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Axion electrodynamics governs electromagnetic properties of Weyl metals. Although transmission and re-
flection measurements of light have been proposed to confirm the axion electrodynamics, there are still a
lack of theoretical proposals for macroscopic nonlocal transport phenomena in Weyl metals. In this paper we
present nonlocal transport phenomena in time-reversal symmetry-broken (TRSB) Weyl metals. Solving the
axion electrodynamics numerically, we show that such nonlocal transport phenomena arise from the negative
longitudinal magnetoresistivity (NLMR), combined with the anomalous Hall effect (AHE) in the axion electro-
dynamics. Since this nonlocal transport occurs beyond the mesoscopic scale, we conclude that these nonlocal
properties have nothing to do with Fermi arcs, regarded to be clear evidence of the axion electrodynamics in the

bulk.

DOLI: 10.1103/PhysRevB.104.235126

I. INTRODUCTION

Maxwell equations are modified in Weyl metals [1-4],
which originate from anomalous electromagnetic currents
[5-24]. More concretely, the topological-in-origin E - B term
with a space-time-dependent coefficient 6(r, ) angle occurs
in the effective action for electromagnetic fields from the
so called chiral anomaly, which gives rise to corrections in
the Maxwell equation [25]. Although axions as dynamical
degrees of freedom have been proposed in various situations
such as charge and spin density wave orders, ferromagnetism,
and superconductivity [26], we focus on the case of external
nondynamical fields for axions in this study.

There exist theoretical proposals to confirm the axion
electrodynamics. In particular, transmission and reflection ex-
periments of light have been proposed to measure Faraday and
Kerr rotations or higher harmonics in Weyl metals [27-34].
Nonlinear effects have been mainly focused on the second
harmonic generation in the optical regime [35-38] (i.e., the
frequency of an oscillating field is in @ > 20 kHz). Accord-
ing to one theoretical proposal, the axion electrodynamics
allows a longitudinal component inside the Weyl metallic
state as superconductivity does [39]. However, we believe that
there are still a lack of theoretical proposals for macroscopic
nonlocal transport phenomena in Weyl metals. In this paper
we present nonlocal transport phenomena in time-reversal
symmetry-broken (TRSB) Weyl metals.

Nonlocal transport properties in TRSB Weyl metals have
been reported before [40—44]. However, to our best knowl-
edge, such nonlocal effects are limited in the mesoscopic scale
related to the diffusive origin [40], or they occur from the com-
bination of the topological origin and others (e.g., artificial
potential wall [41] or electron-electron interaction [42—44]).
In this study we show that nonlocal transport phenomena
are allowed in the macroscopic level within the axion elec-
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trodynamics. Solving the axion electrodynamics numerically,
we reveal that macroscopic nonlocal voltage drop is possi-
ble due to geometrically asymmetric conductivity in Weyl
metals. Such asymmetry in conductivity turns out to result
from the negative longitudinal magnetoresistivity (NLMR)
[45-53] in combination with the transverse magnetoresistivity
(TMR) and the anomalous Hall effect (AHE) [5-24]. When
external magnetic fields By are applied, electric currents
parallel to Bey are enhanced by the Bgm factor (NLMR).
Electric currents parallel to Bey are enhanced due to NLMR
originated in CME. On the other hand, currents perpendicular
to Beyt are proportional to 1/Be (TMR). Furthermore, there
exists the AHE for the direction perpendicular to the exter-
nal magnetic field. The asymmetric conductivity induced by
these effects results in nonlocal and nonhomogeneous electric
fields/currents.

To simulate these effects in the TRSB Weyl metal state, we
incorporate both the NLMR and TMR into the conductivity
o of the Ohm’s law J = oE. In addition, we consider the
conserved current J' = J — 2aV6é x E to take into account
the current from the Fermi surface (J) with both magnetore-
sistivity contributions and that from the AHE (—2aV8 x E).
Here « is the fine-structure constant.

II. SIMULATION SETUP FOR THE AXION
ELECTRODYNAMICS

We explain how to simulate the axion electrodynamics,
introducing the Maxwell equation with a modified conserved
current J' in a discrete grid. We point out that a simulation
procedure for two-dimensional (2D) conventional metals is
shown in Appendix B as a pedagogical example. Essentially
the same strategy is applied to the case of 3D Weyl metals,
presented in the last of this section.

©2021 American Physical Society
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FIG. 1. Schematic diagram for the simulation of nonlocal
electric-field measurements based on the axion electrodynamics. A
direct current path is shown by the blue arrow, which starts from a
source point (red dot) to a sink point (black dot). Our simulations on
the axion electrodynamics under an external magnetic field (green ar-
row) reveal that there appear inhomogeneously distributed nonlocal
currents in macroscopic-size 3D Weyl metals.

A. Axion electrodynamics

We start from the axion electrodynamics in an experimen-
tal setup of Fig. 1,

V-E=p/e+2a/eV6 -B, (D
V-B=0, 2)
VxE= % 3)
ot
oE
VXB:/,LJ—I—/LGE—ZO[/JLVQXE. @)

As shown in this experimental setup, a direct current path
is given by the blue arrow, which starts from a source point
(red dot) to a sink point (black dot). On the other hand, our
simulations on the axion electrodynamics under an external
magnetic field (green arrow) reveal that there appear inhomo-
geneously distributed nonlocal currents in macroscopic-size
three-dimensional (3D) Weyl metals. This originates from
contributions of anomalous currents in the axion electrody-
namics.

When V8 is proportional to uniformly applied magnetic
fields (Bext) [5—24], meaning constant in space and time, we
obtain

dV-E
V.- 4=V (VxB)=0— uV - -J+ pue o7
—2auV -V xE =0,
deV -E
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Here divergence has been taken for Eqgs. (3) and (4), and V -
(AxB)=B:-(VxA)—A. .V xB has been used. Since
the first and second Maxwell equations should be consistent
with the third and fourth Maxwell equations, we conclude that
both constants of Cy and C; have to vanish identically, i.e.,
Co=C; =0.

For more general discussions, let us replace VO with gB(z)
in the axion electrodynamics, time-dependent magnetic fields.
Then, the first Maxwell equation is given from the fourth
Maxwell equation [Eq. (4)] as follows:

V- )=V - (VxB)=0—-> V.- (uJ

JE
+Me¥ —2aguB x E) =0,

aV - €E
5 =—-V.J+2agV-B xE) @)
=-V.J—2agu(V-S), (®)
. V.eE=— f V- (J+ 20guS)dt. 9)

Here the constant Cy from the time integral is set to be zero, as
discussed above. We point out that the Poynting theorem [55]
given by —0du,,, = V - S+ J - E is still satisfied in the axion
electrodynamics, as shown in Appendix A. Here S = ;%E x B

. . B2 E2 .
is the Poynting vector and uey, = nt - is the electromag-
netic field energy.

Using the Poynting vector S = ;%E x B, we generalize the
above axion electrodynamics as follows:

V.E= —é/V~(J+2aguS)dt, (10)
V.B=0, (11)
VxE=-28 (12)
ot
OE ,
Vsz,uJ—l—/Leg—i-Zagu S. (13)

Interestingly, these equations can be rewritten in the form
of the original Maxwell equations

1 , o
V-E=—— V. Jdt =%, (14)
€ €
V.-B=0, (15)
V xE oB (16)
XxXE=——,
ot
, oE
VxB=ul +ue§, an
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introducing anomalous current density J' and charge density
0’ in the following way:

o —/V~J’dt=—/V-(J+20{guS)dt

(18)

— / V- Jdt + 2agu(ue, + W),

J =J +2agE x B. (19)

Here W = [E - Jdr represents work done by the current
source. These equations show that the anomalous current and
charge take into account the angular momentum and energy
density from electromagnetic fields.

Of course these anomalous charge density p’ and current
density J' satisfy the continuity equation

ap’
V.J =—
J ot
B? ¢E?
=V.-J—2aguid| —+—)+E-J;. (20
21 2

We note that V -J is not zero but V -J’ should be zero
considering time dependence in E and B. This indicates that
J’ should be regarded as the conserved current satisfying the
continuity equation instead of J. In this study we use J' as the
conserved current for all simulations.

Recently, Ref. [54] suggested three types of CMEs. The
first version of CME is that the anomalous current is given
by the time derivative of the axion angle parameter, multi-
plied with the magnetic field. The second version is that the
longitudinal conductivity is enhanced by the square of the
magnetic field, referred to as NLMR. The third version is that
the axion field is promoted to be dynamical, where an equation
of motion for the dynamical axion field is introduced into
the Maxwell equation. In this study we focus on the second
version of CME, which deals with a static case. It would be
interesting to investigate the time-dependent case for the axion
angle parameter.

Reference [54] also pointed out that the third version of
CME is internally self-consistent. In this case, the energy
density has to be modified by the contribution from dynamical
axion fields. As a result, the Poynting theorem is generalized
to take into account the dynamics of axion fields.

B. Simulation setup for the axion electrodynamics

To investigate the nonlocal transport phenomena in a Weyl
metal, we recall that both longitudinal and transverse mag-
netoresistivities and anomalous Hall effect have to be taken
into account in the fourth Maxwell equation (V x B = uJ —
20guB x E). To find the electric field E and the magnetic
field B with this anomalous current in a numerical way, we
define such electromagnetic fields and anomalous currents on
vertices, edges, and faces of a 3D grid structure (cubic lattice).
The conductivity o (i, j, k) and current I(i, j, k) are defined on
black links, whereas the magnetic field B(i, j, k) is defined on
red links of the 3D grid. See Fig. 2(a). Now, the black and
red grids are conjugate (dual) to each other. The divergence
[Egs. (1) and (2)] and curl equations [Eqgs. (3) and (4)] in the
Maxwell equations can be converted into algebraic forms as
shown in Fig. 2(b). One may think that the current (magnetic
field) is defined on each lattice point of the body center of

the red (black) links for three directions. For more detailed
information on this construction, we refer it to Appendix B,
the construction of which is discussed in a simpler situation on
2D grid. Source, sink, and boundary conditions are discussed
in Appendix C.

Now we solve coupled algebraic equations for electro-
magnetic-field variables with anomalous currents, defined on
each unit cube (and its dual) in the grid. The iteration process
consists of three steps. First, the longitudinal magnetoconduc-
tivity is considered with the Ohm’s law for the current of chi-
ral Fermi-surface electrons. Here an initial value (B = Beyt)
of the magnetic field is used for this conductivity. Second,
the divergence/curl of the electric field is evaluated with a
given conductivity of the first step. Third, the divergence/curl
of the magnetic field is evaluated using the current given at the
second step. We note that the current is determined once both
conductivity and electric field are given by the Ohm’s law with
the anomalous Hall effect. Updating the magnetic field in the
longitudinal magnetoconductivity of the first step, we repeat
this process for convergence. See Fig. 2(c).

Before presenting our simulation results, we would like
to mention two important aspects in 3D Weyl-metal simula-
tions different from the 2D simulation (see Appendix B for
the 2D case). First, one is on the redundancy in the number
of equations simply due to the additional component of z.
Considering divergence equations with continuity equations
on N3 points (vertices) and curl equations on (N — 1)? planes
(faces), all these equations cannot be independent. The con-
tinuity equations have one redundancy the same as that of
the 2D case. On the other hand, we have (N — 1)? redun-
dancies in curl equations for the 3D case (no redundancy
in curl equations for the 2D case). Here we explain how
to count the number of redundancies in the curl equations.
Each single unit cube allows only five curl equations (five
independent surfaces) to define all variables. See Fig. 2(d).
For simplicity, let us assume without loss of generality that
redundant equations are living in the xy plane of the upper
layer for each single cube. It means that the curl equations
inz=1,z=2,...,z=N — 1 (layer) are all redundant for
the N x N x N lattice (x, y, and z are integer values from 0
to N — 1). Therefore, the curl equations on (N — 1) layers
are redundant. Each layer has (N — 1)? curl equations, and
thus we have (N — 1)? redundancies in the curl equations. In
total, we have 1 4+ (N — 1)? redundancies in the number of
equations for the 3D case.

The second important point in the 3D case is on anomalous
currents originating from the VO (external or background
axion) term. In 2D, the Maxwell equation to govern the dy-
namics of electric fields is given by the Ohm’s law (E =
o~ 1J). On the other hand, one should consider J' with the
AHE as the conserved current, given by

J =J—2agB xE,

as discussed before. Considering the linear expansion for the
electric field (J = oE), we express J in terms of J’ as follows:

Jy = J, 4+ 20g(ByJ; /o, — B.Jy/0y),
Jy = J; + 2ag(B.J; /o, — B,J;/0.),

J. = J. 4+ 2ag(B.Jy /oy — ByJi/0y). 21
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FIG. 2. How to simulate the axion electrodynamics in a 3D grid. (a) 3D grid structure with electromagnetic-field and current variables.
Here the current and conductivity are defined on black links, whereas the magnetic field is defined on red links with unit vectors %, , Z. Number
of variables, equations, and constraints are shown. See the text for more details. (b) Conversion of divergence and curl equations into algebraic
equations on the grid structure. Divergence is converted as sum of six vectors at every vertex, whereas curl is converted as the sum of four
vectors at every face of the unit cube. (c) Simulation protocol for anomalous currents /, magnetic fields B, and magnetoconductivity o. For
more details, see the text. (d) A simple example of redundancy in curl equations (unit cube with six surfaces). There is one redundancy per one
unit cube. There are six curl equations from six planes for one unit cube, but summing over five equations gives the other one.

Here we ignored the conventional Hall conductivity. As a J. 2ag| Iy J! 5
result, the electric field E is given by E. = —t {Bxg— - Bya_} + Qag){- -} +
z z y X
(22)
J 2ag| J] J )
E.= O_X T {Bygz - Bza_ + Qagy{p If we set 2ag = 0, this expression is reduced to the current
J): ! : ’ with only magnetoresistivity in the absence of the AHE. In
2ag Jy J. the next section we discuss the nonlocal transport ph
_ 0y 28 ) p S p Yz 2. port phenomena
Ey= oy * oy {BZ Oy . o, T Qagl s in both cases of the presence and absence of the AHE.
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FIG. 3. “Partial” axion electrodynamics simulation in the absence of the anomalous Hall effect. The first (second) column shows the
current (electric field) configuration, and the last describes a potential landscape. In isotropic conventional metals shown in the first row,
nonlocal currents are not observed. On the other hand, the NLMR effect in a Weyl metal state, given in the second row, is responsible for the
nonlocal voltage drop in a mm scale of the sample size. In the transverse configuration given in the last row, nonlocal currents are not observed,

either. See the text for more details.

III. NONLOCAL TRANSPORT PHENOMENA FROM
ASYMMETRIC CONDUCTIVITY IN THE AXION
ELECTRODYNAMICS

A. In the absence of the anomalous Hall effect

First, we take into account only the magnetoresistivity
without the AHE, i.e., ignoring the V& x E term. There are
two types of magnetoresistivity effects. One is NLMR given
by oys = 00(1 + cBext?), which shows the B> enhancement
for the longitudinal conductivity. Here oy is the Drude con-
ductivity and c is a dimensionful constant. The other is TMR
given by o, o 1/Bcy, the magnetoconductivity of which is
proportional to the inverse of the magnetic field in the large
magnetic-field limit. The transverse magnetoconductivity is
much smaller than the longitudinal one in the limit of large
magnetic fields. These geometrically different two magneto-
conductivities can change both the current and electric-field
configurations dramatically, as shown in Fig. 3. Quantitatively
speaking, the external magnetic field is set to make the con-
ductivity ratio as o : 013 = 1 : 20 in this simulation.

In isotropic conventional metals, both current and electric-
field configurations are essentially the same as each other.
In other words, their dominant flows are given by a straight
and direct line configuration from the source to the sink. On
the other hand, when an external magnetic field is applied in
parallel with the source to the sink direction, i.e., Bext || Jext
(longitudinal) in a Weyl metal, the current flow becomes non-
local in the x direction. Here “nonlocal” means that the current
flow or voltage drop exists not only between the source and

sink but also far from the source and sink positions. Electric
field becomes predominant along the y direction due to the
NLMR effect because the current flow requires only weak
strength of the electric field. On the other hand, the current
flow gives rise to relatively stronger electric fields when the
current flows orthogonal to the external magnetic-field di-
rection. In this transverse case, we do not see any nonlocal
effects. All these results are summarized in Fig. 3.

It is not easy to construct either a perfectly parallel or ab-
solutely perpendicular setup for any configurations of external
currents and magnetic fields in a real experimental condition.
In this respect it is interesting to ask whether this nonlocal
current can be observed or not in slightly tilted configurations
as our simulation setting. It turns out that such a small tilted
angle configuration does not give any significant effects in
this case. However, we find that it gives nonlocal Hall effects
when the AHE is taken into account, discussed in the next
subsection.

B. In the presence of the anomalous Hall effect

Now we introduce not only both NLMR and TMR but also
AHE into the simulation of the axion electrodynamics. Let
us consider the longitudinal case (Bext || Jext) first. A current
pattern of this case is similar to that of the previous case
considering magnetoconductivity only. However, the electric
field and voltage drop pattern are different because of the AHE
effect. The electric field vector at each position is rotated in
a clockwise (counterclockwise) fashion on the X axis when
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FIG. 4. Axion electrodynamics simulation in the presence of both NLMR and TMR effects and the AHE when B || £ and B || —%.
(a) Current vector configuration in 3D volume and from the top. Nonlocal back flows still exist in the presence of the AHE. (b) Electric
field configuration in 3D volume and from the top. A similar result without the AHE is shown as the 3D plot with red arrows for comparison.
The electric field vector at each position is rotated in a clockwise (counterclockwise) fashion on the & axis when Bey; || £ (Bext || —%) compared
to the result without the AHE (simulation result with red arrows). This magnetic field dependent rotation does not occur in the absence of
the AHE (in the presence of the NLMR). (c) The voltage drop on the top of the sample with an additional linear slope along the y direction,
compared to the result without the AHE. The voltage drop on the x = 0 plane seen from the top is shown for the clear presentation. The sign
of the linear slope changes, depending on the direction of the magnetic field. As a result, the AHE is also generated over the entire sample in a
nonlocal fashion along the transverse direction of the external magnetic field.

Bext || X (Bext || —%). See Fig. 4(b). This rotation does not oc- age pattern in Fig. 4(c). This leads the voltage difference to
cur in the absence of the AHE (in the presence of the NLMR). depend on y as a result of the AHE effect. Here one important
Furthermore, the voltage drop on the top of the sample has point is that when the nonlocal voltage drop is generated along
a linear slope along the y direction and its sign is changing the longitudinal direction of the external magnetic field, the
depending on the direction of the magnetic field. See the volt- AHE is also generated over the entire sample in a nonlocal
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FIG. 5. Axion electrodynamics simulation in the presence of both NLMR and TMR effects and the AHE when (a) B || Z and (b) B || —2Z.
When the anomalous Hall conductivity is much larger than the transverse magnetoconductivity (owey, >> 0;), a vortexlike current pattern is
induced. The electric field configuration shows a significantly nonlocal pattern. See the text for more details.

fashion along the transverse direction of the external magnetic
field.

Now, let us consider whether the nonlocal voltage drop
is possible or not in the transverse case (Bext L Jext). Both
NLMR and TMR effects are dominant in the previous case
while the AHE effect (2agE x B) plays a central role in this
case. For simplicity, let us focus on the first order of 2 g in
Eq. (22) and set B = Bey. It turns out that this approximation
gives a reasonably good answer close to the “exact” result,
where the external magnetic field itself is important.

When the external magnetic field is applied along the z
axis, the current-electric field equations read

, Iy
UxEx ~ JX + ZO[g _Bext_ )
Oy

]/
oyEy ~ J) + 2018<Bext—x>,

Ox

o.E. ~ J. (23)

Ohm’s law works in the z direction. On the other hand, the
field and current equations in the xy direction can be expressed
in a matrix form as follows:

o O\(EN _ (1 —Z2\(/
G E)-(2 D) e

where oweyi = 20gBex. If we set o, ~ o, = 0;, the matrix
equation is given by

E_L1( 1 =Z\(
E)=al= 7)G) @

J! 1 < O GWeyl) (Ex>
) =— . (26)
(Jy) 1+ (Owey1/01)*> \—OWeyl Ot Ey

Here o, represents the transverse magnetoconductivity.

When the strength of the external magnetic field in the
z direction is weak, the transverse conductivity is not suffi-
ciently reduced and the Hall effect itself is also negligible.
Then, the asymmetry of the conductivity is not strong enough
to generate any nonlocal effects. On the other hand, with
strong enough magnetic fields, the AHE conductivity (owey1)
is enhanced linearly proportional to B, but the transverse mag-
netoconductivity (o;) is reduced in the order of 1/B. Recall
that the external magnetic field is set to make owey : 0; as
20 : 1 in this simulation.

When the anomalous Hall conductivity is much larger than
the transverse magnetoconductivity (owey > 07), a vortexlike
current pattern is induced. The electric field configuration
shows a significantly nonlocal pattern. Figure 5 shows this
situation. The current along the z direction near the sink is
mostly absorbed by the sink in an almost direct way. However,

or
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the current in the x or y direction near the sink is not directly
absorbed by the sink but shows a vortexlike pattern due to the
following reasoning. First, we are considering a static case.
V x E vanishes identically and the corresponding electric-
field configuration cannot have a rotating pattern. Second,
all the electric field lines near the sink have to go into the
sink. Then, the current near the sink should rotate because
the current on the xy plane is almost perpendicular to the
electric field in the owey > o0y case. As seen near the core of
the vortex pattern in Fig. 5, the electric field is going into the
core point. The voltage pattern with the transverse magnetic
field (Bext L Jext) becomes nonlocal in this case. Furthermore,
there exists asymmetry with the sign of the magnetic field. See
the current pattern in Figs. 5(a) and 5(b), where the rotating
direction of each vortex configuration depends on the sign of
the magnetic field. In principle, these effects could also occur
with the conventional Hall effect only if the Hall effect is
sufficiently large. But, we point out that the Hall conductivity
can dominate in Weyl metals due to both AHE and TMR.

IV. CONCLUSION

In this study we examined macroscopic nonlocal voltage
phenomena under external magnetic fields in a TRSB Weyl
metal state. When the external current is applied in parallel
with the external magnetic field, the nonlocal voltage drop
is generated with backflow currents over the almost entire
region of the sample. In addition, the AHE is measured in
the perpendicular direction to the external magnetic field. On
the other hand, the nonlocal voltage drop can be generated
around the sink with a vortex current pattern when the external
current is applied in perpendicular with the external magnetic
field. This nonlocal transport phenomena results from both the
NLMR and TMR with the AHE in the axion electrodynamics.
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APPENDIX A: JUSTIFICATION OF THE POYNTING
THEOREM IN THE AXION ELECTRODYNAMICS

In this Appendix we show that the Poynting theorem is
valid in the axion electrodynamics. Applying divergence to
Eq. (4) we obtain

V. (VxB)=0,
oE
—>V-(,uJ+ue§—2agpLBxE):O.

A derivative with respect to time for the electric field can
be reformulated with the Poynting vector (S = E x H) in the
following way:

aV -€E
ot

(AD)

—V . -J+20gV-(BxE)

—V - J—2agu(V -S). (A2)

Resorting to the vector identity [V - (A x B) =B - (V x
A) — A - V x B], we rewrite the first line in Eq. (A2) as

dV - €E
ot

=—-V - J+2ag[E-(VxB)—B-(VxE)]
oE
= —V~J+2ag|:E- (/,LGE-F/LJ—ZO[g/LBXE)

+B.B}

=—-V-J+2ag(ucE -E+ uJ -E+B-B)
- J + 201 (3, (¢E* + B*/1)/2 + J - E)

Il
|
4

(A3)

Note that the third and fourth Maxwell equations [Egs. (3)
and (4)] are incorporated in the first line of Eq. (A3). The
anomalous Hall effect term (2aguB x E) from V x B dis-
appears in the third line of Eq. (A3) because E- (B x E)
in the second line has to vanish. Comparing Eq. (A2) with
Eq. (A3), one can immediately notice that the Poynting the-
orem —3‘3‘% =V .S+ J:Eis still valid in the axion electro-
dynamics.

APPENDIX B: 2D SIMULATION WITH CONVENTIONAL
MAXWELL EQUATIONS

In this Appendix we show a simple example for the con-
ventional Maxwell equation in a 2D grid, presenting how
to simulate the electric field and current. We consider a
grid structure with a cartesian coordinate. Each point (i, j)
is defined by the x component i and the y component j,
where i and j are natural numbers. Each point has three
variables (J, B, and o), and they are represented as arrows
linking adjacent points with two directions (x and y). See
Fig. 6(a).

Based on this grid construction, we solve four Maxwell
equations with a current and charge source. The divergence or
curl in Maxwell equations can be converted into summation
over points or unit surface in an algebraic form on the grid
structure as shown in Fig. 6(b). Converting all differential
equations at every point into algebraic equations on the grid,
we can evaluate the conductivity and electric/magnetic field
numerically from the three steps explained in Fig. 6(c).

In this simple example of the 2D case, we consider B =
Bext Which is the simplest case for dominant magnetic fields.
This corresponds to a situation of considering the Ohm’s law
without any magnetoresistance effects or spatially dependent
0 terms. We recall that magnetoresistance effects are con-
sidered in the first step for the 3D Weyl metal case. The
first and third Maxwell equations are contained in the second
step. Actually, divergence equations (V - J' = 0) correspond
to continuity equations, and curl equations (V x E = 0) cor-
respond to the Kirchhoffs’ law in a circuit theory if we convert
J’ into the electric field E using the Ohm’s law. In the third
step, the second and fourth Maxwell equations are contained,
but we do not have to calculate this step for this simple
example because the magnetic field is fixed as an external
magnetic field. All we have to do is to calculate J' in the
second step.
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Base unit
(@) v (b) 1(i) -Eij+1)
I "' al
4 () E (i) E (i+1,)
(i) X L(i-1) BN\ A
B(14) ‘ W% )
1041 o
E _)k L(1) +1 (1) -LG-1)) - L(1j-1) =0 E () - E (ij+]) - E(i+1,) + E (i,j) =0
NN - '
o3 ’ FX(I,JE V-J=0 VXE=0
I (i)
(1.2) [(2.2) .
F=1,B,orc }i‘(l’ﬁ—l)
y
Ly |@n (I=0E) B )] B (i+1))

# of variables I (B) : 2N? - 2N

# of equations I (B) : N? + (N-1)>=2N? - 2N+1
Why # of equations is bigger than # of variables?
: 1 redundancy in continuity equations.

8 G)

B (ij) +B(ij) - B(i-1.j) - B (i,j-1) =0 B (i) - B, (ij+1) - B (i+1,) + B (i.))

=pl, - 2ogn (BxEy - ByEX) ~0

V-B=0 V xB=ul

(c) o; = (1+ coB?)o0i 1. (d) The most simple example of redundant equations
14
ll 13
vV.J =0 3
VxE=0 > e
_ -17+110>7.1,+I40
11,20
A +1,=0
V-B=0
V xB=uJ 3.

FIG. 6. How to simulate the Maxwell electrodynamics in a 2D grid. (a) 2D grid structure with variables F' (F =, B, or ¢ at each
point) with unit vectors X and . Number of variables, equations, and constraints are shown. See the text for more details. (b) Conversion of
divergence and curl equations into algebraic equations on the grid structure. Divergence is converted as the sum of four vectors at every vertex
point, whereas curl is converted as the sum of four vectors at every face of the unit square of the grid. (c) Simulation protocol for currents /,
magnetic fields B, and conductivity o. In the first step we evaluate the conductivity first with an ansatz B = By at every point. Note that the
conductivity would depend on the magnetic field if there are magnetoresistivity effects. Here we set it to be a constant at every point because
we assume no magnetoresistance effects [o (i, j) = op] for simplicity. In the second step we obtain the solution of currents J' at every point
from divergence and curl equations of the current J' consistent with the boundary current (i.e., J' = J,, at the source point and sink point).
A constituent equation between E and J should be used (which is nothing but the Ohm’s law) to get the electric field E from the current J'.
Incorporating the solution of the conserved current J’ into the third step, the magnetic field B can be evaluated from its divergence and curl
equations. (d) A simple 2D grid example (square lattice with four points) shows one more redundancy in divergence equations. There are four

equations from four points in curl equations, but summing over three equations immediately gives the other one.

Before showing the result, we discuss how to count the
number of redundancies in the divergence and curl equations.
Every vertex has two variables of I, and I, in this situation.
Here we resort to the Ohm’s law, as discussed before. It
seems that we have 2N? variables. However, I, should be
zero at the rightmost edge, and I, should be zero at the top
edge. Therefore, 2N variables are already determined, and
we have actually 2N? — 2N variables. Every point in the grid
gives one divergence equation (continuity equation). Then we
get N? equations if the grid is N x N. On the other hand,
every square gives one curl equation so (N — 1)? equations
should be considered additionally. Here we have a problem
because we have one more number of equations than the
number of variables. This indicates that one more redundancy

exists in the equations and it is in the continuity equations for
the 2D case. This redundancy problem can be eliminated by
summing over all the continuity equations except one point
when all divergence terms (V - E and V - B) are zero all over
the point. The result of the summation will give exactly the
same equation of one missing point. A simple example of the
redundancy problem is presented in Fig. 6(d). Eliminating one
redundant equation, we have the same number of equations
and variables, and thus, we can find the solution of these
2N2? — 2N variables by solving 2N? — 2N coupled linear
equations.

The 2D simulation result for conventional Maxwell equa-
tions is shown in Fig. 7. There are no nonlocal electric field
effects as expected.
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FIG. 7. Current J and voltage V simulation in a 2D grid structure for conventional Maxwell equations with Ohm’s law.

APPENDIX C: SOME REMARKS
ON BOUNDARY CONDITIONS

As discussed in the previous Appendix, we introduced
vector components (either current or magnetic field) for ev-
ery lattice point. See Fig. 8(a). Here we consider a 2D
square lattice with four points as a simple example. Each
vertex contains I, and I,, and vertices b, ¢, and d take
vector components, corresponding to the boundary of the
system and denoted by dashed arrows. B, and B, are also
introduced when we consider the magnetic field on the con-
jugate lattice. Calculating the current configuration, we set
all dashed arrows to be zero, where there is no leakage
of any currents at the boundary except for the source and
sink. The only difference from solving the differential equa-
tion of a continuous system is that the boundary condition

(a) Currents at each vertex and boundaries

I

is given as a continuous function [fyoungary = f(r)] for the
continuous system, whereas we impose it at the boundary
vertices.

The source and sink can be also introduced as a boundary
condition. They are given as finite numerical numbers, corre-
sponding to the physical current. We introduce a source at the
boundary vertex a and a sink at ¢, as shown in Fig. 8(b). Then,
the source and sink currents are introduced into their diver-
gence equations, as explained in the previous Appendix and
shown in Fig. 8(b). Note that only the divergence equations
of the source and sink are modified, but not the others. The
simplest case of the square lattice with four points is shown in
the figure. There are four current vectors as variables. Three
divergence equations plus one curl equation are defined by
four coupled equations, which determine the current configu-
ration uniquely.

y Currents at each vertex

Currents orthogonal to the surface (dashed arrows) are set to 0,
which means, the boundary conditions are already introduced.

(b) 2D square lattice with homogeneous conductivity

Sink a. I4 - I1 + ISnuwu: 0

. _ _ 3 (4-1) divergence eqns
b: 1+ =0 L+1, =0 (4-1) ¢ g
c: L+L+1, =0 (louect L= 0) v-J=0
d: L,+1,=0

1 curl egns
L +L-L-I,=0 (with homogenous conductivity c)
SUH"(‘L‘ V >< E _ 0

Total 4 variables and 4 eqgns!

FIG. 8. Source, sink, and boundary conditions on a 2D square lattice with four points. (a) Currents at each vertex with a boundary. Each
vertex point introduces two vector components in this 2D case. (b) Source and sink terms with homogeneous conductivity. They are taken into

account in the divergence equations for a and c vertices.
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