ
∑

iσ

n̂iσ , (1)

where ĉ(†)
iσ annihilates (creates) an electron with spin σ =↑,↓

at the lattice site Ri while n̂iσ = ĉ†
σ ĉiσ corresponds to the parti-

cle number operator. Moreover, t3d denotes the amplitude for
electrons hopping between nearest-neighbor lattice sites in the
3d lattice, μ is the chemical potential, and U corresponds to
the local repulsive Hubbard interaction between the particles.
In the following, we use D=2

√
6t3d =1 as unit of energy,

which corresponds to twice the second moment of the density
of states of the non-interacting system. The average number
of particles per lattice site is fixed to n=〈n̂↑+n̂↓〉=1.

We apply the DMFT to solve the Hubbard model in Eq. (1).
Within this approach, the electronic propagator is dressed with

a local self-energy �(ν) that depends only on the Matsubara
frequencies. The lattice Green’s function is then obtained via
Dyson’s equation

G(ν, k) = 1

iν + μ − εk − �(ν)
, (2)

where εk =−t3d
∑

〈0 j〉 eikR j is the bare dispersion relation
and the sum over j runs over the six nearest neighbors of
the lattice site at the origin. ν = π

β
(2n+1), n ∈ Z, denotes a

fermionic Matsubara frequency with β = 1
T being the inverse

temperature. Later, we will also consider bosonic Matsubara
frequencies ω= π

β
2m, m ∈ Z.

The local self-energy �(ν) is obtained from an auxiliary
Anderson impurity model (AIM):

�(ν) = iν + μ − 
(ν) − 1

Gloc(ν)
, (3)

where 
(ν) describes the hybridization between the impu-
rity and the non-interacting bath sites and the local impurity
Green’s function Gloc(ν) is obtained for a given 
(ν) from an
impurity solver such as exact diagonalization (ED) or quan-
tum Monte Carlo (QMC). Within DMFT, the hybridization
function 
(ν) is determined by the requirement that the local
(i.e., momentum-summed) part of the lattice Green’s function
is equal to the local Green’s function of the auxiliary AIM:∑

k

1

iν + μ − εk − �(ν)︸ ︷︷ ︸
G(ν,k)

= 1

iν + μ − 
(ν) − �(ν)︸ ︷︷ ︸
Gloc (ν)

, (4)

where
∑

k corresponds to a (normalized) integral over the first
Brillouin zone. When a QMC solver is used, Gloc(ν) can be
directly obtained from 
(ν) while for exact diagonalization
the hybridization function has to be fitted to a finite number of
bath parameters:


(ν) =
N∑

�=1

V 2
�

iν − ε�

, (5)

where ε� defines the on-site energy of the bath site and Vl the
hopping amplitude between the bath site and the impurity.
Within our ED implementation, these parameters are fitted
to a given 
(ν), which is obtained from the self-consistency
relation in Eq. (4), for a finite number N of bath sites via a
conjugate gradient method.

B. Vertex functions and susceptibilities

While the single-particle Green’s function G(ν, k) pro-
vides information about the one-particle spectral properties of
the system, two-particle correlation functions are required to
describe collective (bosonic) excitations of the electrons. The-
oretically, such excitations can be characterized by response
functions, the (physical) susceptibilities

χr (ω, q) =
∑

i

e−iq·Ri

∫ β

0
dτ eiωτ

〈
Ôr

i (τ )Ôr
0(0)

〉
, (6)

where, for the Hubbard model, we consider the charge (r =
ch) density Ôr

i = n̂i−n= n̂i↑+n̂i↓−n, the spin (r = sp) den-
sity Ôr

i = Ŝz
i = n̂i↑−n̂i↓ and the particle-particle (r = pp) pair
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density Ôr
i = ĉ†

i↑ĉ†
i↓+ĉi↓ĉi↑ at the lattice site Ri. Completely

analogous definitions hold for the AIM where the spatial
index i as well as the Fourier transform

∑
i e−iq·Ri have to be

omitted.
A (second-order) phase transition to a spatially ordered

state in one of the three fluctuation channels is signaled by
a divergence of the corresponding susceptibility at ω=0 and
q=q0 where q0 defines the spatial structure of the order. In
the half filled Hubbard model, the leading instability is found
in the spin channel at q0 = (π, π, π )≡�, which corresponds
to antiferromagnetic spin fluctuations, i.e.,

χAF(T ) = χsp(ω = 0, q = �), � = (π, π, π ). (7)

At the Néel temperature T =TN , at which the transition to
the antiferromagnetically ordered state occurs, this response
function diverges, i.e.,

χAF(T → TN ) → ∞. (8)

This criterion has been used for the determination of TN in this
paper.

The physical susceptibilities defined in Eq. (6) can be
obtained from more general objects, the generalized suscep-
tibilities [25] χνν ′ω

r,q , by summing the latter over the fermionic
Matsubara frequencies ν and ν ′:

χr (ω, q) = 1

β2

∑
νν ′

χνν ′ω
r,q . (9)

The generalized susceptibilities are calculated via a Bethe-
Salpeter equation (BSE) from an irreducible vertex function
�νν ′ω

r , which is local but frequency dependent within DMFT
[5]. In the channel of interest, i.e., the spin channel, the rele-
vant BSE reads

χνν ′ω
sp,q =χνν ′ω

0,q − 1

β2

∑
ν1ν2

χ
νν1ω
0,q �ν1ν2ω

sp χν2ν
′ω

sp,q . (10)

Here, χνν ′ω
0,q =−β

∑
k G(ν, k)G(ν+ω, k+q)δνν ′ is the bare

susceptibility (“bubble”) of DMFT. The local irreducible ver-
tex in the spin channel �νν ′ω

sp , on the other hand, can be
calculated via a purely local Bethe-Salpeter equation [anal-
ogous to Eq. (10)] from the corresponding local generalized
susceptibility χνν ′ω

sp , which, in turn, is obtained directly from
the AIM related to the DMFT solution of the Hubbard model
in Eq. (1) by means of the impurity solver (see, e.g., Ref. [26]).

C. Fluctuation decomposition of �νν′ω
sp

The main goal of our paper is to understand how the
frequency-dependent vertex �νν ′ω

sp affects the generalized and
the physical susceptibilities in Eqs. (10) and (9), respectively.
More specifically, we want to understand how the frequency
dependence of �νν ′ω

sp changes the related TN with respect to
a simple random phase like calculation where the irreducible
vertex in Eq. (10) is replaced by the bare interaction U . More-
over, we aim at unraveling which (Feynman diagrammatic)
contributions to �νν ′ω

sp lead to specific modifications of the
critical temperature, resulting in an increase or a reduction
of TN . To make such an analysis meaningful, it would be of
course highly desirable to identify the parts of the vertex to
which a transparent physical meaning can be assigned.

In the last decade, considerable progress has been made
in the understanding of the frequency structure of two-
particle vertex functions [12,16–18,27–32]. In particular, it
has been demonstrated that some of the main features of these
correlation functions (which are also responsible for their
high-frequency behavior) correspond to physical observables,
which are even experimentally accessible, i.e., the physical
susceptibilities, which are defined in Eq. (9). Taking into
account only these contributions gives rise to the following
approximation for the irreducible vertex, which has been dis-
cussed in Ref. [15] (see also the supplemental material of Ref.
[14] as well as Refs. [17] and [18]):

�νν ′ω
sp  −U − U 2

2
χ loc

sp (ν ′ − ν) + U 2

2
χ loc

ch (ν ′ − ν)

+U 2χ loc
pp (ω + ν + ν ′), (11)

where χ loc
sp (ω), χ loc

ch (ω), and χ loc
pp (ω) denote the local spin,

charge, and particle-particle (up-down) susceptibility of
DMFT, which can be obtained directly from the related AIM.
Let us point out that no susceptibility, which depends only
on the bosonic Matsubara frequency ω appears in Eq. (11)
since such contribution corresponds to reducible vertex dia-
grams, which are present in the full [14,15] but not in the
irreducible vertex. We also want to remark that the concrete
form of Eq. (11) holds for frequency and time independent
interactions in the SU(2) symmetric case.

The approximate form of �νν ′ω
sp in Eq. (11) provides a

starting point to investigate the impact of the different local
fluctuations of DMFT in the charge, spin, and particle-
particle channels on the antiferromagnetic susceptibility and,
consequently, on the transition temperature TN to the an-
tiferromagnetically ordered state. This will be achieved by
“switching” on and off the various contributions to the local
irreducible vertex. To this end we define

�νν ′(ω=0)
sp,w = −U − wsp

1
2W ν ′−ν

sp + wch
1
2W ν ′−ν

ch + wpp W ν ′+ν
pp ,

(12)
where for convenience we have introduced the effective
screened interactions W ω

r =U 2χ loc
r (ω) and the binary weights

wr = {0, 1} that switch on or off the contributions of the dif-
ferent local fluctuations. Note that we have restricted Eq. (12)
already to the relevant case ω=0. The above procedure gives
rise to 8 different approximations for �νν ′(ω=0)

sp where this
correlation function includes the local fluctuations of DMFT
in 0, 1, 2, or all 3 fluctuation channels. The corresponding
numerical results for the 8 TN curves for all possible combina-
tions of the three binary weights wr are discussed in the first
part of Sec. III.

D. Inverse fluctuations analysis

An approximation, which is similar to Eq. (11), has been
put forward in Ref. [11] where only the second-order con-
tribution (bubble terms) to the local susceptibilities has been
taken into account. While we will start from the perturbative
expressions of χ loc

r (ω) we will also consider the fully dressed
version of these correlation functions, which contain all local
vertex corrections.

Nevertheless, it is far from obvious what can be expected
from such approximations for �νν ′(ω=0)

sp beyond the weak-
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to-intermediate coupling regime. In fact, in this region of
the phase diagram the contributions from the fermion-boson
triangular vertices [33] or the fully irreducible vertices might
become non-negligible. To improve our understanding of the
AF phase transition also for stronger values of U , we propose,
as a second step, an inverse or complementary fluctuation
analysis of the AF susceptibility where we start from the
exact irreducible vertex �νν ′(ω=0)

sp of DMFT and subtract the
contributions originating from the local susceptibilities in the
charge, spin, and particle-particle channels (note that the spin
contribution is negative)

�̃νν ′(ω=0)
sp,w = �νν ′(ω=0)

sp + wsp
1
2W ν ′−ν

sp − wch
1
2W ν ′−ν

ch

−wpp W ν ′+ν
pp . (13)

In this way, we keep all nonperturbative low-frequency con-
tributions of the irreducible vertex but we are still able to
“switch” on and off the high-frequency local fluctuations
contained in these correlation functions. The results for this
complementary way of the fluctuation analysis will be pre-
sented in the second part of Sec. III.

III. NUMERICAL RESULTS

In the following, we present the numerical results for the
transition temperature TN to the antiferromagnetically ordered
state obtained by the approximations for the local irreducible
vertex �νν ′ω

sp of DMFT outlined in the previous section. The

DMFT calculations for �(ν) and �νν ′(ω=0)
sp have been carried

out with exact diagonalization of the related AIM using 4
bathsites and 160 positive and negative (i.e., in total 320)
fermionic Matsubara frequencies for both ν and ν ′. To validate
our ED results, we have performed comparisons to corre-
sponding QMC calculations for selected interaction strengths
and temperatures, which are presented in Appendix A.

The section is organized in the following way: First, in
Sec. III A we start our analysis for low values of U , which
allows to compare our results to simple perturbation theory
and random phase approximation (RPA) calculations. Second,
in Sec. III B, we will extend our investigations to the entire
phase diagram before we finish our analysis with a discussion
of the strong-coupling limit in Sec. III C.

A. Perturbative analysis

One of the simplest approaches to calculate χsp(ω, q) and
TN for U

t � 1 is the RPA, a static mean field theory. Within
the formal framework discussed in the previous sections, this
corresponds to �(ν)=0 and �νν ′ω

sp =−U . In three dimensions,
RPA gives rise to a TN , which increases exponentially with
U as T RPA

N ∝e− 1
UD(0) (see dashed pink curve in Fig. 1) where

D(0) is the noninteracting density of states at the Fermi level.
A first attempt to understand how local DMFT correlations
modify this picture was made in Ref. [11] (see also Refs.
[34] and [35]): There the authors approximated �νν ′ω

sp by a
simple second-order diagram, which gave rise to a reduction
of TN by roughly a factor of 3 (solid-brown curve) matching
rather well the exact DMFT value (filled-violet squares) at
small U . Hence, the authors concluded that the introduction of

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.5  1  1.5  2  2.5

T N

U

RPA

Second Order PT

Asymptotics

DMFT

FIG. 1. TN as a function of U calculated with various approaches,
which differ in the choice of the approximation for �(ν ) and �νν′ω

sp

(see text). The red empty squares (“Asymptotics”) correspond to
Eq. (12) with all weights wr =1.

local DMFT vertex corrections in �νν ′ω
sp leads to a suppression

of TN .
Let us now view this second-order approximation

from a more general perspective in the framework of
Eqs. (11) and (12): At second order in U , the local
spin and charge susceptibilities are equivalent [χ (2),loc

sp (ω)=
χ

(2),loc
ch (ω)=− 1

β

∑
ν Gloc(ν)Gloc(ν+ω)] and, hence, cancel

in the approximate expression for �νν ′ω
sp . Thus, only the

particle-particle contribution remains, which—due to the
above mentioned cancellation—corresponds to either wch =
wsp =0 or wch =wsp =1 and wpp =1 in Eq. (12).

We now consider other combinations of the binary weights
wr to gain more insight into the impact of the different local
fluctuations on TN , where we again take into account only
the second-order contributions for χ loc

r (ω). In Fig. 2, we can
clearly see that for all combinations of wr where wsp =0 and
at least one of the two other weights wch and/or wpp equals
1 (dashed-brown and cyan and solid-black lines) the corre-
sponding TN is lower than the RPA value (thick-pink line).
Hence, local charge and particle-particle fluctuations lead to
a screening of the bare interaction −U in �νν ′ω

sp . Interestingly,
the reduction of TN with respect to RPA due to local particle-
particle fluctuations (dashed-brown line) is stronger than due
to charge fluctuations (dashed-cyan line) although both types
of fluctuations are equivalent at half filling, i.e., χ loc

ch (ω)≡
χ loc

pp (ω). This can be easily understood from Eqs. (11) and
(12) where the local particle-particle susceptibility enters the
vertex �νν ′ω

sp with a factor of 2 compared to the charge suscep-
tibility.

On the contrary, the combination wsp =1 and wch =wpp =0
(solid-blue line) leads to a larger TN with respect to RPA.
Hence, local spin fluctuations lead to a “negative” screening
of −U in �νν ′ω

sp , which is consistent with the negative sign
of χ loc

sp (ω) in Eqs. (11) and (12). Let us stress that no fur-
ther curves for TN can be obtained from the three missing
combinations of wr within second-order perturbation theory

235128-4



FLUCTUATIONS ANALYSIS OF SPIN SUSCEPTIBILITY: … PHYSICAL REVIEW B 104, 235128 (2021)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7  0.75

T N

U

-U

-U+Wpp
ν+ν’

-U+Wch
ν−ν’

-U-Wsp
ν−ν’

-U+Wch
ν−ν’-Wsp

ν−ν’+Wpp
ν+ν’

-U+Wch
ν−ν’+Wpp

ν+ν’

-U-Wsp
ν−ν’+Wpp

ν+ν’

-U+Wch
ν−ν’-Wsp

ν−ν’

FIG. 2. Fluctuation analysis of TN as a function of U at weak
coupling: The different curves correspond to selecting different con-
tributions for �νν′ (ω=0)

sp in Eq. (12). Lines indicate the result for
�(ν ) = 0 and W ω

r from second-order perturbation theory while the
symbols represent calculations including �(ν ) and the fully dressed
W ω

r of DMFT containing all local vertex corrections. The pink thick
line corresponds to the RPA TN .

due to the equivalence of all three local susceptibilities in this
approximation [36].

Beyond perturbation theory. In the next step, we go beyond
second-order perturbation theory and consider for χ loc

r (ω) the
full local susceptibilities of DMFT including all (local) vertex
corrections. Moreover, we take into account the self-energy
�(ν) to dress the Green’s functions in the bare nonlocal sus-
ceptibility χνν ′ω

0,q [“bubble”, see Eq. (10)]. The corresponding
results for TN for the various combinations of the binary
weights wr are presented with different symbols in Fig. 2
where for each of the 8 sets of wr we have used the same color
as in the perturbative treatment. Not surprisingly, at the lowest
value of U =0.35, the results of second-order perturbation
theory (lines) almost coincide with the the ones where the
exact DMFT self-energy and local susceptibilities have been
used. Upon increasing U , they start to differ lifting also the
degeneracies, which occur in the perturbative treatment due
to the equivalence of all local susceptibilities within second-
order perturbation theory.

First, we observe that the introduction of the self-energy
for �νν ′ω

sp =−U (pink diamonds, wr =0 for all channels) leads
to a clear reduction of TN with respect to the RPA result
(thick-pink curve). This is the expected behavior since the
DMFT self-energy suppresses the spectral weight at the Fermi
level and, hence, reduces the bubble term in the BS Eq. (10). It
is obvious that this effect also plays a role for the other combi-
nations of wr where vertex corrections in �νν ′ω

sp are taken into
account. However, the situation is more complicated due to
the additional dressing of the local susceptibilities in Eqs. (11)
and (12). In fact, the vertex corrections in χ loc

ch (ω) and χ loc
pp (ω)

lead to a suppression of these fluctuations with respect to
second-order perturbation theory while the exact local spin
susceptibility is larger than its second-order counterpart (see
Fig. 3). This leads to a dominance of local spin fluctuations
in �νν ′ω

sp in Eqs. (11) and (12) and, due to the negative sign
with which this contribution enters the vertex, provides a

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

χ/
χ 0

U

β = 100

β = 10 

β = 5    

FIG. 3. Local density (thick lines) and magnetic (dashed lines)
susceptibilities χ loc

ch (ω=0) and χ loc
sp (ω=0) renormalized by their

noninteracting values as a function of the interaction strength for
three different temperatures.

“negative” screening, i.e., an enhancement of this vertex with
respect to RPA or simple second-order perturbation theory.
This leads to a competition of local correlation effects on the
one- and the two-particle level: The former, expressed by the
self-energy, reduce χsp(ω, q) and TN while the latter try to
enhance it with respect to perturbation theory. Which of both
effects “wins” is reflected in the larger or lower value of TN

within the perturbative (lines) with respect to the DMFT treat-
ment (points) in Fig. 2. The precise hierarchy of the curves
for different wr then strongly depends on the exact interplay
between �(ν) and χ loc

r (ω).

B. Complete phase diagram

Figure 4 shows the fluctuation analysis of TN in a larger U
region where the same colors and symbols for the different
combinations of the wr’s have been used as in the weak-

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0

 0.05

 0.1

 0.15

 0.2

 0.5  1  1.5  2  2.5

T N

U

DMFT

FIG. 4. The different symbols represent the critical temperature
curves obtained using the 8 possible combinations of the wr for
the vertex function in Eq. (12), the solid lines being a guide to the
eye. The color/symbol legend is the same as in Fig. 2. The exact
Néel temperature of DMFT is shown as a reference (filled-violet
squares). The gray intensity map in the background encodes the ratio
−χ↑↓(ω = 0)/χ↑↑(ω = 0) (see the main text for more details).
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coupling analysis in Fig. 2. For U �1, we observe a clear
hierarchy of the curves for TN calculated with the different
approximations of �νν ′ω

sp : All results for the transition temper-
ature obtained by setting wsp =0 (filled-cyan lower triangles,
empty-brown lower triangles, filled-black upper triangles) lie
below the pink curve (empty diamonds), which represents the
result for TN without vertex corrections [�νν ′ω

sp =−U , wr =0
for all channels r in Eq. (12)]. This is consistent with the
weak-coupling result that local charge and particle-particle
fluctuations in �νν ′ω

sp lead to a screening of the bare interaction
−U in this vertex function and, hence, reduce the transition
temperature with respect to to �νν ′ω

sp =−U . This reduction is
obviously largest when both (i.e., charge and particle-particle)
screening channels contribute to �νν ′ω

sp (wch =wpp =1, filled-
black upper triangles in Fig. 4). Although at half-filling local
charge and particle-particle fluctuations are equivalent, the lat-
ter (empty-brown lower triangles) suppress TN stronger than
the inclusion of charge fluctuations (filled-cyan lower trian-
gles). As already pointed out in the weak-coupling analysis,
this can be ascribed to the different prefactors with which χ loc

pp

and χ loc
ch enter Eqs. (11) and (12).

Conversely, we find the opposite effect when spin fluctu-
ations are included: For U �1, all curves for TN in Fig. 4
where wsp =1 (empty-blue upper triangles, filled-green cir-
cles, empty-orange circles, empty-red squares) lie above the
pink diamonds for which all vertex corrections for �νν ′ω

sp
are neglected. Hence, local spin fluctuations provide a “neg-
ative” screening, which enhances the bare interaction and,
consequently, the antiferromagnetic susceptibility and TN with
respect to the calculation with �νν ′ω

sp =−U . The situation
where only local spin fluctuations are considered (i.e., wsp =
1 and wch =wpp =0, empty-blue upper triangles) obviously
gives rise to the largest TN while the inclusion of one or
both of the two other channels leads to a smaller value of
TN . However, for U �1, the screening provided by the local
charge and particle-particle fluctuations is always smaller than
the enhancement of �νν ′ω

sp due to local spin fluctuations.
The above considerations are obviously an effect of the

strong enhancement of local spin fluctuations with respect to
local charge and particle-particle fluctuations upon increasing
U within DMFT. Hence, it is interesting to analyze the rel-
ative difference between χ loc

sp and χ loc
ch (which is equivalent

to χ loc
pp at half filling) as a function of U . This is shown in

Fig. 4 by means of a gray-scale intensity map that encodes the
relative deviation between the static (ω=0) charge and spin
fluctuations defined as χs (ω=0)−χc (ω=0)

χs (ω=0)+χc (ω=0) = −χ↑↓(ω=0)
χ↑↑(ω=0) . At U =0,

this ratio vanishes exactly while for U →∞ it approaches
unity. Hence, when the relative deviation increases (brighter
gray shades in Fig. 4), spin fluctuations in �νν ′ω

sp gradually
become dominant. Consistently with the discussion above,
such a dominance of spin fluctuations is observed already in
the weak-to-intermediate coupling regime at U �1 where the
relative deviation is about 80% (although this is well below
the Mott local moment regime, which sets in at U ∼2.3).

Let us briefly comment on the general structure of TN as
a function of U in Fig. 4. We observe a qualitatively similar
behavior as for the exact DMFT phase transition (filled-violet
squares): At small values of U , TN increases, then reaches
a maximum at intermediate coupling and decreases at large
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FIG. 5. Complementary fluctuations analysis. The different
curves for TN are obtained by subtracting the local charge, spin, and
particle-particle susceptibilities from the exact DMFT vertex �νν′ω

sp

[see Eq. (13)].

values of U . However, on a quantitative level it is quite clear
that Eqs. (11) and (12) do not provide a good approximation
for �νν ′ω

sp to calculate TN . In fact, the maxima of TN for the ap-
proximate calculations are shifted with respect to the DMFT
result and, moreover, the vertex in Eq. (12) fails completely
to recover the strong-coupling limit where TN ∝ t2/U . In this
regime, the bubble goes to zero too rapidly and even in the
case with ws =1 (and wloc

ch =wloc
pp =0), the formation of local

moments encoded in χs(ω) it is not sufficient to balance the
loss of coherence occurring in the bubble via the insertion of
the local self-energy in the Green’s function.

This indicates that beyond weak coupling contributions to
the irreducible vertex �νν ′ω

sp become important, which are not
considered in Eqs. (11) and (12). Within the dual fermion
approach, a good quantitative agreement has been achieved in
the framework of the single-boson exchange formalism [33],
which includes additional contributions in the expansion, in
particular the triangular vertices, which account for the cou-
pling between the electrons and the collective modes. In the
latter situation the approximations have been performed in a
dual space to the full (instead of the irreducible) local vertex of
DMFT. The inclusion of triangular vertices also in the approx-
imation for �νν ′ω

sp in Eq. (11) would be definitely interesting
and can potentially improve our results. However, in this paper
we follow the alternative route outlined in Sec. II D leaving the
question of the triangular vertices for future research work.

Complementary fluctuation analysis. To obtain a fluctua-
tion analysis of TN , which is quantitatively more similar to the
DMFT transition curve, we proceed with Eq. (13). There, in-
stead of constructing the vertex �νν ′ω

sp just from its asymptotic
contributions, we subtract these terms from the exact DMFT
expression for �νν ′ω

sp to quantify the effects of the different
local DMFT fluctuations on TN . The results are presented in
Fig. 5.

Consistent with the previous findings, the curves where
charge (empty-orange circles), particle-particle (filled-green
circles) or both (empty-blue upper triangles) types of fluc-
tuations are subtracted from the DMFT �νν ′ω

sp are enhanced
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with respect to the exact DMFT result (red-filled squares).
Hence, these channels indeed provide a screening of the bare
interaction −U and removing them leads to an enhancement
of TN with respect to the DMFT result. Obviously, subtracting
both the charge and the particle-particle local susceptibilities
(empty-blue upper triangles) gives rise to the largest tran-
sition temperature. On the other hand, the removal of χ loc

pp
(filled-green circles) leads to a stronger enhancement than the
subtraction of χ loc

ch (empty-orange circles), which, again, is
explained by the different prefactors with which these two
types of fluctuations enter Eq. (13). Interestingly, there is a
clear enhancement of TN of all three curves with respect to
DMFT up to the largest considered couplings although local
charge and particle-particle fluctuations are already exponen-
tially suppressed in this parameter regime.

The picture changes completely when we subtract the lo-
cal spin fluctuations (empty-pink diamonds, filled-cyan lower
triangles, empty-brown lower triangles, filled-black upper tri-
angles in Fig. 5). In this case, TN is in general strongly
suppressed with respect to the exact DMFT result (filled-red
squares) and even vanishes at a small finite U . If we remove
only χ loc

sp we do not find a finite transition temperature at all
in the considered parameter regime (i.e., there is no curve
corresponding to filled-black upper triangles in Fig. 5). By
considering the additional removal of one or both of the two
other channels (charge and particle-particle), a finite transition
temperature emerges at small values of U but vanishes upon
increasing the interaction strength up to U ∼1.25. Note that
this value is still located within the metallic region well below
the Mott transition and the local moment regime at U ∼2.3.
Nevertheless, local spin fluctuations in �νν ′ω

sp are already an
indispensable ingredient to obtain a transition to the antiferro-
magnetically ordered state.

C. Strong-coupling limit

Figure 5 suggests that the three curves, where local charge
and/or particle-particle fluctuations are subtracted (blue upper
empty triangles, green-filled circles, orange-empty circles),
approach the DMFT transition line in the limit U →∞. This is
reasonable since local charge and particle-particle fluctuations
are exponentially suppressed in the large coupling limit. To
verify this intuitive argument, we consider the following use-
ful approximation for the calculation of TN at large U , which
recovers the expected power-law behavior of the critical tem-
perature.

Solving Eq. (10) for the (inverse of the) generalized spin
susceptibility χνν ′ω

sp,q yields

¯̄χ−1
sp (ω, q) = ¯̄χ−1

0 (ω, q) + 1

β2
�νν ′ω

sp , (14)

where we chose a matrix notation in the fermionic Matsub-
ara frequencies, i.e., ¯̄χ (ω, q)= [ ¯̄χ (ω, q)]νν ′ ≡χνν ′ω

q and “−1”
denotes the inversion of this (infinite) matrix. The local irre-
ducible vertex �νν ′ω

sp , in turn, can be obtained from a purely
local version of the BS Eq. (10), which reads

1

β2
�νν ′ω

sp = ¯̄χ−1
sp (ω) − ¯̄χ−1

0 (ω), (15)
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FIG. 6. Critical temperature as a function of the interaction in the
strong-coupling approximation (filled-orange circles) compared with
the DMFT data (filled-violet squares). Blue diamonds indicate TN as
obtained from Eq. (17).

where ¯̄χ−1
sp (ω) is the local generalized spin susceptibility of

the auxiliary AIM and ¯̄χ0(ω) = χνν ′ω
0 =−βG(ν)G(ν + ω)δνν ′

is the local bubble. Combining Eqs. (14) and (15) then yields

¯̄χ−1
sp (ω, q) = ¯̄χ−1

0 (ω, q) − ¯̄χ−1
0 (ω) + ¯̄χ−1

sp (ω). (16)

The AF susceptibility corresponds to ω=0 and q=� in
this equation. Due to the DMFT self-consistency condi-
tion, the nonlocal bubble term reduces to ¯̄χ0(ω=0, q=
�) = −β1D(ζν )/ζν , where we have introduced the Hilbert
transform D(ζ ) = ∫ +∞

−∞ dεg(ε)[ζ − ε]−1 of the noninteract-
ing density of states g(ε), with ζν = iν + μ − �(ν) (1=δνν ′

is the unit matrix in the ν-ν ′ space). The local bubble, on the
other hand, can be expressed in terms of the Hilbert trans-
form as ¯̄χ0(ω = 0) = −β1D2(ζν ). In the specific case of a
semi-circular density of states g(ε) = 1

2πt2

√
ε2 − 4t2 (Bethe

lattice), the contribution arising from the bubble terms simpli-
fies considerably and Eq.(16) reduces to

¯̄χ−1
sp (0,�) = ¯̄χ−1

sp (0) − t2

β
1. (17)

We recall that a very similar formula is found for the homo-
geneous case q = 0 [5,37,38] where −t2 is replaced with
+t2. To make contact to the 3d lattice model considered
before, we choose t in such a way that twice the second
moment of the density of states g(ε) of the Bethe lattice is
normalized to D=1 (as for the 3d cubic lattice). Here, this
corresponds to D=2t =1, i.e., t =√

6t3d. With this choice
both lattice types will lead to quantitatively same results for
the local correlation functions of DMFT since the DMFT
self-consistency is mainly controlled by the second moment
of the non-interacting density of states [39]. For the nonlocal
spin susceptibility and the related TN this also holds at strong
coupling where these quantities are mainly governed by the
local DMFT self-energy and irreducible vertex functions. This
can be seen in Fig. 6 where the dashed-blue line, which cor-
responds to TN as obtained from the expression in Eq. (17)
for the Bethe lattice (but with the local correlation functions
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obtained from a DMFT calculation for the simple cubic lat-
tice), agrees very well with the exact DMFT calculation for
the simple cubic lattice (filled-violet squares). On the other
hand, at weaker coupling TN is mainly determined by the
noninteracting density of states (T RPA

N ∝e− 1
UD(0) ) at zero en-

ergy, which is in general different for the Bethe and the simple
cubic lattice when their second moments are fixed to the same
value. This can explain the different results for TN from DMFT
and the Bethe lattice treatment in this parameter regime.

Starting from Eq. (17), an obvious approximation for the
strong coupling limit consists in replacing ¯̄χsp(0) by the cor-
responding generalized susceptibility calculated in the atomic
limit ¯̄χAL

sp (0). The inverse of ¯̄χAL
sp (0), which is required in

Eq. (17), has been calculated analytically (at half filling) in
Ref. [40]. The same methods, which have been used for the
inversion of the ¯̄χAL

sp (ω) in this paper, can be applied to invert
¯̄χ−1

sp (0,�) in Eq. (17). The transition temperature TN is then
determined by the condition that the matrix ¯̄χ−1

sp (0,�) is
singular, corresponding to a divergence of ¯̄χsp(0,�). From
this condition we obtain the following expression of TN in
terms of T , U , and t (for details see Appendix B):

TN = t2

U

1

1 + t2

U 2

+ O
(
e−

√
1− 4t2

U2
βU
2
)

(18)

Considering only the leading order in t/U , this equation ob-
viously reproduces the large U behavior of TN given by TN ∼
t2/U . This is also illustrated in Fig. 6, where we show that
the Néel temperature, calculated within the AL approximation
(filled-orange circles), coincides with the exact DMFT result
(filled-violet squares) for U � 2.5 and reproduces the correct
large coupling limit TN ∼ t2/U (green line).

To perform the fluctuation analysis of TN for U → ∞, we
consider the susceptibilities in the atomic limit

χ loc
ch (ω) = χ loc

pp (ω) = β

2

1

1 + e
βU
2

δω0, (19a)

χ loc
sp (ω) = β

2

1

1 + e− βU
2

δω0. (19b)

We can see that χ loc
ch and χ loc

pp vanish exponentially with U .
Since we have neglected such terms in Eq. (18), there is no
contribution from these fluctuations to TN in the large coupling
limit and, hence, all lines of the complementary fluctuation
analysis in Fig. 5, where χ loc

sp has not been subtracted, should
collapse on the DMFT curve for U → ∞. It is, however,
interesting that even for the largest U value, where the ex-
ponential suppression of local charge and particle-particle
susceptibilities is already rather strong, the difference between
the curves is still sizable. Indeed, if we would have used
the corresponding local charge and particle-particle suscep-
tibilities of the AL (instead of the exact DMFT ones) the
curves would have already collapsed onto the DMFT line at
U ∼ 3.0. This indicates that local DMFT charge and particle-
particle fluctuations cannot completely be neglected in this
parameter regime. To quantify this statement we have calcu-
lated the ratio χ loc

ch (ω=0)/χ loc
sp (ω=0) in both the DMFT and

the AL. At the largest value of the interaction (U =4) and
at a temperature close to the phase transition (β =16), this
ratio is given by 5.5 × 10−4 within DMFT. This is indeed
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FIG. 7. Static lattice spin susceptibility χsp(ω=0, q) as obtained
from the direct fluctuation analysis (see Secs. II C and III A), where
local charge (+c), spin (+s), and particle-particle (+pp) fluctuations
are added to �νν′ω

sp = −U in the BS Eq. (10), for three different
interaction values and temperatures along a high symmetry path [�-
X-M-R-� = (0, 0, 0)-(π, 0, 0)-(π, π, 0)-(π, π, π )-(0, 0, 0)] in the
Brillouin zone of the simple cubic lattice. The color code for the
curves, corresponding to the consideration of different combinations
of the local correlation functions χ loc

ch , χ loc
sp , and χ loc

pp for �νν′ω
sp [see

Eqs. (11) and (12)], is the same as in Figs. 2 and 4.

one order of magnitude smaller than the absolute difference
between TN of DMFT (red-filled squares in Fig. 5) and the
transition temperature obtained by removing charge fluctua-
tions (orange-empty circles in Fig. 5). The corresponding ratio
calculated using the same set of parameters but in the AL from
Eqs. (19) yields a value of 1.3 × 10−14, which is about 10
orders of magnitudes smaller than the DMFT result.

It is worth to notice that it is highly important how the AL
approximation is performed in our calculations. In fact, we
did not replace the irreducible vertex �νν ′ω

sp with the one of the
atomic limit, which would not reproduce the correct behavior
of TN at strong coupling. This is similar to the two options
how TN of DMFT for large U can be calculated within the
dual fermion formalism as it has been discussed in Ref. [41].
There, two types of approximations have been performed for
the full (instead of the irreducible) vertex. Again only one of
these approximations produces the correct large U behavior
of TN . How this is linked to the approximations presented in
this paper is an interesting open question for future research
work.

IV. MOMENTUM DEPENDENCE OF THE SPIN
SUSCEPTIBILITY

The Néel temperature TN is obtained from the static (i.e.,
ω=0) lattice spin susceptibility χsp(ω, q) at q=� as defined
in Eq. (7). To gain further insights into the different approx-
imations for this response function, which originate from the
presence or absence of local charge, spin, and particle-particle
fluctuations in the irreducible vertex �νν ′ω

sp , we have also ana-
lyzed the momentum dependence of χsp(ω=0, q).

The results for the fluctuation analysis in the weak-
coupling regime (see Sec. III A) are displayed in Fig. 7, where
χsp(ω=0, q) is shown as a function of the momentum q along
a high-symmetry path in the Brillouin zone of the simple
cubic lattice for three interaction values U . The different
curves correspond to the inclusion of different combinations
of the local correlation functions χ loc

ch , χ loc
sp , and χ loc

pp into

�νν ′ω
sp [see Eq. (12)]. For each U value we have selected
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a temperature above the highest TN in Fig. 4 (empty-blue
upper triangles), which is obtained by including solely χ loc

sp

into �νν ′ω
sp [i.e., wch = wpp = 0 and wsp = 1 in Eq. (12)].

As expected, we observe the same order of the curves as in
Figs. 2 and 4. The lattice spin susceptibility χ+s

sp (ω=0, q),

where only local spin fluctuations have been included in �νν ′ω
sp

[blue lines, wch =wpp =0 and wsp = in Eq. (12)] is larger than
χsp(ω=0, q), where �νν ′ω

sp =−U (pink line) for all values of
U . This demonstrates that local spin fluctuations always lead
to an enhancement the corresponding nonlocal spin suscep-
tibility. On the contrary, including local charge (cyan lines),
particle-particle (brown lines), or both types (black lines) of
fluctuations in �νν ′ω

sp leads to a decrease of the corresponding

lattice spin susceptibility with respect to �νν ′ω
sp =−U (pink

line). If we include a combination of local spin and local
charge and/or particle-particle fluctuations in �νν ′ω

sp (green,
brown, and red lines) the situation is different for weak and
intermediate-to-strong coupling: For U =0.5 (left panel in
Fig. 7), the local fluctuations in all three scattering channels
are of the same order of magnitude and, hence, the order of
the lines depends on the detailed interplay between these three
local correlation functions.

On the contrary, for U =1.0 and U =2.0 the local spin
fluctuations are considerably larger than the corresponding
local charge and particle-particle fluctuations, which gives rise
to a definite hierarchy of curves in the middle and right pan-
els of Fig. 7: The lattice spin susceptibilities χ+r

sp (ω = 0, q),

for which the local spin fluctuation are contained in �νν ′ω
sp

(blue, green, orange, and red lines), are always larger than the
corresponding lattice spin susceptibilities with �νν ′ω

sp =−U
Consistently with the results of the previous sections, the
largest value is obtained when solely the spin fluctuations
are included in the �νν ′ω

sp (blue curve), while the additional
consideration of local charge (green lines), particle-particle
(orange lines), or both types (red lines) of fluctuations leads
to a suppression of the lattice spin susceptibility with respect
to the (blue) spin-only curve.

Interestingly, the difference between the curves is largest
at the R point (q = �), decreases with increasing distance
from this antiferromagnetic wave vector and becomes com-
paratively small at the � point [q= (0, 0, 0)]. This means
that the suppression of χsp(ω=0, q) due to local charge and
particle-particle fluctuations and the enhancement due to local
spin fluctuations is strongest at q=� while it becomes rather
moderate away from this point. This observation is quite
remarkable since it implies that a purely local modification
of the local DMFT vertex �νν ′ω

sp gives rise to a momentum
dependent modification of χsp(ω=0, q).

We have also calculated the momentum dependence of
the spin susceptibility corresponding to the inverse fluctua-
tion analysis where local fluctuations are gradually subtracted
from the exact �νν ′ω

sp of DMFT (cf. Secs. II D and III B and
Fig. 5). The results are presented in Fig. 8 where the different
curves correspond to the removal of different combinations
of the local correlation functions χ loc

ch , χ loc
sp , and χ loc

pp from the

exact �νν ′ω
sp of DMFT [see Eq. (13)]. For each value of U we

have selected a temperature above the highest TN in Fig. 5
(empty-blue upper triangles), which is obtained by subtracting
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FIG. 8. Static lattice spin susceptibility χsp(ω=0, q) as obtained
from the inverse fluctuation analysis (see Secs. II D and III B), where
local charge (–c), spin (–s), and particle-particle (–pp) fluctuations
are subtracted from �νν′ω

sp in the BS Eq. (10), for three different
interaction values and temperatures along a high-symmetry path [�-
X-M-R-� = (0, 0, 0)-(π, 0, 0)-(π, π, 0)-(π, π, π )-(0, 0, 0)] in the
Brillouin zone of the simple cubic lattice. The color code for the
curves, corresponding to the subtraction of different combinations of
the local correlation functions χ loc

ch , χ loc
sp , and χ loc

pp from �νν′ω
sp , is the

same as in Fig. 5.

χ loc
ch and χ loc

pp from �νν ′ω
sp [i.e., wch = wpp = 1 and wsp = 0

in Eq. (13)]. Analogously to the weak-coupling analysis, the
hierarchy of the different curves corresponds to the one in
Fig. 5 for all three values of U : The lattice spin susceptibil-
ities χ−r

sp (ω = 0, q), which have been obtained by subtracting
the local charge (r = c, orange curve), particle-particle (r =
pp, green curve), or both (r = cpp, blue curve) correlation
functions from �νν ′ω

sp in the BS Eq. (10), are larger than the
corresponding lattice susceptibility of DMFT (red curve). The
highest value is obtained when both local charge and particle-
particle fluctuations are removed from �νν ′ω

sp (blue curve).
Again, we observe that the difference between the four curves
is largest at the R point (q = �).

Let us now turn our attention to the curves where the local
spin susceptibility (and possibly one or both of the suscepti-
bilities in the two other channels) have been subtracted from
�νν ′ω

sp (black, brown, cyan, and pink lines in Fig. 8). Again,
we observe the same hierarchy as for TN in Fig. 5: For the
considered U values, all these curves are located below the
corresponding DMFT results (red). At the lowest U = 1.0,
which is in the metallic regime of the Hubbard model, the
differences are largest at the R point and almost vanish at
the � point, consistent with the discussion for weak coupling.
However, at larger values of U (U = 2.0 and U = 4.0) the
suppression of χsp(ω=0, q) due to the removal of local spin
fluctuations from �νν ′ω

sp occurs almost equally at all momenta
q and eventually leads to a complete vanishing of the lattice
susceptibility at U = 4.0. This behavior can be understood
by the fact that U = 2.0 and U = 4.0 are located in the
crossover/local moment regime of the Hubbard model where
the suppression of the bubble χνν ′ω

0,q [see definition below
Eq. (10)] due to a diverging local self-energy has to be com-
pensated by a correspondingly large vertex �νν ′ω

sp in the BS
Eq. (10) in order to obtain a finite lattice spin susceptibility
χsp(ω, q). Such large value of �νν ′ω

sp is mainly governed by the
large value of χ loc

sp (ω) and, hence, removing this contribution

from �νν ′ω
sp results in a very small value or even a vanishing of

χsp(ω, q).
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V. CONCLUSIONS AND OUTLOOK

We have introduced a fluctuation analysis of the two-
particle generalized and physical susceptibilities to analyze
second-order phase transitions and, in particular, the transition
temperatures to corresponding ordered states. Our approach is
based on a diagrammatic decomposition of the input quan-
tities for the equation used to compute the target objects,
i.e., the susceptibilities. More specifically, this input is the
irreducible vertex � in the channel of interest, which is
the central ingredient in the Bethe-Salpeter equation from
which the two-particle correlation functions are obtained. The
addition/removal of specific diagrammatic contributions to �

then provides crucial information how these terms affect the
related susceptibilities and derived quantities such as transi-
tion temperatures.

In this paper, we have exploited this idea to analyze the
transition to the antiferromagnetically ordered state in the
half-filled Hubbard model within DMFT. In this case, the irre-
ducible spin vertex �νν ′ω

sp is purely local, i.e., it depends only
on the frequencies. As a starting point, we have approximated
this correlation function using a weak-coupling expansion that
has allowed us to express the vertex in terms of the local
charge, spin, and particle-particle susceptibilities. Switching
these terms sequentially on and off makes it possible to iden-
tify the impact of each of these three types of fluctuations on
TN . We found that local spin fluctuations enhance the anti-
ferromagnetic spin susceptibility and TN while local charge
and particle-particle fluctuations tend to suppress them. At
weak coupling, a suppression due to local particle-particle
fluctuations prevails while in the intermediate coupling regime
the local spin fluctuations start to dominate and lead to a “neg-
ative” screening (i.e., an enhancement) of �sp with respect
to the bare U . At the same time the inclusion of the DMFT
self-energy in the single-particle Green’s function leads to
a reduction of the bubble term in the Bethe-Salpeter equa-
tion and, hence, to a reduction of the AF spin susceptibility.
Therefore, in this regime the formation of the local moment
described by DMFT plays a Janus-faced role: At the one-
particle level it leads to an increase of the self-energy and,
hence, to a suppression of spectral weight at the Fermi level,
which, in turn, reduces the bubble term [given below Eq. (10)]
and, consequently, TN . At the two-particle level, on the other
hand, the local moment is reflected in an enhancement of the
local irreducible vertex via local spin fluctuations, which tends
to enhance TN . The interplay between these two opposing
effects controls the actual value of TN within DMFT.

At strong coupling the perturbative expansion for �sp

breaks down. We notice that in Ref. [33], this problem was
solved within the dual fermion framework by adding trian-
gular vertices, i.e., spin-fermion coupling contributions, to the
approximation. This would obviously also be possible for �sp,
which can lead to quantitative changes and a corresponding
improvement of our results. While we leave this interesting
question for future research work we have verified our find-
ings at weak-to-intermediate coupling on a qualitative level
following another route: We have performed an inverse fluctu-
ation analysis, which consists in subtracting the different local
fluctuations from the exact �sp of DMFT leading to the same
conclusions as the perturbative approximation of the vertex
function.

To gain more insights into the phase transition to the an-
tiferromagnetically ordered state at large values of U , we
have put forward a strong-coupling approximation for the
calculation of TN where we have replaced the local DMFT
generalized susceptibility by the one of the atomic limit. How
this approximation relates to a corresponding one within the
DF framework (see Ref. [41]) is an interesting question for
future research work. We believe that such approximation
could be useful for practical purposes when using diagram-
matic methods [29], e.g., to study regimes where fermions
form bound pairs close to Bose-Einstein condensation [42].

In the last part of this paper, we have discussed the momen-
tum dependence of the lattice spin susceptibility as obtained
from the different ways how local charge, spin, and particle-
particle fluctuations are included in �sp. Our findings indicate
that the purely local modification of this vertex function gives
rise to a nonlocal change of the lattice spin susceptibility
where the difference between the various approximations is
largest at the antiferromagnetic wave vector q=� and be-
comes gradually smaller far away from this lattice point.

Finally, we want to stress that the presented method is
not restricted to the case of DMFT and the antiferromag-
netic phase transition of the Hubbard model but can be
applied within any theory where explicit expressions for �

are available, such as the diagrammatic extensions of DMFT
[26,29,43–50], and for any collective mode such as, e.g.,
d-wave superconductivity in the two-dimensional Hubbard
model [51].
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APPENDIX A: COMPARISON BETWEEN ED AND QMC

In this section, we benchmark our ED [5,52] results for the
local and nonlocal correlation functions with corresponding
QMC [53] data. As QMC solver the CT-HYB implementation
of the w2dynamics [54] package has been used. We present
our comparison for all relevant local correlation functions for
three representative values of U at weak (U = 1.0), intermedi-
ate (U = 2.0), and strong (U = 4.0) coupling (corresponding
to the left, middle, and right panels in Figs. 9–12, respec-
tively). The frequency-dependent local correlation functions
in Figs. 9–12 are depicted for a high temperature (upper
panels) and a lower temperature closer to the phase transition
(lower panels) as a function of one Matsubara frequency. In
particular, the generalized susceptibilities χνν ′ω

σσ ′ in Fig. 10
and the irreducible vertices �νν ′ω

ch/sp in Fig. 11 are shown as a
function of the fermionic Matsubara frequency ν for a fixed
ν ′ = π

β
and ω = 0. The inverse antiferromagnetic susceptibil-

ity χ−1
AF (T ) is plotted in Fig. 13 as a function of temperature.

Let us point out that the half-filled Hubbard model on a
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FIG. 9. Imaginary part of the local self-energy �(ν ) as a function
of the fermionic Matsubara frequency ν calculated with ED (violet-
empty squares) and QMC (green-filled squares) for three different
values of U at weak (left panels), intermediate (middle panels), and
strong (right panels) coupling at high temperatures (upper panels)
and low temperatures (lower panels).

bipartite lattice (such as the simple cubic lattice in three di-
mensions) is particle-hole symmetric, which is also true for
the related AIM. This implies that the local self-energy is
purely imaginary (apart from the real constant Hartree term
Un
2 ) while the generalized susceptibilities and the irreducible

vertex in Figs. 10 and 11 are purely real (the local physical
susceptibilities in Fig. 12 are always real quantities, also away
from particle-hole symmetry).

The data point given by U =1.0 and β = 20.0 (left-lower
panels) corresponds to the metallic regime of the DMFT
phase diagram, which is indicated by the non-monotonous
behavior of the (imaginary part of the) self-energy at low
frequencies (see left-lower panel in Fig. 9). At U =4.0 on the
other hand (right panels in Fig. 9), �(ν) features an insulating
behavior, which can be inferred from its monotonous behavior

FIG. 10. Real part of the local generalized susceptibilities
χ

ν(ν′=π/β )(ω=0)
σσ ′ as a function of ν for fixed ν ′ = π

β
and ω = 0 for the

same values of U and β as in Fig. 9. The two spin projections ↑↑ and
↓↓ are indicated with different colors.

FIG. 11. Real part of the local irreducible vertex �
ν(ν′=π/β )(ω=0)
ch/sp

as a function of ν for fixed ν ′ = π

β
and ω = 0 for the same values of

U and β as in Fig. 9. The charge and spin channel are depicted in
different colors.

and its large values at low frequencies. The remaining three
data points [(U =1.0, β =6.0), (U =2.0, β =5.5), (U =2.0,
β =10.0)] belong to the so-called crossover region, which
is located between the metallic and the insulating phase of
the Hubbard model at high temperatures (see, for instance,
Ref. [44]). In this regime, the self-energy already shows an
insulating-like monotonous behavior but its size is still mod-
erate.

In general one observes an excellent agreement for all local
one- and two-particle correlation functions obtained from ED
with the corresponding QMC results. Remarkably, this even
holds for �νν ′ω

ch/sp, which is obtained from χνν ′ω
σσ ′ via a matrix

inversion [see Eq. (10)]. Only at large frequencies small fluc-
tuations can be observed in the QMC data, which originate
from the statistical noise of the QMC calculation.

For the inverse of the antiferromagnetic susceptibility in
Fig. 13 some deviations can be observed between ED (empty
violet squares) and QMC (filled green squares), in particular

FIG. 12. Physical susceptibilities χ loc
ch/sp(ω) as a functions of the

bosonic frequency ω for the same values of U and β as in Fig. 9. The
charge and spin channel are depicted in different colors.
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FIG. 13. Inverse antiferromagnetic susceptibility χsp(ω =
0, q = �) as a function of temperature for the same values of U as
in Fig. 9. χAF

ED30(T ) corresponds to ED results where 30 positive and
negative Matsubara frequencies have been used (instead of 160),
which is the same as for the QMC calculations.

at strong coupling. These differences, however, originate from
the different number of frequencies, which have been used
for performing the sum over the generalized susceptibility in
Eq. (9) to obtain the nonlocal spin susceptibility [230 frequen-
cies for ED vs 60 frequencies for QMC]. Reducing the number
of frequencies also in the ED calculation (see empty-blue
circles in Fig. 13) restores the excellent agreement between
the ED and the QMC results.

APPENDIX B: STRONG-COUPLING FORMULA

In this section, we provide some details regarding the cal-
culation of TN in the strong-coupling regime [Eq. (18)] where
the local generalized susceptibility ¯̄χsp(ω=0) in Eq. (17) has
been replaced by the one of the atomic limit ¯̄χAL

sp (ω=0).
More specifically, the inverse of this matrix in the fermionic
ν-ν ′ frequency space is required in Eq. (17), which has been
obtained analytically (for the AL at half filling) in Ref. [40].
For ω=0 it reads [consider Eq. (19) in Ref. [40] in the spin
channel]:[

¯̄χAL
sp (ω = 0)

]−1

νν ′ = aν
0[δνν ′ − δν(−ν ′ )]

+ bν
0[δνν ′ + δν(−ν ′ )] +

2∑
i=1

bν
i bν ′

i , (B1)

where the quantities aν
0 and bν

i (i=0, 1, 2) are given by

aν
0 = 1

2β

(
ν2 + U 2

4

)
bν

0 = 1

2β

(
ν2 + U 2

4

)2

ν2 + B2
(B2a)

bν
1 =

√
C

β

1

ν2 + B2
bν

2 = b2 =
√−U

β
, (B2b)

and the frequency-independent quantities B and C (which,
however, depend on β and U ) are defined as

B = U

2

√
e

βU
2 − 3

e
βU
2 + 1

, C = U 5

16

(
1 − 4B2

U 2

)2

1 − U tanh ( β

2 B)
2B

. (B3)

Since we are interested in the strong-coupling regime at inter-
mediate to low temperatures, we can assume that βU

2 > log 3
and, hence, B and C are positive real numbers. According to
Eq. (17), we have to subtract t2

β
δνν ′ from [ ¯̄χsp(ω = 0)]−1

νν ′ . This
subtraction modifies only the diagonal contributions aν

0 and bν
0

of [ ¯̄χAL
sp (ω = 0)]−1

νν ′ which, hence, become

aν
0 → aν

0 − t2

2β
= aν

t = 1

2β

(
ν2 + U 2

4
− t2

)
(B4a)

bν
0 → bν

0 − t2

2β
= bν

t = 1

2β

[(
ν2 + U 2

4

)2

ν2 + B2
− t2

]
. (B4b)

To calculate the generalized antiferromagnetic susceptibility
¯̄χsp(0,�) in Eq. (17) we have to invert the matrix on the
right hand side of this equation. This matrix is exactly the one
given in Eq. (B1) but with aν

0 and bν
0 replaced by aν

t and bν
t ,

respectively. The inversion of this matrix can be performed
analytically by means of the Sherman-Morrison-Woodbury
matrix identity [55], completely analogous to the procedure
outlined in Ref. [40]. This yields

[ ¯̄χsp(0,�)]
νν ′ = 1

4aν
t

[δνν ′ − δν(−ν ′ )] + 1

4bν
t

[δνν ′ + δν(−ν ′ )]

− 1

4bν
t bν ′

t

2∑
k,l=1

bν
k (M−1)klb

ν ′
l , (B5)

where the 2 × 2 matrix M is given by

Mkl = δkl +
∑

ν

bν
kbν

l

2bν
t

, k, l = 1, 2. (B6)

To obtain the AF susceptibility, we have to sum Eq. (B5) over
the fermionic Matsubara frequencies ν and ν ′, which yields

χAF = 1

β2

∑
ν

1

2bν
t

−
(

1

β

∑
ν

bν
k

2bν
t

)
(M−1)kl

(
1

β

∑
ν

bν
l

2bν
t

)
.

(B7)

The transition to the AF is signaled by a divergence of χAF.
In Eq. (B7), such a divergence can arise in two ways: (i) the
function bν

t can diverge for a given frequency ν. However, as
it has been shown in Ref. [40], such singularity would appear
in both terms on the right hand side of Eq. (B7) and cancel.
(ii) The only other possibility for χAF to diverge consists in
a singularity of the 2 × 2 matrix M. Hence, TN can be deter-
mined by the condition that the determinant of M vanishes.
Consequently, the remaining task is to evaluate the Matsubara
sums in Eq. (B6) for the three different matrix elements of the
symmetric 2 × 2 matrix M:

M11 = 1 +
∑

ν

bν
1bν

1

2bν
t

= 1 + C

β

∑
ν

1

(ν2 + B2)2

1

(ν2+ U2
4 )

2

ν2+B2 − t2

= 1 + C

β

∑
ν

1

ν2 + B2

1

ν2 + R2+

1

ν2 + R2−

= 1 + C

[
tanh

(
β

2 B
)

2B(R2+ − B2)(R2− − B2)
+ tanh

(
β

2 R+
)

2R+(R2+ − R2−)(R2+ − B2)
+ tanh

(
β

2 R−
)

2R−(R2− − R2+)(R2− − B2)

]
(B8a)
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M12 = M21 =
∑

ν

bν
1bν

2

2bν
t

=
√−UC

β

∑
ν

1

ν2 + B2

1

(ν2+ U2
4 )

2

ν2+B2 − t2

=
√−UC

β

∑
ν

1

ν2 + R2+

1

ν2 + R2−

= √−UC

[
tanh

(
β

2 R+
)

2R+(R2+ − R2−)
+ tanh

(
β

2 R−
)

2R−(R2− − R2+)

]
(B8b)

M22 = 1 +
∑

ν

bν
2bν

2

2bν
t

= 1 − U

β

∑
ν

1

(ν2+ U2
4 )

2

ν2+B2 − t2

= 1 − U

β

∑
ν

ν2 + B2

(ν2 + R2+)(ν2 + R2−)

= 1 − U

[
tanh

(
β

2 R+
)

2R+

R2
+ − B2

R2+ − R2−
+ tanh

(
β

2 R−
)

2R−

R2
− − B2

R2− − R2+

]
, (B8c)

where

R+ =
√

U 2

4
− t2

2
− t

2

√
t2 − U 2 + 4B2 (B9a)

R− =
√

U 2

4
− t2

2
+ t

2

√
t2 − U 2 + 4B2 (B9b)

are real positive parameters if U >2t (which is fulfilled in the
strong-coupling limit). In Eqs. (B8), partial fraction decom-
position has been extensively used, which reduced the various
summations over the fermionic Matsubara frequency ν to the
standard Matsubara sum

1

β

∑
ν

1

ν2 + X 2
= tanh

(
β

2 X
)

2X
, (B10)

for a positive real number X .
As already mentioned, the condition M11M22 − M2

12 =
0 corresponds to the divergence of χAF and—considering
Eqs. (B8)—represents, hence, a very complicated tran-
scendental equation for the determination of the transition
temperature TN . Even a numerical solution turns out to be

difficult due to the cancellation of several exponentially sup-
pressed terms. For instance, considering the constant C [see
Eq. (B3)] in the limit βU

2 →∞, both the numerator and the
denominator decay exponentially as e−βU (with logarithmic
corrections, i.e., with correction terms of the order log e− βU

2 =
− βU

2 ). We have hence expanded all expressions in Eqs. (B8)
in terms of

y = e− βU
2 ⇔ βU

2
= − log y. (B11)

Neglecting all terms of the form e−
√

1− 4t2

U2
βU
2 and of higher

orders in e− βU
2 then gives for the determinant of M:

det M =
⎛⎝1 − 1√

1 − 4t2

U 2

⎞⎠(
1 − U 2

t2

1

βU − 1

)
. (B12)

Since the first factor on the right-hand side of this equation is
always smaller than 0, the vanishing of the determinant cor-
responds to the second term being 0, i.e., (1 − U 2

t2
1

βU−1 )=0.

Solving this equation for T = 1
β

leads to Eq. (18) in the main
text.
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