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Multipolar ordering in the three-orbital Hubbard model
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The ground-state phase diagrams of the three-orbital t2g Hubbard model are studied using a Hartree-Fock
approximation. First, a complete set of multipolar order parameters for t2g models defined in terms of the effective
total angular momentum jeff is theoretically derived. These order parameters can classify off-diagonal orders
between jeff = 1/2 and jeff = 3/2 manifolds. Second, through extensive Hartree-Fock calculations, the ground-
state phase diagrams in the space of (1) the on-site Coulomb repulsion U , (2) the spin-orbit coupling λ, and
(3) the number of electrons n are mapped out. A variety of nontrivial quantum phases with jeff -diagonal and
jeff –off-diagonal multipole orders are found. Finally, future studies using more numerically expensive methods,
such as dynamical mean-field theory, are discussed.
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I. INTRODUCTION

Novel phenomena arising from competing spin-orbit
coupling (SOC) and electronic correlation are matters of con-
siderable interest in condensed-matter physics. In particular,
5d transition metal oxides provide a suitable playground to
study such phenomena because these interactions are compa-
rable.

The 5d transition metal oxides exhibit a variety of exotic
quantum phases. For example, the layered iridate Sr2IrO4,
with a t5

2g (n = 5) configuration, exhibits a nontrivial spin-
orbital-entangled Mott insulator [1–3]. The pyrochlore oxide
Cd2Re2O7, with a t2

2g configuration, exhibits various mul-
tipolar ordered states [4] and superconductivity at ambient
pressure and under high pressure [5,6]. For n = 3, Cd2Os2O7

shows a finite-temperature metal-insulator transition into a
noncollinear magnetically ordered state [7–9]. The emer-
gence of novel magnetic states was reported in various
materials such as Eu2Ir2O7 [10,11], Ba2YIrO6 [12], and
Na2IrO3 [13,14].

On the theoretical side, the t2g three-orbital Hubbard model
with atomic SOC is the simplest model for clarifying the
novel phenomena arising from a competing SOC and electron
interaction. Recently, Sato et al. [15–17] analyzed a model
with infinite spatial dimensions for n = 4 and 5 using the
dynamical mean-field theory (DMFT), which can accurately
describe local strong correlation effects [18]. They showed
that this model hosts many intriguing quantum phases, such as
a spin-orbital-entangled Mott insulating phase at n = 5 [15]
and a nonmagnetic excitonic insulator [16] with quadrupole
ordering at n = 4 [17].

However, further exploration of the phase diagram at ar-
bitrary fillings is computationally expensive. In particular,
the hybridization-expansion continuous-time quantum Monte
Carlo (CT-QMC) method [19,20], which was used to solve the
impurity model in previous studies, suffers from a severe sign
problem when the SOC is strong [21,22]. Although efforts
to alleviate the sign problem in CT-QMC continue [21], it is

still difficult to compute the low-T properties of a multiorbital
Hubbard model under SOC, especially in cases which are
slightly away from filling [21]. Thus, it is important to map the
phase diagram using a simpler and computationally feasible
method.

Another theoretical issue is the complete classification
of the (local) multipolar order parameters. Multipole repre-
sentation is suitable for the description of order parameters
in spin-orbit entangled systems as developed in f -electron
systems [23–26]. Although a complete clarification should
involve 36 (6 × 6) distinct order parameters for t2g systems,
only a subset of order parameters was used to classify quan-
tum phases in previous studies [17]. Moreover, these order
parameters do not correctly detect the off-diagonal orders of
the so-called jeff = 1/2 and jeff = 3/2 manifolds.

In this study, a complete set of multipolar order parameters
designated for classifying spin-orbital entangled states, simi-
lar to those in Ref. [26], is derived. In particular, the diagonal
and off-diagonal matrix elements with respect to jeff are fo-
cused on. These order parameters can distinguish diagonal and
off-diagonal orders correctly. Based on this result, the ground-
state phase diagram of the t2g Hubbard model is systematically
explored by using the Hartree-Fock approximation. All pos-
sible (particle-conserving) local symmetry-breaking patterns
are considered. The phase diagrams in the space of three
parameters (the on-site intraorbital Coulomb repulsion U ,
the strength of the SOC λ, and the number of electrons n)
are mapped out, thus revealing the presence of various spin-
orbital entangled states and quantum multicritical points. We
compare the computed phase diagram with those obtained by
the DMFT in the previous studies. Furthermore, the intensity
maps of multipolar order parameters as a function of U and λ,
which reveal several interesting features about the nontrivial
quantum phases, are studied.

The remainder of this paper is organized as follows. In
Secs. II and III, the model and numerical method are intro-
duced. In Sec. IV, the multipole expansion described in a
complete basis set is defined. The relation between the order
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parameters introduced in this study and the conventional ones
used in previous studies are also discussed. The phase diagram
computed for n = 4 is represented in Sec. V. In Sec. VI,
cases of general electronic filling and the intensity maps of
the order parameters are discussed. In Sec. VII, this paper is
summarized.

II. MODEL

Here, a three-orbital t2g Hubbard model is considered; its
Hamiltonian is given by

H = H0 + Hint + HSOC, (1)

where H0 is the noninteracting part, Hint is the on-site inter-
action part, and HSOC is the atomic SOC. The noninteracting
Hamiltonian H0 corresponds to an orbital-diagonal semicir-
cular density of states (DOS) with full bandwidth W = 4t ,
that is, D(ω) = √

4t2 − ω2/π . Note that we choose such a
simple DOS as a featureless and typical DOS, aiming at the
understanding of a general (material-unspecific) physics aris-
ing from the local Coulomb interaction and atomic spin-orbit
coupling. t = 1 is taken as the unit of energy.

For the interaction term, the standard, fully rotationally
invariant Slater-Kanamori interactions are taken:

Hint = U
∑

iα

niα↑niα↓ +
∑

i,α>β,σ

U ′niασ niβσ ′

+
∑

i,α>β,σ

(U ′ − JH)niασ niβσ

+ JH

∑
i,α �=β

(c†
iα↓c†

iβ↑ciα↑ciβ↓ + c†
iα↑c†

iα↓ciβ↑ciβ↓)

= 1

2

∑
αβα′β ′σσ ′

Uαβα′β ′c†
iασ c†

iβσ ′ciβ ′σ ′ciα′σ , (2)

where i is the site index, U is the intraorbital Coulomb
repulsion, U ′ (=U − 2JH) is the interorbital Coulomb re-
pulsion, and JH is Hund’s coupling. Here, α and β and σ

and σ ′ are the orbital and spin indices, respectively. The site
index i in the following section is omitted for simplicity.
The Coulomb tensor is defined as Uαααα = U,Uαβαβ = U −
2JH,Uαββα = Uααββ = JH(α �= β ). Throughout the present
study, JH = 0.15U is taken, which is motivated by a first-
principles estimate for a typical 5d compound, Na2 IrO3 (U =
2.72 eV, JH = 0.23 eV) [27].

The SOC term is written as

HSOC = λ
∑

α,β,σ,σ ′
〈α|l̂ |β〉〈σ |ŝ|σ ′〉c†

ασ cβσ ′ , (3)

where λ is the SOC strength and l̂ and ŝ are the angular and
spin momenta, respectively. By choosing an index on the order
of xy, yz, zx, the matrix elements of l̂ in the t2g system and ŝ
are given by

lx =

⎛
⎜⎝

0 0 −i

0 0 0

i 0 0

⎞
⎟⎠, (4)

ly =

⎛
⎜⎝

0 i 0

−i 0 0

0 0 0

⎞
⎟⎠, (5)

lz =

⎛
⎜⎝

0 0 0

0 0 i

0 −i 0

⎞
⎟⎠, (6)

sx = 1

2

(
0 1

1 0

)
, (7)

sy = 1

2

(
0 −i

i 0

)
, (8)

sz = 1

2

(
1 0

0 −1

)
. (9)

Under the SOC, the effective total angular momentum
Ĵeff = −L̂ + Ŝ is a good quantum number for the local Hamil-
tonian. Here, L̂ (Ŝ) is the angular (spin) momentum in the
spin-orbital space and is expressed as

L̂ =
∑
α,β,σ

〈α|l̂ |β〉c†
ασ cβσ , (10)

Ŝ =
∑

α,σ,σ ′
〈σ |ŝ|σ ′〉c†

ασ cασ ′ . (11)

The single-particle eigenstates of Ĵ
2
eff and Ĵ z

eff
form a complete local jeff basis set as | jeff , jz

eff〉 =
(| 3

2 , 3
2 〉, | 3

2 , 1
2 〉, | 3

2 ,− 1
2 〉, | 3

2 ,− 3
2 〉, | 1

2 , 1
2 〉, | 1

2 ,− 1
2 〉). The basis

transformation matrix from the t2g basis (by choosing an
index on the order of xy ↑, xy ↓, yz ↑, yz ↓, zx ↑, zx ↓) to the
jeff basis is given by

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
3

0 0 2√
6

0 0

0 − 1√
3

0 0 2√
6

0

0 1√
3

1√
2

0 1√
6

0

1√
3

0 0 − 1√
6

0 1√
2

0 − i√
3

i√
2

0 − i√
6

0

i√
3

0 0 − i√
6

0 − i√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

where each column denotes the expansion coefficients of the
corresponding jeff basis function on the t2g basis.

III. METHOD

In this study, the model (1) using the locally unrestricted
Hartree-Fock approximation at zero temperature T is solved
by considering all possible local mean fields. To investigate
the effects of local electronic correlations, only the uniform
solutions are considered. In this approximation, the interac-
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tion term is decoupled as

Hint = 1

2

∑
pqrs

Upqrsc
†
pc†

qcscr

	
∑
pqrs

(Upqrs − Upqsr )Dprc†
qcs

− 1

2

∑
pqrs

(Upqrs − Upqsr )DprDqs, (13)

where composite indices (p, q, r, s) for spin orbitals and a 6 ×
6 density matrix Dpr ≡ 〈c†

pcr〉 were introduced. Note that the
site index i in Eq. (13) is dropped. Self-consistent calculations
using different initial density matrices are performed to obtain
the lowest-energy states.

As will be seen later, the ground state of this model may
be degenerated because the spin and orbital moments can be
completely decoupled without SOC. Thus, a very small SOC
λ = 10−5 is introduced to lift the degeneracy. Furthermore,
the spin moment is always aligned along the z axis. The
Hartree-Fock approximation ignores the electron correlation
and overestimates ordering. Instead, one can perform calcu-
lations quickly. As noted in Sec. I, it is difficult to find the
phase diagram for three parameters (n,U, λ) using the DMFT.
Therefore, we use the Hartree-Fock approximation as a simple
method to obtain an overview of the phase diagrams.

IV. COMPLETE SET OF ORDER PARAMETERS
FOR t2g SYSTEMS

The symmetry-breaking information is fully encoded in
the single-particle density matrix. Multipoles are a useful tool
for describing the entanglement of spin and orbit degrees of
freedom. The multipole moment is described by a polynomial
form of the effective total angular momentum Ĵeff = −L̂ + Ŝ.
Such multipoles are introduced by means of crystallographic
point groups.

The multipole representation used so far for the spin-orbit-
coupled three-orbital Hubbard model [16,17] is reviewed first.
In a t2g orbital system, a conventional multipole is constructed
as a polynomial of Ĵeff and is described by 16 order parame-
ters. The density matrix D is expanded as follows:

D =
16∑

ξ=1

Cξ Oξ , (14)

where C is the weight of O and ξ is the index of the basis set.
The breakdown is one order parameter (OP) for the electric
monopole N , three OPs for the magnetic dipole M, five OPs
for the electric quadrupole Q, and seven OPs for the magnetic
octupole T . The higher-rank tensors are trivially zero. Opera-
tor O imposes the orthonormality,

Tr[Oξ O†
η] = δξη. (15)

The weight of the order parameter C can be computed as

Cξ = Tr[DO†
ξ ]. (16)

However, this definition does not produce a complete basis set
because it requires 6 × 6 = 36 order parameters.
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FIG. 1. Schematic illustration of multipolar order parameters.
The density matrix is decomposed into four blocks in terms of hy-
bridization between the jeff orbitals. Block a has one monopole, three
dipoles, five quadrupoles, and seven octupoles. Block b contains one
monopole and three dipoles. Blocks c and d have three dipoles and
five quadrupoles. For more details, see the text.

To construct a complete set, the density matrix is de-
composed into 36 one-particle tensor operators O using the
local projection operator. Note that multipoles for this com-
plete set are not constructed by a polynomial of Ĵeff , but
K = L̂ + Ŝ (see Appendix A), which makes it possible to
account for a component perpendicular to Ĵeff . These tensor
operators are categorized into four blocks: diagonal com-
ponents | jeff = 3/2〉 ⊗ | jeff = 3/2〉 and |1/2〉 ⊗ |1/2〉 and
off-diagonal components |3/2〉 ⊗ |1/2〉 and |1/2〉 ⊗ |3/2〉.
They are labeled a, b, c, and d , respectively. A schematic
illustration of this classification is presented in Fig. 1. Com-
ponents c and d show that there is hybridization between the
jeff = 3/2 and 1/2 orbitals. Note that the OPs in blocks c
and d are given by a linear combination of the off-diagonal
components to make them Hermitian. Even and odd time
reversals are imposed on the c and d components, respectively.

The complete classification of multipoles is derived in
terms of the quantum numbers of rank, time reversal, and
j parity. The results are summarized in Table I (see Ap-
pendix A for details of the classification). The advantage of
the present classification is that one can identify diagonal and
off-diagonal orders in terms of jeff manifolds separately using
the four labels (a, b, c, d). The density matrix D is decom-
posed into 2 monopoles N , 12 dipoles M, 15 quadrupoles
Q, and seven octupoles T . Here, the j parity distinguishes
the diagonal and off-diagonal components and is similar to
sp-hybridized systems in which the parity operator distin-
guishes the angular momentum � = 0 or � = 1. Previous
studies [16,17] found quantum phases with off-diagonal or-
ders, which were called “excitonic phases.” They identified
the existence of these phases using the off-diagonal elements
in the hybridization functions on the jeff basis. The present
scheme allows us to directly detect and classify such phases
even further.

V. RESULTS FOR n = 4

In this section, results for n = 4 are discussed. Figure 2
shows a U -λ phase diagram computed for n = 4, which in-
volves four different phases: a paramagnetic metallic (PM)
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TABLE I. List of the complete multipole operators in three-orbital model with spin-orbit coupling.

Multipoles Label Rank Time-reversal j-parity Polynomial Point group

jeff -diagonal N3/2,even a 0 (monopole) + (electric) + 1 �1g

M3/2,odd
μ a 1 (dipole) − (magnetic) + x, y, z �4u

Q3/2,even
λ a 2 (quadrupole) + + 3r2 − z2, x2 − y2 �3g

xy, yz, zx �5g

T 3/2,odd
ξ a 3 (octupole) − + xyz �2u

x(5x2 − 3r2), y(5y2 − 3r2), z(5z2 − 3r2) �4u

x(y2 − z2), y(z2 − x2), z(x2 − y2) �5u

N1/2,even b 0 + + 1 �1g

M1/2,odd
μ b 1 − + x, y, z �4u

jeff -offdiagonal Moffd,odd
μ c 1 − − x, y, z �4u

Qoffd,even
λ c 2 + − 3r2 − z2, x2 − y2 �3g

xy, yz, zx �5g

Moffd,even
μ d 1 + − x, y, z �4u

Qoffd,odd
λ d 2 − − 3r2 − z2, x2 − y2 �3g

xy, yz, zx �5g

phase, a magnetic metallic (MM) phase, a paramagnetic insu-
lating (PI) phase, and a magnetic insulating (MI) phase. The
Roman numerals I and II denote the absence and presence
of nonzero higher-rank multipoles Q and T , respectively, as
shown in Fig. 3. A detailed analysis of multipole order pa-
rameters will be given in the next sections. In the PM and
PI phases, no spontaneous symmetry breaking takes place.
At larger U , the time-reversal symmetry is broken in the
MM and MI phases. In the phase diagram, there is a dome
of MM-II at moderate values of U , while the MI phase is
always stable in the strong-U limit. In these magnetic phases,
the electric quadrupole is also active. In the MI-II phase, the
dipole moment Mz is zero, and the quadrupole ordering takes

0

0

.5

1.0

1.5

2.0

PM

MM

MI
PI

MM-I

-II

0

MI-II

U

λ

5.8 5.82 5.84 5.86 5.88 5.9
U

0

0.001

0.002

0.003

0.004

0.005

λ QCP
QCEP

FIG. 2. U -λ phase diagram for n = 4. PM, PI, MM, MI, and
QCEP represent the paramagnetic metal phase, paramagnetic insu-
lator phase, magnetic metal phase, magnetic insulator phase, and
quantum critical end point, respectively. The Roman numerals I
and II after the MM phase denote the absence and presence of the
spontaneous breaking of the orbital degeneracy, respectively. The
dashed line denotes a metal-insulator transition.

place. This phase corresponds to the excitonic insulator phase
found using DMFT calculations in Ref. [17]. We will discuss
this point further later.

Note that the PI phase corresponds to a band insulator at
n = 4, where the jeff = 3/2 and jeff = 1/2 bands are com-
pletely separated in energy by the strong SOC. The critical
value λc of the metal-insulator transition between the PM and
PI phases is λc = 8/3 at U = 0. As seen in Fig. 2, λc decreases
as U increases until it reaches the magnetic transition line.
On the other hand, the boundary between PI and MI-II is

FIG. 3. Conventional OPs computed as a function of U at n = 4.
The background colors correspond to the phases shown in Fig. 2.
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FIG. 4. Angular momenta ˆ〈L〉x, ˆ〈L〉y, and ˆ〈L〉z computed as a
function of U at n = 4 and λ = 0. The background colors correspond
to the phases shown in Fig. 2 as color-coded in Fig. 3.

determined by the competing λ and JH, and the slope of the
boundary is roughly proportional to JH (not shown).

A. Results for λ = 0

First, the results for conventional OPs computed for λ = 0
are discussed. In this study, the result for λ = 10−5 is treated
as λ = 0 because the spin and orbital moments are completely
decoupled at λ = 0 in the MI phase. As seen in Fig. 3, all the
conventional OPs are zero up to U 	 2.6. Since the magnetic
moment is aligned along the z axis, only Mz, Qu(3z2 − r2),
and T α

z (z(5z2 − 3r2)) are nonzero. A transition point sepa-
rates the PM phase and the MM-I phase around Uc1 	 2.6.
This transition is characterized by the spontaneous breaking
of the time-reversal symmetry through the emergence of Mz �=
0. This is followed by a subsequent first-order transition at
Uc2 	 5.86, which is characterized by the emergence of Qu

and T α
z . This corresponds to a spontaneous breaking of the

orbital degeneracy. As shown in Fig. 4, the angular momen-
tum Lz becomes finite for U � Uc2. With a further increase
in U , the metal-insulator transition occurs, and Lz reaches 1
at Uc3 	 7.2. The symmetry of the system does not change
across this transition point.

Figure 5 shows the partial DOS projected onto the angular
momentum lz = 0,±1 orbitals for typical values of U in the
PM, MM-I, and MM-II phases. Note that the mean fields are
diagonal in the lz basis for these parameters. The six basis
vectors are labeled by the spin (↑,↓) and angular momentum
lz = 0,±1. A magnetic transition happens at Uc1 ∼ 2.6. At
U 	 3, in the MM-I phase, a Lifshitz transition occurs, and
then the spin becomes fully polarized as ˆ〈S〉z = 1. As seen in
Fig. 5, the three spin-up orbitals are completely filled, leaving
one electron in the spin-down orbitals. The three partially
filled spin-down orbitals are still degenerate, and thus, ˆ〈L〉z =
0. After the spontaneous breaking of the orbital degeneracy
(U � Uc2), the partial lz = +1 ↑ DOS is separated from the
partial lz = 0 ↑ and partial lz = −1 ↑ DOSs. At U = Uc3, a
finite gap finally opens at the Fermi energy, and the system
becomes a magnetic insulator with ˆ〈S〉z = 1 and ˆ〈L〉z = 1.
Note that the spin and orbital moments are coupled in an
antiparallel manner owing to the small SOC. In the fully spin
polarized situation, the self-consistent equation is simplified.
See Appendix B for further details.

B. Results for λ > 0

Once λ is turned on, Qu and T α
z become coupled to Mz.

Thus, the MM-II phase is characterized by Mz, Qu, T α
z �= 0.

FIG. 5. U dependence of the computed DOS projected onto
lz = 0, ±1 orbitals computed at n = 4 and λ = 0. The Fermi energy
is ω = 0.

As shown in the inset of Fig. 2, the first-order transition
terminates at a quantum critical end point at λ ∼ 0.003 and
U ∼ 5.68. On the other hand, the critical value U of the
magnetic transition increases as λ increases, and the SOC
suppresses magnetization. Figure 6 shows the λ dependence
of the partial DOS projected onto the jeff basis and the lz basis
at U = 6. In the weak SOC limit (MM-II), the partial lz DOS
is not distorted, so the lz scheme is a better representation. As
λ is increased, the jeff = 1/2 contributions become dominant
for the unoccupied DOS, whereas those of jeff = 3/2 become
dominant for the occupied DOS. In this regime, the jeff repre-
sentation is better. Figure 7 shows the complete OPs computed
as a function of U at n = 4. Ma

z , Mb
z , Mc

z , Qa
u, Qc

u, and T αa
z are

nonzero. The difference between conventional OPs (Fig. 3)
and the complete OPs are clearly seen in the magnetic in-
sulator phase. With increasing U , one of the old OPs, Mz,
decreases toward zero and vanishes completely for U � Uc3.
In terms of the complete OPs, however, the off-diagonal com-
ponent of the magnetic dipole Mc

z remains the most dominant.
Therefore, the MI-II phase can be characterized as a hidden
off-diagonal dipole order rather than the quadrupole order.

VI. RESULTS FOR GENERAL FILLING

In this section, the filling n dependence of the ground-state
phase diagrams is discussed.

A. n-U phase diagram at λ = 0

Figure 8(a) shows the n-U ground-state phase diagram
computed for λ = 0. The PM exits only for a small U
at λ = 0. With an increment in U , the ground state turns
into the magnetic metallic phase (MM-I), where only the
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FIG. 6. λ dependence of the computed partial DOS for n = 4 and
U = 6. The DOS is projected onto (a) the jeff = 1/2 and 3/2 orbitals
and (b) lz = 0, ±1 orbitals. The Fermi energy is located at ω = 0.

magnetic dipole Mz is finite. With a further increase in U , the
MM-I phase turns into the MM-II phase through a first-order
transition. In the MM-II phase, the symmetry of the orbital
is broken, and the angular momentum L and higher-order

FIG. 7. Complete OPs computed as a function of U at n = 4. The
superscripts a, b, and c denote jeff = 3/2 components, jeff = 1/2
components, and jeff = 3/2-1/2 entangled components, respectively.
The background colors correspond to the phases shown in Fig. 2 as
color-coded in Fig. 3.

FIG. 8. The n-U phase diagram for (a) λ = 0, (b) λ = 0.003,
(c) λ = 0.5, and (d) λ = 1.0. PM and MM represent a paramagnetic
metal phase and a magnetic metal phase, respectively. The Roman
numerals I and II or III indicate the absence and appearance of the
higher-rank multipoles Q or T , respectively. The solid and dashed
lines indicate the first-order and second-order transitions, respec-
tively. The blue lines at n = 1, 2, 3, 4, and 5 indicate the insulating
phases. The dashed circles denote multiple critical points where the
first-order transition lines merge (see text).

multipole order parameters are finite as Lz �= 0, Mz �= 0, Qu �=
0, T α

z �= 0 (see Figs. 3 and 4). This phase corresponds to the
orbitally ordered phase found by DMFT+QMC calculations
at λ = 0 in a previous study [28]. At n = 3, symmetry break-
ing in the orbital sector does not occur because ˆ〈L〉z = 0 and
ˆ〈S〉z = 3/2, as illustrated in Fig. 9.

Furthermore, a new, distinct phase (MM-III) emerges only
for 1 < n < 2 and 4 < n < 5. The transition between MM-II
and MM-III is second order. The three MM phases can be
distinguished by different degeneracies of the DOS projected
onto the lz orbitals for the major spin. Figure 10 plots typical
data for the DOS at U = 7.5. In the MM-I phase, all three
orbitals are degenerate for each spin. In the MM-II phase, only
two of the three orbitals remain degenerate. In contrast, in the
MM-III phase, all three orbitals become nondegenerate. The
MM-I, MM-II, and MM-III phases meet at U ∼ 5.5, n = 1.5,
and 4.5. Moreover, the first-order transitions between MM-I
and MM-II become continuous only at these critical points.

The insulating states can be stable only if n is an inte-
ger. Except for n = 3, the metal-insulator transition occurs at
Uc3 ∼ 7.2. At n = 3, the metal-insulator transition occurs at
a smaller U ∼ 3 because a high-spin configuration is stable.
Figure 9 illustrates the electron configurations projected onto

FIG. 9. Schematic illustration of electronic configurations pro-
jected onto lz = 0, ±1 orbitals at λ = 0 and U = 7.5. Note that the
mean fields and density matrices are diagonal in this basis.
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FIG. 10. n dependence of the computed DOS projected onto lz =
0, ±1 orbitals for three different phases (U = 7.5, λ = 0). The Fermi
energy is located at ω = 0.

the lz orbitals in the insulting phases at n = 1, 2, . . . , 5. At
n = 3, 4, and 5, the spin-up orbitals are fully occupied for
large U . Thus, the system can be effectively regarded as a
spinless system of spin-down orbitals. This gives rise to an
interesting emergent symmetry between n = 4 and n = 5: A
particle-hole transformation for the spin-down orbitals con-
nects these two states. Consequently, the MM-II phase is
symmetric with respect to n = 4.5, as shown in Fig. 8(a). This
symmetry originates from the fact that the spin-up orbitals are
fully occupied, which is due to the ignorance of quantum spin
fluctuations in the zero-T Hartree-Fock calculations. See Ap-
pendix B for a more detailed discussion. In addition, the phase
is symmetric with respect to n = 3 owing to the particle-hole
symmetry for the spinful system. Furthermore, the quantum
critical end point is located at Uc2 ∼ 6.8 and λ ∼ 0.003 for
n = 1, 2, 4, and 5.

B. n-U phase diagrams at λ > 0

Figures 8(b), 8(c), and 8(d) show the n-U ground-state
phase diagrams for λ = 0.003, 0.5, 1.0, respectively. As seen
in Fig. 8(b), even for an infinitesimal value of λ, the MM-I
phase changes into the MM-II phase because Q and T emerge
owing to the coupling between M and Q/T through λ (refer
to the discussion in Sec. V and Fig. 2).

For finite λ, the MM-III phase survives up to λ ∼ 0.0001
(not shown). With further increasing λ, the MM-I(b) phase
and the MM-II(a) phase emerge. The MM-I(b) phase is lo-
cated around n = 5. In this phase, the b component (Mb

z )
is finite, and the other components are zero. Comparing the
phase diagrams at λ = 0 and 0.003 in Fig. 8, one can see
that the MM-II phase around n = 5 is replaced by MM-I(b).
With an increment in λ, the MM-I(b) phase broadens around
n = 5. In this phase, the two jeff = 3/2 orbitals are completely
filled, and the jeff = 1/2 orbital remains partially filled. As a
consequence, the hybridization between jeff = 3/2 and 1/2
vanishes.

In contrast, the MM-II(a) phase was located for n � 1. In
this phase, the a components (Ma

z , Qa
u, and T αa

z ) are finite, and
the other components are zero. The MM-II(a) phase appears

FIG. 11. Phase diagrams computed for n = 1, 2, 3, 5. The data
are the same as those shown in Fig. 8. See the main text and caption
of Fig. 2 for the meaning of the phases (labels).

when the energy gap between jeff = 3/2 and 1/2 is large. The
jeff = 1/2 orbital is empty, and its contribution is negligible.

C. U -λ phase diagrams

Figure 11 shows the ground-state U − λ phase diagrams
for n = 1, 2, 3, and 5 (the phase diagram for n = 4 was dis-
cussed in Sec. V).

At n = 5, the phase boundaries between PM, MM-I(b), and
MI-I(b) are vertical for λ � 0.7. In this regime, the jeff = 3/2
orbitals are completely filled, and the jeff = 1/2 orbital is
half filled owing to the gap between these two manifolds
induced by λ. Thus, these transitions can be regarded as phase
transitions in the effective single-orbital model of jeff = 1/2.
This explains why the critical values of U do not depend on
λ. For n = 3, the boundary between MM-II and MI-II runs
linearly to the upper right. This may be due to the competition
between λ and local interactions (U , JH).

The phase diagrams for n = 1 and n = 2 are similar in na-
ture. This is because the electrons partially occupy jeff = 3/2,
and the fillings are less than half in both cases. The partially
filled orbitals always have magnetic moments regardless of
the value of λ, which is magnetically ordered by interaction
effects. In contrast, at n = 4, a sufficiently large λ suppresses
the magnetic order because active moments are absent.

Next, the intensity maps of the OPs computed for n =
1, 2, 3, 4, and 5 are shown in Fig. 12. The absolute values of
the computed OPs are plotted. The phase transition lines are
marked with white lines. The jeff = 1/2 diagonal components
denoted by b are dominant for n = 5. For n = 3 and 4, the a
and c components ( jeff = 3/2-1/2 entangled) are enhanced
depending on the balance between U and λ. As shown in
Fig. 8, a first-order transition with spontaneous symmetry
breaking is observed, except for n = 3. In addition, as shown
in the case of n = 4 (Sec. V), higher-order multipoles Q and
T are enhanced when crossing the quantum critical line or its
crossover line in the direction in which U grows.

Now we discuss the characteristic features of the multipole
order parameters at each filling. At n = 1, symmetry breaking
of the orbital enhances Qa

u. Because the electron is mainly
stored in the jeff = 3/2 orbitals regardless of U or λ, the a
component is dominant. When U is sufficiently large (i.e.,
U � 7), all the b and c components become inactive, and only
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FIG. 12. Intensity maps for n = 1, 2, 3, 4, 5. The solid and
dashed lines indicate the magnetic phase transitions and metal-
insulator transitions, respectively. See Table I for the definition of
the order parameters. The superscripts a, b, and c denote jeff = 3/2
components, jeff = 1/2 components, and jeff = 3/2-1/2 entangled
components, respectively.

the a components remain active. At the same time, the metal-
insulator transition occurs, and the MI-II(a) phase appears. A

valley of OPs, such as T αa
z at U = 5, indicates a sign change

similar to Qu, as shown in Fig. 3.
At n = 2, Qc

u and T αa
z are notable. The former is enhanced

by the symmetry breaking in the orbital sector. On the other
hand, the latter is amplified by the SOC because jeff = 3/2
and 1/2 are split, and the a component is activated. T αa

z has
a peak at n = 2, probably because it belongs to the same
irreducible representation, �4u, as Mz.

At n = 3, either the high-spin state or the low-spin state
is stable, depending on U and λ. For U  λ, the high-spin
state is stable. In this state, the angular momentum L vanishes,
and thus, Q and T are zero. Owing to this circumstance, the
magnetic insulating state without Q and T (MI-I) is realized
at n = 3. For U � λ, a low-spin state with three electrons in
the jeff = 3/2 orbitals becomes stable. In this state, both the
spin and orbital degrees of freedom remain; thus, higher-order
multipoles can be activated.

At n = 4, as already discussed in Sec. V, the c component
of the magnetic dipole Mc

z is dominant. In the large λ region,
the paramagnetic insulating state, which is induced by the
strong SOC, appears for λ � 1.3.

At n = 5 and large λ, the two jeff = 3/2 orbitals are almost
filled, leaving the jeff = 1/2 orbital half filled. Consequently,
all the a components are inactive, while the b component (Mb

z )
is enhanced. At small U and λ, the a and c components are
active because of the hybridization between jeff = 1/2 and
3/2. However, with further increments of U or λ, the a and
c components become inactive, and the MM-I(b) and MI-I(b)
phases emerge.

VII. SUMMARY

In conclusion, the t2g Hubbard model using the un-
restricted Hartree-Fock approximation with all possible
(particle-conserving) local symmetry-breaking patterns has
been studied.

The main results of this work are twofold. First, a com-
plete set of multipole order parameters that can identify
entanglements between jeff = 1/2 and 3/2 manifolds was
constructed. Second, through extensive Hartree-Fock calcu-
lations, the ground-state phase diagrams in the parameter
space of the on-site Coulomb repulsion U , the strength of
the spin-orbit coupling λ, and filling n were systematically
investigated. It has been determined that this model hosts
many nontrivial quantum phases with multipole ordering as
well as peculiar phase structures, such as multicritical points.
Furthermore, the intensity maps of the multipolar order pa-
rameters for the phase diagrams were computed.

The results of the present study clearly show that the simple
t2g model with a semicircular density of states can host a
variety of phenomena. The Hartree-Fock approximation re-
produces the orbital ordering [28] as well as the excitonic
insulator phase [17] found with DMFT calculations in previ-
ous studies. Furthermore, we found many interesting features
such as the existence of quantum critical end points. It is thus
of interest to analyze the model using DMFT calculations in
future studies. Another future direction may be comparisons
with 4d and 5d materials by considering realistic band struc-
tures.

235125-8



MULTIPOLAR ORDERING IN THE THREE-ORBITAL … PHYSICAL REVIEW B 104, 235125 (2021)

ACKNOWLEDGMENTS

N.C. and H.S. were supported by JSPS KAKENHI Grants
No. 18H01158, No. 21H01041, and No. 21H01003, and S.H.
was supported by JSPS KAKENHI Grants No. 19H01842 and
No. 21K03459.

APPENDIX A: COMPLETE BASIS SET WITH
SPIN-ORBIT COUPLING

For systems with spin-orbit coupling, the energy level is
split into lower jeff = 3/2 and higher jeff = 1/2 states. At the
filling n = 4, the lower orbital is fully occupied, so that no
degrees of freedom are left within the jeff = 3/2 multiplet.
Then, we need to consider the excited jeff = 1/2 state, which
can, in principle, mix through thermal and/or interaction ef-
fects. Such degrees of freedom are called “excitonic” in the
sense that the transition matrix involves the process from the
ground state to the energetically excited states and is naturally
described through the jeff -off-diagonal matrix elements. Here,
the terminology “ jeff -off-diagonal” is introduced in a manner
similar to the pairing amplitude in superconductivity, which is
called the off-diagonal long-range order. The purpose of this
Appendix is to construct a proper complete set of operators
to describe the order parameters for multiorbital systems with
spin-orbit coupling.

Let us begin with the total angular momentum

Ĵeff = −L̂ + Ŝ, (A1)

which is a good quantum number for the local Hamiltonian.
The eigenstates form a complete local basis set | jeff , jeff,z〉 =
(| 3

2 , 3
2 〉, | 3

2 , 1
2 〉, | 3

2 ,− 1
2 〉, | 3

2 ,− 3
2 〉, | 1

2 , 1
2 〉, | 1

2 ,− 1
2 〉). For multi-

orbital systems, the operators of these states are classified by
utilizing the concept of multipole expansion. The concept of
multipoles was introduced originally for the description of the
local degrees of freedom of f electrons in terms of the total
angular momentum Jeff [24,25,29–31].

High-rank multipoles that can be introduced as a polyno-
mial form of the Ĵeff operator are needed [17]. However, the
jeff -off-diagonal components, which are the essential quan-
tities for the order parameters at n = 4, cannot be described
because the amplitude of the total angular momentum Ĵ

2
eff

is a conserved quantity. The corresponding set of multipole
operators is incomplete. Hence, one needs to consider an
operator that includes the transition between different jeff .
Namely, another angular momentum is defined:

K = αL̂ + βŜ, (A2)

where α and β (∈ R) are constants, which in general includes
the “perpendicular” component with respect to Ĵeff . K2 com-
mutes with the local Hamiltonian, but K does not. Multipole
operators can be constructed based on the polynomial expres-
sions of K as

N = 1, (A3)

M = K, (A4)

Qxy = KxKy, (A5)

Qyz = KyKz, (A6)

Qzx = KzKx, (A7)

Q3z2−r2 = 3K2
z − K2 (=Qu), (A8)

Qx2−y2 = K2
x − K2

y (=Qv ), (A9)

Txyz = KxKyKz, (A10)

Tx(5x2−3r2 ) = Kx
(
5K2

x − 3K2
) (=T α

x

)
, (A11)

Ty(5y2−3r2 ) = Ky
(
5K2

y − 3K2
) (=T α

y

)
, (A12)

Tz(5z2−3r2 ) = Kz(5K2
z − 3K2)

(=T α
z

)
, (A13)

Tx(y2−z2 ) = Kx
(
K2

y − K2
z

) (=T β
x

)
, (A14)

Ty(z2−x2 ) = Ky
(
K2

z − K2
x

) (=T β
y

)
, (A15)

Tz(x2−y2 ) = Kz
(
K2

x − K2
y

) (=T β
z

)
, (A16)

where the overline symmetrizes the expression as ABC =
(ABC + ACB + BAC + BCA + CAB + CBA)/3!, for exam-
ple. These operators are referred to as monopole (N), dipole
(Mμ), quadrupole (Qλ), and octupole (Tξ ) in accordance with
the number of multiplied angular momenta [26,32]. The fur-
ther high-rank tensors are zero. Here, 6 × 6 = 36 multipoles
are expected, but there are only 16 in the above equations,
which is not enough. The complete matrix basis can be
constructed using the local projection operators P3/2 and
P1/2, which single out the jeff = 3/2 and jeff = 1/2 compo-
nents, respectively (P3/2 + P1/2 = 1). First, the operators in
the jeff = 3/2 subspace are introduced as

N3/2,even(≡Na) ∝ P3/2, (A17)

M3/2,odd
μ

(≡Ma
μ

) ∝ P3/2MμP3/2, (A18)

Q3/2,even
λ

(≡Qa
λ

) ∝ P3/2QλP3/2, (A19)

T 3/2,odd
ξ

(≡T a
ξ

) ∝ P3/2Tξ P3/2 = Tξ , (A20)

where μ, λ, ξ represent polynomials, and the ones in the
jeff = 1/2 subspace are defined by

N1/2,even(≡Nb) ∝ P1/2, (A21)

M1/2,odd
μ

(≡Mb
μ

) ∝ P1/2MμP1/2. (A22)

The superscripts “even” and “odd” represent the sign from the
time-reversal operation T = exp(−iπJy)K with the com-
plex conjugation K . As examples, one can confirm

T M3/2,odd
μ T −1 = −M3/2,odd

μ , (A23)

T Q3/2,even
λ T −1 = +Q3/2,even

λ , (A24)

and so on. The quadrupoles and octupoles do not exist for the
jeff = 1/2 subspace: P1/2QλP1/2 = P1/2Tξ P1/2 = 0. We used
shorthand notation such as Na and Mb in the main text (see
Table I).

The jeff -off-diagonal (designated by the superscript “offd”)
operators are also obtained, which are classified by the time-
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reversal operation. The time-reversal odd jeff -off-diagonal
operators are

Moffd,odd
μ

(≡Mc
μ

) ∝ P3/2MμP1/2 + P1/2MμP3/2, (A25)

Qoffd,odd
λ

(≡Qd
λ

) ∝ −i(P3/2QλP1/2 − P1/2QλP3/2), (A26)

which are magnetic dipoles and magnetic quadrupoles. In
addition, there are time-reversal even ones,

Moffd,even
μ

(≡Md
μ

) ∝ −i(P3/2MμP1/2 − P1/2MμP3/2), (A27)

Qoffd,even
λ

(≡Qc
λ

) ∝ P3/2QλP1/2 + P1/2QλP3/2, (A28)

which are electric dipoles and electric quadrupoles. In par-
ticular, for the electric dipoles, there is another symbolic
expression,

Moffd,even ∝ L × S, (A29)

which is identified as being time reversal even.
Thus, the complete set of 36 basis matrices has been con-

structed. Once the matrix representation of these operators is
normalized by the trace of the squared matrices, these matri-
ces do not depend on the constants α and β. The simple choice
is then α = β = 1 in the present case. The above matrices are
also orthogonal as

Tr Oξ O†
ξ ′ = δξξ ′ , (A30)

where the indices ξ take the 36 types of multipoles. With
these setups, the magnitudes of the expectation values of each
multipole operator can be compared, and the primary order
parameter that is largest in magnitude can be found.

Classification based on the point group is also possible.
The ranks 0, 1, 2, and 3 respectively correspond to the
monopoles (N3/2,even, N1/2,even), dipoles (M3/2,odd, M1/2,odd,

Moffd,odd, Moffd,even), quadrupoles (Q3/2,even, Qoffd,odd, Qoffd,even),
and octupoles (N3/2,odd), respectively, which are defined
above. Each rank is further decomposed based on the cubic
harmonics. The obtained results are summarized in Table I
in the main text. The j parity for the complete classification
of the multipole moments is introduced. This is similar to
the case of sp hybridized systems, where the spatial parity
is (−1)�, giving +1 for s electrons (� = 0) and −1 for
p electrons (� = 1). In the same manner, a similar parity
transformation is considered to distinguish jeff = 3/2 from
jeff = 1/2, where the total angular momentum differs by
1. Namely, the transformation matrix is defined using the
projection operators as

P = P3/2 − P1/2, (A31)

which transforms the wave function as

P| jeff jeff,z〉 = (−1) jeff +1/2| jeff jeff,z〉, (A32)

and the transformed operators are, for example,

PM3/2,odd
μ P−1 = +M3/2,odd

μ , (A33)

PMoffd,odd
μ P−1 = −Moffd,odd

μ . (A34)

The j parity gives −1 for the jeff -off-diagonal components.
Thus, every multipole is uniquely classified in terms of rank,
time reversal, and j parity. Note that all the multipoles in
this study are even under real spatial parity transformation
because the d electrons are considered. It is also noted that
the concept of j parity is introduced for the classification of
the multipole moments, and the interacting Hamiltonian is
not invariant under this transformation. This is why jeff -off-
diagonal multipoles mix in general, as shown in the numerical
results.

The multipole expansion is regarded as the choice of a
set of basis matrices and is not unique. Our multipole basis
based on the total angular momentum is different from the
previously proposed ones [10,26] in that jeff -diagonal and
jeff -off-diagonal components are classified. If we restrict our-
selves to the jeff = 3/2 diagonal subspace, the matrices are
the same as those used in Ref. [32].

APPENDIX B: SYMMETRY IN ORBITAL SPACE

Here, a comment on the symmetry in orbital space is made.
In the case without spin-orbit coupling, the Hamiltonian with
the hopping term and Slater-Kanamori interaction has SO(3)
symmetry. Namely, the Hamiltonian is invariant under the
transformation

ciασ −→
∑

β

Vαβciβσ , (B1)

where Vαβ ∈ R is an orthogonal 3 × 3 matrix.
If the full-spin polarized situation is considered, as in phase

MM-II in Fig. 8, then, only the σ =↑ components need to
be looked at. Then, the symmetry in the orbital space is ele-
vated to SU(3), where the transformation matrix V is unitary,
with complex variables. This emergent symmetry is broken
once the down-spin components are mixed. In addition to the
above spin-polarized situation, when the spin-orbit coupling
is turned on, we have an additional term ∝ LzSz, which acts as
the magnetic field in the orbital space.

It is shown that a full-spin polarization significantly sim-
plifies the self-consistent equations. The Hamiltonian is

H =
∑
kα

(εk − μ)c†
kα↑ckα↑ + λ

2

∑
iαβ

�z
αβc†

iα↑ciβ↑

+ U − J

2

∑
αβ

c†
iα↑ciα↑c†

iβ↑ciβ↑, (B2)

where α, β = xy, yz, zx. It is notable that the Hamiltonian has
a particle-hole symmetry within the spin-↑ sector. The α basis
is changed to the �z(=m) basis by a unitary transformation
(m = 0,±1). Then the Hamiltonian becomes

H =
∑
km

(εk − μ)c†
km↑ckm↑ + λ

2

∑
im

mc†
im↑cim↑

+ U − J

2

∑
mm′

c†
im↑cim↑c†

im′↑cim′↑. (B3)
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The density-type mean field is assumed, and the self-
consistent equations are obtained as follows:

�m = (U − J )
∑
m′ �=m

F

(
μ − �m′ − λ

2
m′

)
, (B4)

n =
∑

m

F

(
μ − �m − λ

2
m

)
(B5)

at zero temperature, where

F (ε) =
∫ ε

−∞
D(ε′)dε′ (B6)

is the integrated density of states. The above argument relies
only on the spin-polarized situation and is applicable to cases
with general filling, interaction, and small spin-orbit coupling.
It is confirmed that the solution of these simplified equations
is consistent with the ones discussed in the main text inside
the magnetic phases at small λ.
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