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Dynamics of magnetic collective modes in square- and triangular-lattice Mott insulators
at finite temperature
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We study the equilibrium dynamics of magnetic moments in the Mott insulating phase of the Hubbard model
on the square and triangular lattice. We rewrite the Hubbard interaction in terms of an auxiliary vector field and
use a recently developed Langevin scheme to study its dynamics. A thermal noise, derivable approximately from
the Keldysh formalism, allows us to study the effect of finite temperature. At strong coupling, U � t , where U
is the local repulsion and t the nearest-neighbor hopping, our results reproduce the well known dynamics of the
nearest-neighbor Heisenberg model with exchange J ∼ O(t2/U ). These include crossover from weakly damped
dispersive modes at temperature T � J to strong damping at T ∼ O(J ), and diffusive dynamics at T � J . The
crossover temperatures are naturally proportional to J . To highlight the progressive deviation from Heisenberg
physics as U/t reduces we compute an effective exchange scale Jeff (U ) from the low-temperature spin-wave
velocity. We discover two features in the dynamical behavior with decreasing U/t : (i) the low-temperature
dispersion deviates from the Heisenberg result, as expected, due to longer range and multispin interactions, and
(ii) the crossovers between weak damping, strong damping, and diffusion take place at noticeably lower values
of T/Jeff . We relate this to enhanced mode coupling, in particular to thermal amplitude fluctuations, at weaker
U/t . A comparison of the square and triangular lattice reveals the additional effect of geometric frustration on
damping.
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I. INTRODUCTION

The Hubbard model at half filling provides a minimal
description of an interaction driven Mott metal-insulator tran-
sition (MIT) [1–10]. The Mott phase generally has some kind
of antiferromagnetic order [7,8], except in fully frustrated
lattices like the kagome or pyrochlore where it has only short
range correlations [9–16]. The static charge and magnetic
correlations are reasonably well understood in the various
lattices [17–31].

Theoretical results on dynamics are more limited. Ap-
proaches like dynamical mean field theory (DMFT) or its
extensions, which provide a detailed description of the MIT,
focus on the single particle spectral function [32–37]. The col-
lective mode dynamics associated with the magnetic degrees
of freedom is much less explored [38–46], although in the
Mott phase, where single particle excitations are gapped, these
are in fact the relevant degrees of freedom.

Deep in the insulating phase, where the Hubbard model
maps on to the nearest-neighbour Heisenberg model [22,47],
the spin dynamics is well documented [48–57]. However, on
decreasing the electron-electron interaction two effects occur
simultaneously: (i) the coupling among magnetic moments
become progressively longer ranged, multi-spin, and begin
to involve ring-exchange terms [58,59], and (ii) the moments
begin to “soften”, i.e., become more prone to amplitude fluc-
tuations. The first effect affects mainly the low-temperature
spin-wave dispersion. The second effect is important for the
thermal physics since amplitude fluctuations generate addi-
tional scattering of the magnetic modes. In a Mott insulator

where the charge gap is ∼103 − 104K, say, and the effective
exchange is ∼10 − 100K these effects would be visible over
an accessible temperature window.

Experiments on dynamics in Mott insulating materials
have mostly concentrated on quasi-2d systems like layered
cuprates [60–62], organics [63,64], ruthenates [65,66] and
fully 3d systems like iridates [67–70], doped V2O3 [71],
NiO [72], and Sr2Mn3As2O2 [73]. In the Mott phase, inelastic
neutron scattering (INS) studies on La2CuO4 find substan-
tial non-Heisenberg features in the dispersion. In the iridate
experiments, one infers no long-range magnetic order [67]
in some cases, while in certain others [68–70], sharp low-
energy spin waves originating from complex magnetic order
are observed. Near the transition, NMR measurements on
organics have found strong suppression of spin fluctuations
in the Mott phase. By contrast, in Ca2−xSrxRuO4, one finds
enhanced magnetic fluctuations in the metallic phase at an
incommensurate wave vector.

A reliable estimate of the magnetic excitation spectrum
requires several ingredients: (i) one should be able to han-
dle correlation effects away from the Heisenberg limit, in
particular as the system heads towards an insulator-metal tran-
sition; (ii) the dimensionality and lattice geometry needs to
be respected since the magnetic order and excitations depend
crucially on them; (iii) the approach should access thermal
effects well beyond the reach of linear spin-wave theory;
and (iv) the theory should yield real time (or real frequency)
information—a rarity in finite temperature schemes. Most ap-
proaches unfortunately fall short.
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The tools currently available to study equilibrium dy-
namics of the Hubbard model include exact methods like
quantum Monte Carlo [74] (QMC), approximate numerical
strategies like DMFT [32,75] and its cluster extensions [5,23],
slave boson techniques [76], and semi-analytic schemes like
the random phase approximation (RPA) or 1/S expansion.
More recently, dual fermion method [31,46], and semiclas-
sical Langevin dynamics [45] have entered the scenario. A
recent review covers most of the existing approaches used for
the 2d model [77]. Both QMC and DMFT are usually formu-
lated in imaginary time, and hence the results need analytic
continuation. QMC also has size limitations and often the
“fermion sign problem”. DMFT neglects spatial correlations
at the single site level, but its cluster variants alleviate the
problem in some cases. The RPA approach yields reasonable
low-temperature spin-wave dispersion (�q) on magnetically
ordered states [41–43] and also captures high-energy fea-
tures like the two-particle continuum. However, as order is
suppressed with increasing temperature, and large angular
fluctuations become relevant, the RPA results lose validity.

An approximate strategy well suited for this problem is
the Langevin dynamics approach, first introduced by Chern
et al. [45]. This method does make some simplifying as-
sumptions but meets all the requirements that we had defined
earlier. Using this we address the following questions: (i) how
are the crossover scales in magnetic dynamics affected as we
move to lower values of U/t from the Heisenberg limit? (ii)
what is the role of amplitude fluctuations on the lineshape of
excitations, and (iii) what is the effect of increasing geometric
frustration on the spectrum?

There are two “reference calculations” that define what
is known in this problem. (a) For U/t � 1 and for nearest-
neighbor hopping the Hubbard model maps on to the
nearest-neighbor Heisenberg model. The ground state on the
square lattice is Néel ordered with Q = (π, π ), while on the
triangular lattice Q = (2π/3, 2π/3). The relevant exchange
scale is J = 4t2/U , for moments with S = 1/2. The thermal
dynamics of the Heisenberg model is well known [48–57],
albeit numerically. (b) On the mean-field ground state, RPA
provides a reasonable excitation spectrum at any U/t .

We have confirmed that the Langevin scheme captures
the dynamics of the 2d classical Heisenberg model on both
lattices, at all temperature. Since we approximate the mag-
netic moments in our scheme to be classical, we do not
get the true quantum limit at large U/t . Our theory also
captures the low-energy part of the RPA spectrum at all
U/t and low temperature, but not the spin waves at zero
temperature.

To set the stage for a summary of our results, the magnetic
dynamics can be classified into three regimes. (a) At low tem-
perature we observe weakly damped dispersive modes, with
damping �q � Wmag, where Wmag is the magnetic bandwidth
at T = 0. This scale is plotted in Fig. 2(b). In this regime
in general �q � �q. (b) Beyond a broad crossover, charac-
terised by a scale T cr

1 , there is a regime of strongly damped
but still dispersive modes, with �q ∼ O(Wmag). Finally, (c) at
even higher temperature, beyond a scale T cr

2 , we observe spin
diffusion, with �q → 0 for all q and �q ∼ O(Wmag).

An important scale in analyzing the results is the effective
exchange Jeff (U ) inferred from the spin-wave velocity com-

(a) (b)

FIG. 1. S̄(π, π ) (a) and P(|m|) (b) for the square lattice Hubbard
model at U/t = 6.0. Solid lines denote answers obtained using the
present LD method and open circles indicate MC data. We observe a
reasonable agreement between the two methods. The comparison is
discussed later in the paper.

puted from the low-energy spectrum. The spin-wave velocity
is the slope of the linear magnon branch near the Goldstone
points, (π, π ) and (2π/3, 2π/3) for the square and triangular
lattice, respectively. Jeff is plotted in Fig. 2(a). In terms of this
scale, our main results are the following (first on the square
lattice, and then on the triangular lattice):

I. For the square lattice:
(i) Broad regimes. While the absolute values of the

crossover temperatures increase with decreasing U/t (since
the effective exchange Jeff increases), the ratios T cr

1 /Jeff

and T cr
2 /Jeff noticeably decrease with decreasing U/t . This

indicator of non-Heisenberg behavior suggests a relatively
quicker onset of mode coupling, and then diffusive behavior,
at smaller U/t .

(ii) Dispersion and damping. The dispersion �q(T ) nar-
rows monotonically with increasing T/Jeff , The onset of rapid
narrowing is at T/Jeff ∼ 1 when U/t � 1 and reduces to
T/Jeff ∼ 0.5 for U ∼ 6t . We find that at low T the ther-
mal damping is �q(T ) − �q(0) ∝ T 2 when U/t � 1 and
�q(T ) − �q(0) ∝ T for intermediate to small U/t . The damp-
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FIG. 2. (a) The dimensionless effective exchange (Jeff/t), calcu-
lated from the spin-wave velocity, for the square and triangular lattice
Hubbard models at various U/t values. We see a monotonic behavior
for the square lattice and a nonmonotonic behavior for the triangular
lattice case. Moreover, the scale vanishes around U/t = 6.0 for the
latter, signalling a breakdown of 120◦ order. (b) The spin-wave
bandwidth (Wmag), calculated from the full magnon dispersion, for
the square and triangular cases. Here, we see a nonmonotonicity in
the square lattice, and a gradual decrease in the triangular lattice.
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ing changes to ∼T 1.5 at higher T , and finally saturates for
T � 2Jeff .

(iii) Amplitude fluctuation. The amplitude fluctuations
play a crucial role in broadening the lineshape at weak cou-
pling, where the fluctuation width varies as ∼√

T/U . While
we do not capture the real “amplitude mode” at ω ∼ U we
can access amplitude fluctuation effects on the spin waves at
ω ∼ Jeff .

II. On the triangular lattice:
(i) Broad regimes. The triangular lattice has a finite critical

interaction for the MIT, with Uc ∼ 5t . We restrict ourselves to
U/t where the 120◦ordered state is the ground state. The typ-
ical lineshape is two-peak in this case. The thermal crossover
scales are inferred from the behavior of the peak, which broad-
ens quicker with respect to T . The behavior of T cr

1 and T cr
2

with respect to U is similar to what is observed in the square
lattice, with the distinction that their maxima occur at larger
U and the scales are ∼0.5 their square lattice values.

(ii) Dispersion and damping. Due to emergence of longer
range couplings, the low T dispersion along � − K shows
a larger curvature at lower U/t . The damping is also much
larger, compared to the square lattice, at similar values of
T/Jeff . At U/t ∼ 10, where Jeff/t ∼ 0.04 the crossover scales
are just T cr

1 /Jeff ∼ 0.4 and T cr
2 /Jeff ∼ 0.8.

(iii) Fluctuation. The role of amplitude fluctuations in
damping the modes is enhanced at a given U and the same
T/Jeff , due to the finite Uc and mild frustration.

II. MODEL AND METHOD

We work with the single band, repulsive Hubbard model
on square and triangular lattice geometries. The Hamiltonian
reads

H = −
∑
〈i j〉σ

ti j (c
†
iσ c jσ + H.c.) + U

∑
i

ni↑ni↓ − μ
∑

iσ

niσ .

The hopping amplitude ti j is chosen to be nonzero only
amongst nearest neighbours for the square case and has a
uniform value t = 1.0. On adding the next-nearest-neighbor
coupling t ′ = 1.0 on top of this along one diagonal in each
square motif, we get the triangular lattice.

First, the interaction term is decoupled using a Hubbard-
Stratonovich transformation to obtain a spin-fermion model-

HSF = −
∑
〈i j〉σ

ti j (c
†
iσ c jσ + H.c.) − U

∑
i

mi.σi + U
∑

i

|mi|2.

We solve for the finite T dynamics mi using the following
equation of motion [45]:

dmi

dt
= −mi × ∂〈HSF 〉

∂mi
− γ

∂〈HSF 〉
∂mi

+ �ξi. (1)

The noise is specified through

〈ξμ
i (t )〉 = 0, (2)

〈ξμ
i (t )ξν

j (t ′)〉 = 2γ kBT δi jδ
μνδ(t − t ′). (3)

Here γ is a dissipation parameter. Within our scheme, its
value cannot be determined from first principles. To calculate
it, one has to evaluate the imaginary part of the Keldysh
polarizability (Im�K (q, ω)) at low frequencies. We comment

that in the deep Mott phase, this contribution is vanishingly
small due to the gapped single electron spectrum. However,
on moving to lower U values, this quantity picks up weight at
finite temperature. The evolution equation has a phenomeno-
logical justification as well as a a microscopic basis. We touch
on these briefly.

(i) First, the phenomenological motivation [45,78]. One
starts from the Heisenberg limit with moments of fixed mag-
nitude. The torque term comes from evaluating the Poisson
brackets in the semiclassical equation of motion. The damping
is taken to be proportional to the angular momentum, follow-
ing an analogy with the particle Langevin equation. Lastly,
the noise is chosen so as to satisfy the fluctuation-dissipation
relation, ensuring that one captures the Boltzmann distribu-
tion in the long-time limit [78,79]. The additive form of the
damping and noise allows for longitudinal relaxation of the
magnetic moments. This approach does not determine the
value of the dissipation coefficient γ . In our treatment, we fix
the γ value by comparing our static results with a Monte Carlo
(MC) method and ensuring a decent match. The MC strategy
is briefly discussed in Appendix B.

(ii) Alternately, one starts from a model of a spin cou-
pled linearly to a bosonic bath and integrates out the bath
degrees of freedom to obtain an effective equation of motion
for the spin, it has been shown [80] that under certain condi-
tions, a Landau-Lifshitz-Gilbert-Bloch (LLGB) equation [81]
emerges. The derivation may also be done in presence of
conduction electrons [82] or both phonons and electrons [83].
This equation explicitly conserves spin magnitudes. Our equa-
tion also reduces to the LLGB form upon constraining the
spins on the unit sphere [78].

(iii) Finally, one may also try to derive the present equation
starting from the Keldysh action of the Hubbard model. First,
one introduces auxiliary fields to decouple the interaction
term and subsequently assumes them to be slow compared to
the electrons. This allows one to write an effective equation
of motion for them. Upon doing certain simplifications, this
equation can be mapped on to Eq. (1). We briefly allude to
this in Sec. VI E.

The typical timescale for magnon oscillations is τmag ∼
1/Jeff . We set an “equilibration time” τeq = 100τmag before
saving data for the power spectrum. The outer timescale,
τmax ∼ 10τeq. The “measurement time” τmeas = τmax − τeq,
and the number of sites is N . Some details regarding the
numerical solution of Eq. (1) are given in Appendix A.

We calculate the following from the time series m(ri, t ):
(1) Dynamical structure factor, D(q, ω) = |m(q, ω)|2

where

m(q, ω) =
∑

i

∫ τmax

τeq

dteiq.ri e−iωt m(ri, t ). (4)

(2) The instantaneous structure factor

S(q, t ) = 1

N2

∑
i j

eiq.(ri−r j )m(ri, t ).m(r j, t ). (5)

The corresponding time averaged structure factor is

S̄(q) = 1

τmeas

∫ τmax

τeq

dtS(q, t ). (6)
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(3) The distribution of moment magnitudes

P(|m|) = 1

Nτmeas

∑
i

∫ τmax

τeq

dtδ(|m| − |mi(t )|). (7)

(4) Dispersion �q and damping �q:

�q =
∫ ωmax

0
dωωD(q, ω),

�2
q =

∫ ωmax

0
dω(ω − �q)2D(q, ω).

III. BENCHMARKS AND OVERALL FEATURES

A. Fixing the Langevin parameters

We do a bechmarking of the Langevin scheme using the
square lattice as a test case. Three coupling regimes are
explored- weak (U/t = 3.0), intermediate (U/t = 6.0), and
strong (U/t = 10.0). The statics is quantified through two
quantities- the structure factor S(π, π ) and the moment mag-
nitude distribution P(|m|). The former shows the correlation
temperatures (Tcorr), below which the correlation length ap-
proaches the system size. The latter details the longitudinal
fluctuations of local moments. The alternate technique used
to compute these quantities is a Monte Carlo calculation done
assuming the auxiliary mi field to be classical and using the
sum of electronic free energy and the stiffness cost (last term
in HSF ) as the sampling weight [16] (see Appendix B for more
details).

The method of fixing γ was the following. We started with
a low value (motivated by its vanishing magnitude at strong
coupling, and the fact that we should get undamped spin
waves at low enough T ) at a fixed coupling and run length.
Next, we increased the γ at that coupling in steps till the
match with MC results on temperature dependence became
reasonable, while ensuring that the low T spin waves remain
sharp enough. Results for a typical coupling are quoted above.

Figure 1(a) shows a comparison of S̄(π, π ) at U/t = 6,
with a reasonable match. The dissipative coefficients are
γ = 0.05 and γ = 0.1. In Fig. 1(b), the P(|m|) distribu-
tions also show reasonable agreement (for γ = 0.05). We
have used γ = 0.025 to generate the bulk of our final
dynamics results, which roughly corresponds to a relax-
ation timescale τrel ∼ 40τmag. We will later quantify the
increasing relevance of magnitude fluctuations on decreasing
coupling, which is an important piece of the non-Heisenberg
physics.

B. Magnetic scales for varying U/t

At low temperature, our dynamical equation [Eq. (1)]
gives rise to weakly damped, dispersive spin-wave excitations.
From the obtained spectrum, we extract two scales: (i) the
spin-wave stiffness Jeff , and (ii) the magnon bandwidth Wmag.
The first is computed from the spin-wave velocity of the linear
branch near the respective Goldstone modes on the square
and triangular lattice. The latter requires knowledge of the full
magnon band structure. We plot these quantities for both the
square and triangular lattice in Fig. 2.

In Fig. 2(a), we find a monotonic decrease of Jeff with U/t
in the square lattice case, with a 1/U asymptote at strong

(a)

(b) (c)

FIG. 3. (a) Comparison of dispersions �q along the K − �

direction of the Brillouin zone (BZ) between the square lattice
Hubbard model at U/t = 20.0 and the Heisenberg model with J =
1. One gets a near perfect agreement on scaling the former by
Jeff = 4t2/U . [(b),(c)] Lineshapes at three characteristic tempera-
tures T/J = 0.01, 0.5, 1.5 for the Heisenberg model [in (b)] and
the U/t = 20.0 Hubbard model [in (c)]. There is again a marked
agreement.

coupling. The value at U/t = 20.0 matches the expected
Jeff = 4t2/U , indicating that one has reached the Heisenberg
limit. On the triangular lattice, the stiffness goes to zero for
U/t = 6.0, indicating a breakdown of the 120◦-ordered state.
The scale then rises and finally falls as ∼1/U at strong cou-
pling. In Appendix C, we compare the extracted spin-wave
velocities with those obtained from RPA [41].

The magnon bandwidths in Fig. 2(b) feature a nonmono-
tonicity in the square case, with a maximum around U/t =
6.0. Wmag increases on lowering U on the triangle, rising to
0.6t before the ordered state breaks down.

C. Comparison with Heisenberg as U/t → ∞
We compare the Hubbard results at U/t = 20 on the square

lattice with the Heisenberg model with J = 1. The former
effectively reduces to the latter with Jeff = 4t2/U and |mi| =
1/2. First, in Fig. 3(a), the low T dispersions are compared,
with both being scaled by Wmag, the spin-wave bandwidth.
There is a nearly perfect agreement.

The Heisenberg model features three broad thermal
regimes. These are (i) weakly damped (T � J), where we
obtain dispersive excitations with low damping, (ii) strongly
damped (T ∼ O(J )), where there is significant mode cou-
pling among spin waves, but dispersion is still discernible,
and (iii) diffusive (T � J), where mode frequencies col-
lapse to zero and the dampings are comparable to Wmag. In
these regimes, we compare the lineshapes of the Heisenberg
model at q = (π/2, π/2) with those of the large U Hubbard
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FIG. 4. Magnon phase diagrams for square [(a),(c)] and trian-
gular [(b),(d)] lattice Hubbard models at half filling. The top row
features the U/t − T/t phase diagrams, while the bottom one ex-
hibits the T/Jeff − t/Jeff plots. We broadly observe three “dynamical
regimes” (i) weakly damped (where �q � 0.2Wmag), (ii) “strongly
damped” [where �q ∼ O(Wmag)], and (iii) “diffusive” [where �q ∼
O(Wmag) and �q → 0]. The metallic region in (b) is not tackled
by our approach. Vertical sections indicate couplings used in actual
simulations.

model in Fig. 3(b). In regime (i), a sharp lineshape centered
around �q = 4J is seen, which picks up significant damping
in regime (ii), before becoming diffusive in (iii). A quantita-
tive agreement is seen between the Hubbard and Heisenberg
results. The frequencies are scaled by Jeff in the Hubbard case,
and J in the Heisenberg one.

D. General features of dynamics in the Mott phase

We first comment on the broad dynamical regimes obtained
on the square and triangular lattice problems. This is charac-
terized by the the number of peaks, their location, and width.

As mentioned earlier, we find three broad dynamical
regimes on analyzing the data: (i) weakly damped, where the
linewidth for a generic momentum �q � Wmag, (ii) strongly
damped, where �q ∼ O(Wmag), and (iii) diffusive, where
�q ∼ O(Wmag) and �q → 0.

On the square lattice [Figs. 4(a) and 4(c)], the low T
lineshapes are unimodal. There is a gradual crossover to
regimes (ii) and (iii) at T cr

1 (U ) and T cr
2 (U ) respectively. The

window of regime (ii) is maximum around U/t = 6.0. The
crossover lines behave ∼1/U asymptotically, but have a max-
imum around U/t = 10.0. Below this coupling, the amplitude
fluctuation effect dominates and consequent excess thermal
dampings cause a downward trend. This non-Heisenberg fea-
ture is much better highlighted in Fig. 2(c), where both

T cr
1 /Jeff and T cr

2 /Jeff decrease markedly on lowering U . At
weak coupling, both these scales collapse quickly.

The loss of antiferromagnetic correlations at finite tem-
perature is characterized through a temperature scale Tcorr,
extracted from S(π, π ). The crossover lines have a similarity
to the locus of this Tcorr (U ) [84], which also coincides with
the metal-insulator transition line at weak coupling. However,
there are quantitative differences. the peak location in our dy-
namical phase diagram [Fig. 4(a)] is at ∼U/t = 10, a higher
coupling compared to the peak location in Tcorr at ∼U/t = 4.
We emphasize that our focus is on the “local moment” regime,
i.e., intermediate to strong coupling. Our method can address
the weak coupling Slater regime as well but that regime is
dominated by amplitude fluctuations and also requires larger
system size.

In Sec. VI C, we discuss an effective classical moment
model, which actually interpolates between the Heisenberg
and Slater limits, borrowing a few parameters from the
Hubbard mean field and RPA results. This captures the low-
temperature dynamics of the Hubbard problem fairly well at
all U/t , and the Heisenberg limit at all temperatures. More-
over, the nonmonotonicity of Tcorr as a function of U/t and the
qualitative behavior of the thermal regimes are also captured
by the effective model.

In the triangular case [Figs. 4(b) and 4(d)], the generic
low T lineshapes is two peak. The crossover regimes (ii)
and (iii) occur at much lower temperatures compared to the
square case, owing to mild geometric frustration and con-
sequently fragile magnetic order. The fall of the crossover
scales on decreasing U (below U/t = 10.0, say) is also
sharper than the former. Close to the transition (U/t ∼ 6) the
lineshapes become diffusive even at very low temperatures
(T/t ∼ 0.01). The scaled phase diagram [Fig. 4(d)] reveals
a minimum in the crossover scales around t/Jeff ∼ 12.5. This
is related to the nonmonotonic behavior of Jeff itself, shown in
Fig. 2.

We comment that our scheme at weak coupling gener-
ates a peak centered at zero frequency for all momenta,
exclusively due to amplitude fluctuations. This arises from
an oversimplification of our equations of motion. However,
the fraction of this weight is not visible on a linear scale
above U/t ∼ 4 on the square. Moreover, if we ignore the
near-zero energy part of the magnon spectrum (upto some
cutoff ∼0.05Wmag), the rest of it doesnot have any spurious
features. We still capture the impact of magnitude fluctua-
tions on the damping of spin waves, which reside at higher
energies.

Next, we present detailed numerical results on the dynam-
ics of square and triangular lattice Hubbard models found
using our scheme. The focus is on deviations from the Heisen-
berg limit, quantified through finite temperature behavior of
the damping of spin waves.

IV. DYNAMICS ON THE SQUARE LATTICE

In this section, we first show the spectral maps of D(q, ω)
across a section of the Brillouin zone (BZ) for four represen-
tative couplings, starting from the Heisenberg limit. Next, we
extract the mode energies and magnon damping from the data
and plot their variation with respect to T and q respectively.
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(a)

(b)

(c)

(d)

FIG. 5. Power spectrum of magnetization field D(q, ω) for the Hubbard model on the square lattice for U/t = 20, 10, 6, 3, respectively.
The trajectory chosen in Brillouin zone is � − X − K − �. Temperatures are scaled by electron hopping t . We observe a resemblance of the
strong coupling Hubbard spectrum with that of the Heisenberg model with Jeff = 4t2/U . At lower couplings, the dispersion changes at low
T , owing to longer-range spin couplings. Thermal damping is more prominent at weaker couplings, as the stiffness for amplitude fluctuation
decreases.

Finally, a comparison of actual lineshapes for a generic wave
vector q = (π/2, π/2) is featured.

A. Spectral maps for varying U/t and temperature

The dynamical structure factor maps are exhibited in
Fig. 5. The top row shows results for a U/t = 20.0 Hub-
bard model (the Heisenberg limit) in various temperature
regimes. The first column corresponds to the lowest T . Here,
we see sharply defined spin waves, with Goldstone modes at
both (0,0) and (π, π ) and a characteristic antiferromagnetic

dispersion. At intermediate temperatures (T/t = 0.05), the
bandwidth reduces and the spin waves broaden. On further
increase in T , the correlations weaken to give a diffusive
spectrum, with prominent low-energy weight close to (π, π ).
Ultimately, the momentum dependence is also lost for T/t =
0.15.

The lower panels show results on the Hubbard model for
three successively lower couplings: strong (U/t = 10.0), in-
termediate (U/t = 6.0), and weak (U/t = 3.0), respectively.
At strong coupling, the behavior is Heisenberg-like, with
Jeff ∼ t2/U , with small deviations. The spectrum remains
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FIG. 6. Fitted dispersions (�q) and intrinsic thermal dampings
(�q − �0

q) as functions of T , extracted from the dynamical spectra in
the square lattice. The temperature axes are scaled by J̄ = Jeff |mHF |2,
while the frequencies are scaled by J̃ = Jeff |mHF | values for the vari-
ous couplings studied. The dispersions soften slowly with increasing
T , while one clearly observes the onset of non-Heisenberg behavior
in (b) for lower U values, with large dampings showing up much
below T/J̄ = 1.

mostly coherent till T ∼ Jeff , with momentum dependent ther-
mal damping. The Goldstone mode at (π, π ) survives as a
broad low-energy feature till T ∼ 2Jeff .

At intermediate coupling (U/t = 6.0), the bandwidth in-
creases compared to the earlier case and the low T dispersion

changes in shape. This owes its origin to the emergence
of multi-spin couplings. There is also a faint, momentum-
independent low-energy band, more clearly visible in a
logarithmic color scale. This band arises from longitudinal
fluctuations of moments within our scheme, which is con-
trolled by the local stiffness. Thermal fluctuations broaden the
spin waves gradually, with the dispersion being discernible
even at T ∼ 0.1t .

The bottom row features weak coupling (U/t = 3.0) re-
sults, where the low-energy band gains more weight (now
visible on a linear scale) and the bandwidth shortens again.
Thermal effects are stronger, as amplitude fluctuations are
more prominent here.

B. Variation of mode energy and damping with T

Figure 6 highlights the evolution of mean frequency (�q)
and thermally induced linewidth (�q − �0

q) with temperature
at a generic wave vector q = (π/2, π/2). The former mono-
tonically falls with increasing T , as seen in Fig. 6(a). The rate
of decrease speeds up around successively lower fractions of
J̃ = Jeff |mHF | on moving to lower couplings. In Fig. 6(b), we
see that the rise in thermal damping has an initially quadratic
trend at large U and low T , which then changes to a linear
one one moving to lower couplings, and becomes T α with

FIG. 7. Fitted dispersions (�q) in [(a)–(c)] and intrinsic thermal dampings (�q − �0
q) in [(d)–(f)], plotted against q along the K − �

trajectory in three thermal regimes: (i) weakly damped, (ii) strongly damped, and (iii) diffusive. The couplings chosen are U/t = 3, 6, 10 and
the absolute temperatures are T/t = 0.001, 0.1, 0.2. We observe a nonmonotonicity in the peak frequency, and a mild shift of this peak to
lower q on heating up. The bottom row reveals a residual momentum dependence of magnon damping even in the diffusive regime.
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(d)(c)

(a) (b)

FIG. 8. Lineshapes at q = (π/2, π/2) for the Hubbard model (a-d) for U/t = 20, 10, 6, 3, respectively. We see a clear deviation from
Heisenberg-like behavior in the thermal trends on decreasing coupling. Frequencies and temperatures are scaled by the respective bandwidths
(Wmag) of the magnetization spectrum.

1 < α < 2 on raising T . A somewhat sharper fall is seen
in the “onset temperature” for strongly damped behavior on
lowering U/t , compared to the trend followed by the mean.

C. Momentum dependence of energy and damping with
changing temperature

In Fig. 7, we concentrate on the momentum dependence of
the same two quantities in the three broad thermal regimes,
discussed before. We firstly see a monotonic behavior of the
peak frequency [at q = (π/2, π/2)], as well as the finite T
bandwidth (scaled by J̃), on lowering U in the weakly damped
regime. The linewidths here are very small. In the strongly
damped regime (green curves), the peak location of mean
frequency shifts to slightly lower q at weak coupling, while
the peak in magnon damping shifts towards higher q values.
Finally, even in the diffusive regime, a residual momentum
dependence can be observed in the linewidth plots [Figs. 7(d)–
7(f)].

D. Lineshapes on the square lattice

Figure 8 highlights the behavior of a specific high-
momentum lineshape [at q = (π/2, π/2)] as a function
of frequency for several temperatures. Figure 8(a) is the
Heisenberg limit (U/t = 20.0) result. We see sharp mode
gradually broadening and developing a tail-like feature upto

T/Wmag = 0.1 on increase in T . Finally, a diffusive lineshape
emerges at high temperature (T/Wmag = 0.25). The plots for
U/t = 10.0 shares most of these qualitative features. How-
ever, the extent of broadening at intermediate temperatures
is much more at the same scaled temperatures for U/t =
6.0. There is a zero-frequency feature for weaker couplings,
most prominent for U/t = 3.0. As discussed already, this is
an artifact of the present method and should not be taken
seriously.

We next move on to an example of a weakly frustrated
system, the Hubbard model on the isotropic triangular lattice.
This system has a finite Uc ∼ 4.5t and features 120◦ordered
ground states for U � 6t . We focus our attention to the latter
coupling regime. First, the spectral maps are exhibited, fol-
lowed by lineshapes at two specific momenta.

V. DYNAMICS ON THE TRIANGULAR LATTICE

A. Spectral maps for varying U/t and temperature

Figure 9 exhibits the spectral maps for the triangular lattice,
in the same layout as in the square case. The four cou-
plings represent “Heisenberg” (U/t = 20.0), “strong” (U/t =
10.0), “intermediate” (U/t = 8.0) and “close to the tran-
sition” (U/t = 6.0) regimes. The non-Heisenberg features
like amplitude fluctuations and multispin couplings increase
columnwise.

235124-8



11DYNAMICS OF MAGNETIC COLLECTIVE MODES IN … PHYSICAL REVIEW B 104, 235124 (2021)

(a)

(b)

(c)

(d)

FIG. 9. Power spectrum of magnetization field D(q, ω) for the Hubbard model on the triangular lattice for U/t = 20, 10, 8, 6, respectively.
The trajectory chosen in Brillouin Zone is � − K − M − �. Temperatures are scaled by electron hopping t . Again, we observe a similarity
of the strong coupling Hubbard spectrum with the Heisenberg case. The lower branch between � − K in the Heisenberg limit develops a
prominent dip for lower U values. The thermal dampings are stronger on moving to weaker couplings compared to the square case.

The spectrum in the Heisenberg limit is much more com-
plicated than in the square case, as the background order
corresponds to q = (2π/3, 2π/3) due to the effect of mild
frustration. We plot the spectrum along � − K − M − � tra-
jectory in the magnetic Brillouin zone (MBZ). There are two
bands at a generic wave vector. The magnetic order is fragile,
as indicated by the reduced bandwidth compared to the square
case. Even on mild increase in T (T/Wmag = 0.2), the multi-
band structure becomes fuzzy and large linewidths develop in
the M − � region. Further increase in T makes most of the
spectrum incoherent, apart from the Goldstone mode at the
ordering wave vector.

Moving to the lower coupling counterparts, the strong
coupling spectrum at low T is similar to the Heisenberg
result, with Jeff ∼ t2/U . The dip near M point is more
prominent. Thermal effects are also Heisenberg-like. On de-
creasing the coupling to U/t = 8.0, the curvature of the
� − K branch increases at low T , as does the dip. Am-
plitude fluctuations induce more dramatic damping of the
spin-wave modes at comparable temperatures. Finally, close
to the Mott transition (U/t = 6.0), even the low-T spectrum
is incoherent. Soft modes are visible in a wide region of
momentum space. In Appendix D, we show the gradual evo-
lution of the low-temperature spectrum as one approaches the
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 10. Triangular lattice: lineshapes at q = (π/3, π/3) [(a)–(d)] and q = (π, π ) [(e)–(h)] for the Hubbard model for U/t = 20, 10, 6, 3,
respectively. We see a clear deviation from Heisenberg-like behavior in the thermal trends on decreasing coupling. Frequencies and tempera-
tures are scaled by the respective bandwidths (Wmag) of the magnetization spectrum.

Mott transition, staying within the 120◦ ordered family of
states.

B. Lineshapes on the triangular lattice

Figure 10 elaborates the comparison of detailed lineshapes
of the Hubbard model with those of the Heisenberg in the
triangular case. The two rows feature lineshapes for q =
(π/3, π/3) and q = (π, π ), respectively. Once again, the fre-
quencies and temperatures are scaled with respect to the low
T bandwidth. The leftmost columns represent the Heisenberg
limit (U/t = 20) results. We observe that for both wave vec-
tors, a bimodal spectrum is obtained at low T , which gradually
broadens on increasing temperature. Even upto T/Wmag ∼
0.1, the spectra retain two distinct peaks.

Moving to the Hubbard results, we see that the strong cou-
pling results (U/t = 10.0) bear a striking resemblance to the
Heisenberg case, as expected. However, even at moderately
high coupling (U/t = 8.0), the thermal damping results in dif-
fusive behavior even at T/Wmag ∼ 0.05. On going closer to the
Mott transition (U/t = 6.0), even the low T lineshapes signif-
icantly change their character, with prominent zero-frequency
weights cropping up in both the wave vectors. Diffusive be-
havior sets in immediately on increasing T .

VI. DISCUSSION

We have tried to organise the results in this paper in terms
of three dynamical regimes and then quantified the detailed
response on these regimes in terms of the lineshape, the mode
energy and the damping. In what follows we shall try to
provide the analytic basis of some of the results seen in the
Langevin simulations, also point out some of the limitations

of our approach. The main effect observed in this paper is the
enhancement of thermal damping of magnons as one moves
away from the Heisenberg limit. We argue this effect maybe
minimally captured by a simpler classical toy model, which
allows for amplitude fluctuations and approaches the classical
Heisenberg limit upon tuning a single parameter.

A. Classification of non-Heisenberg effects at finite U/t

We first comment that there exists a two-particle contin-
uum of excitations, originating from particle-hole processes,
missed out by the present scheme. This is accessed by a quan-
tum RPA calculation done on the mean-field ordered states on
square and triangular geometries. However, this continuum is
energetically well separated from the spin-wave spectrum at
strong coupling and hence donot influence each other at the
temperature scales of interest. But, this argument breaks down
at weak coupling (e.g., U/t = 3.0), where indeed there is ap-
preciable mixing even at low temperature, and our dynamical
results are indeed imperfect, except near special, symmetry-
protected wave vectors like (0,0) or (π, π ). In what follows,
we only underline the non-Heisenberg features observed in
the spin-wave part.

In the full Hubbard problem, at intermediate U/t values,
there are two main non-Heisenberg features: (i) the ordered
state and the low T dispersion are modified, and (ii) the mo-
ment magnitudes are no longer fixed but are reduced at low T
and also fluctuate thermally. We will discuss the impact of the
second class of features in detail in the upcoming subsections.
To obtain the effects of the first class systematically at low T ,
one does an expansion about the mean-field state, which may
(as in the square lattice case) or may not (as in the triangular
one) have the same ordering as in the Heisenberg limit, with
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(a)

FIG. 11. (a) Fitted standard deviations (�|m|) from P(|m|) dis-
tributions, plotted against temperature for three couplings in the
square lattice case. Blue open circles denote actual data points, while
solid lines are fits using a square root function. The trends indi-
cate the increasing importance of amplitude fluctuations at weaker
couplings and a square root dependence, expected of a “soft spin”
Heisenberg model. (b) Lineshapes at q = (π/2, π/2) for the ampli-
tude fluctuations at U/t = 6.0, indicating a diffusive mode centered
at zero energy.

a reduced moment value. The effective Hamiltonian for mi’s,
obtained through integrating out the electrons perturbatively
in t/U , now involves longer range, multispin terms [58,59].
The couplings are decided by the electronic band structure
on the mean-field state. However, we should remember that
our model is composed of classical moments. Hence, the
coefficients do not match with those in the actual quantum
model.

These coefficients depend nontrivially on U/t . As a result,
the crossover lines between the thermal regimes are modified
with respect to the Heisenberg case.

To lowest order, a linear theory maybe written down for the
fluctuations, which has an analytic solution. We will discuss
this subsequently in subsection C. The contribution to the
effective field ( ∂〈H〉

∂mi
) coming from the leading non-Heisenberg

term, expanded upto O(δmi ) in fluctuations, looks like∑
i jkl

Ki jkl
[
m0

j

(
m0

k .δml + δmk .m0
l

) + δm j
(
m0

k .m
0
l

)]
.

The coupling Ki jkl has a lowest order contribution of
O(t4/U 3), as maybe motivated from a perturbative argument,
starting from the strong coupling limit. One now puts this
expression back in the first and second terms of Eq. (1),
along with the Heisenberg term 4t2/U

∑
〈 j〉 m j and the stiff-

ness contribution (U (|mi| − 1/2)2), and solves the resulting
equation via Fourier transformation. From the poles of the
ensuing power spectrum, one gets the low T dispersion, which
contains the leading non-Heisenberg effects.

B. Quantifying amplitude fluctuations

In this subsection, we quantify the extent and intrinsic
dynamical signature of fluctuations in the moment magnitude,
before launching into the construction of an effective model
to describe them. Figure 11(a) focusses on the longitudinal
fluctuations of the magnetic moments. These are, of course,
frozen in the Heisenberg limit. We fit the P(|m|) distribu-
tions, shown earlier in Fig. 1, to Gaussians and extracted the

corresponding standard deviations. These are plotted as func-
tions of temperature for various coupling values in the square
lattice case. In a “soft spin” Heisenberg model, where the
intersite term is Heisenberg but longitudinal fluctuations are
allowed, the behavior should be ∼√

T . However, we observe
deviations from this trend at lower U values. The coefficient
of the square root fits is exactly 1/

√
U at strong coupling.

Even at weaker couplings, the deviations are small. Hence, the
amplitude fluctuations can be effectively captured by a local
term Hamp = ∑

i U (|mi| − 1/2)2.
The spectral signature of these fluctuations is a diffusive

mode centered at zero frequency, shown in Fig. 11(b). This
is obvious from the locality of Hamp, which deactivates the
torque term in Eq. (1). The width is regulated by γ . Inter-
estingly, the weight at low frequency shows a nonmonotonic
behavior with T . This behavior, however, does not capture the
true physics of the amplitude mode, which should have a sig-
nature at ω ∼ U . For that, one needs to incorporate quantum
fluctuations of the magnetization field in the effective equation
of motion. We will discuss this briefly in subsection E.

C. Construction of an effective model

In the following, we describe the construction of an effec-
tive “classical moment” model, which essentially captures the
qualitative features of the full Hubbard model calculation at
all U/t . The model reads

Heff = Jeff

∑
〈i j〉

mi.m j + Keff

2

∑
i

(|mi| − |mHF |)2

− 2Jeff

∑
i

|mi|2. (8)

The first term encapsulates an “effective” nearest-neighbor
exchange between the local moments mi, the second term is
an amplitude stiffness, which regulates the thermally induced
fluctuations of the moment magnitude and the third term is
a counterterm that fixes the low T moment size to exactly
|mHF |, the Hartree-Fock value. The parameters Jeff and Keff

are extracted, respectively, from the low T RPA spin-wave
velocity (fitted to a nearest-neighbour Heisenberg model) and
the “curvature” of the Hartree-Fock energy, ∂2EHF /∂m2. Fig-
ure 12 illustrates the behavior of the above parameters for
various U/t values.

The model is constructed based on a strong-coupling ex-
pansion argument. At large U/t , the Hubbard model reduces
to a spin model of the following form:

Heff = Hloc + Hcoup, Hloc = U

(
|mi| − 1

2

)2

+ ...,

Hcoup = J2

∑
〈i j〉

mi.m j + J4

∑
i jkl

f [mi, ...ml ] + ... (9)

Hloc is basically the HF energy in terms of moment mag-
nitude, expanded to quadratic order in the deviations. Hcoup

reduces to the first term with J2 = 4t2/U as U/t → ∞. This
can be shown explicitly by expanding about the U/t → ∞
local limit. On including further terms in the expansion (sub-
leading in t/U ), one gets longer range, multi-spin couplings.
We lump the effect of all nonlocal terms into an equivalent
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FIG. 12. The effective exchange Jeff , second derivative of Hartree-Fock energy with respect to moment magnitude ( ∂2EHF
∂m2 ), which is

proportional to the amplitude stiffness Keff and Hartree-Fock moment value (|mHF |), as determined from HF and RPA calculations, for various
U/t values on the square lattice Hubbard model.

nearest-neighbor coupling Jeff and retain the local amplitude
stiffness in our simplified model. The strong coupling limit
is also correctly recovered as Jeff → 4t2/U , Keff → 2U , and
|mi| → 1/2 as U/t → ∞ in our model. The result of the
aforesaid construction is that it reproduces the thermal physics
of the classical Heisenberg model at all T/t for large U/t . At
weaker couplings, the T = 0 state is captured with the correct
(mean-field) moment value and the low-energy spin-wave ex-
citations (in particular their velocity vSW ) are also correctly
captured by construction.

As regards the results obtained using the above model,
we first compare the static indicators, in particular the low-
temperature structure factor S(π, π ) between the original
Hubbard model and this effective model at various U/t values.
To minimize parametric dependencies, the comparison was
done using the Monte Carlo technique, elaborated in Ap-
pendix B. The results for the correlation temperatures (Tcorr)
are shown in Fig. 13(a). The basic observation is that the
nonmonotonicity of this scale as a function of U/t , is success-
fully captured by the effective model, albeit the maximum is
slightly shifted to higher U/t . The Tcorr within the effective
model scales roughly as ∼|m|2HF Jeff for large U/t , but crashes
faster at lower U due to the effect of Keff .

FIG. 13. (a) Comparison of the correlation temperatures (Tcorr),
extracted from the respective structure factors S(π, π ) of the full
Hubbard (blue curves) and effective model (green curves) obtained
using Monte Carlo (MC) method described in the paper. One ob-
serves that the nonmonotonicity is well captured by the former
model. (b) Thermal regimes obtained using Langevin dynamics of
the effective model [Eq. (10)] with varying K/J . A qualitative resem-
blance with the square lattice Hubbard results [Fig. 4(c)] is apparent.

To further simplify the three parameter effective model of
Eq. (8), we scaled the effective couplings Jeff and Keff by the
moment value |mHF | appropriately and reduced Eq. (8) to an
“equivalent one-parameter” model of the following form:

H1par = J
∑
〈i j〉

mi.m j + K

2

∑
i

(|mi| − 1)2 − 2J
∑

i

|mi|2

(10)

where J is set to 1 and K/J is varied to mimic the behavior
of the earlier model. The moment magnitudes fluctuate about
unity for all couplings in this model. The results obtained
using Eq. (10) agree quantitatively with those originating from
Eq. (8), which is formally equivalent.

Next, we move to the dynamics. The thermal regimes in
the dynamics of the effective model [Eq. (10)] are depicted
in Fig. 13(b). They qualitatively resemble the scaled phase
diagram [Fig. 4(c)] of the full Hubbard problem. This cor-
roborates the usefulness of the effective model, not only to
understand the static properties, but also dynamical features.

After comparing the gross features of the dynamics, we
also examined whether the same effective model [Eq. (10)]
can mimic the changing low T behavior of the damping in
the full Hubbard problem. We extracted the excess damping
at finite T and plotted it for the generic q = (π/2, π/2) as
a function of T/J . One finds that empirically one may fit
this excess damping �q − �0

q to a polynomial of the form
αT + βT 2, with the coefficients depending on K/J . Upon ex-
amining the fitting parameters, one observes that the α ∝ 1/K
at low K and decreases to zero in the fixed moment limit
(K/J → ∞). The quadratic coefficient β is roughly constant
at large K . The results are shown in Figs. 14(a) and 14(c).
Such features are also observed qualitatively in the full Hub-
bard calculation, where the normalizing energy scale is chosen
as Jeff = 4t2/U . These results are shown in Fig. 14(b).

We next try to find an a posteriori justification for the
rising linear coefficient and rise in damping as on reduces
the amplitude stiffness by imagining undamped spin-wave
modes getting affected by amplitude disorder. If one is at
sufficiently low temperature, the equation of motion [Eq. (1)]
maybe linearized in terms of deviation from the ground-state
configuration. On the square lattice, for instance, one simply
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(c)

FIG. 14. (a) The excess thermal damping (�q − �0
q), plotted as a function of T/J for various stiffness values in the approximate J − K

model for q = (π/2, π/2). One notes that the low T linear regime shrinks on increasing K/J and the behavior turns to parabolic. (b) The same
quantity extracted from the full Hubbard model calculation at various U/t values. Similar qualitative features are observed. (c) Plot of fitting
parameters α and β for the approximate model, showing the quadratic to linear crossover on decreasing K/J .

expands the mi as

mi = m0
i + δmi, m0

i = (−1)ix+iy ẑ. (11)

Keeping upto the linear order in fluctuations δmi gives us
an analytically solvable starting point. The effective equation
is

dδmi

dt
+ J

(
m0

i ×
∑
〈 j〉

δm j −
∑
〈 j〉

m0
j × δmi

)

+ γ

(
J

∑
〈 j〉

δm j + K
∑

i

(−1)iδmz
i ẑ

)
= �ξi. (12)

The transverse and longitudinal modes gets decoupled at
this order. On Fourier transforming this equation and solving
for the power spectrum, one finds the usual dispersion of
the antiferromagnetic classical Heisenberg model, while the
damping of transverse spin-wave modes is limited by γ J .
The longitudinal modes generally give rise to a diffusive
lineshape, and freeze for K/J → ∞. On top of this low
temperature, purely transverse theory, one may switch-on
amplitude fluctuations perturbatively. The width of these fluc-
tuations is ∝ 1/K . On treating them as static, uncorrelated
disorder, they cause the eigenmodes of the linear theory to
scatter. In the lowest order Born approximation, this generates
a self-energy, whose imaginary part translates to an additional
contribution to the magnon linewidth. This has a prefactor T
coming from the propagator of transverse fluctuations. In the
static limit, the coefficient of this correction is thus propor-
tional to T/K . Hence as K is reduced from infinity, the linear
T correction to spin-wave damping increases as 1/K , as is
seen in the numerical data.

The aforesaid argument does not include the effect of
nonlinear interactions among the transverse fluctuations. To
evaluate their effect, one expands upto second order in the
deviation field, which generates a δmq × δmq′ contribution
in the equation of motion. If one substitutes the lowest order
solution in this and averages over the noise, this correction
term vanishes, owing to the fact that the noise is uncorrelated
between different Cartesian axes. Hence, no O(T ) contri-
bution is found for the damping of transverse fluctuations.
The lowest order correction is of (O(T 2)), as is found in the

extensive literature [85,86]. This becomes the leading term
when amplitude fluctuations are completely restricted (in the
K/J → ∞ limit).

D. Computational issues for frustrated systems

One would want to ultimately apply this formalism to
study the Hubbard model on fully frustrated geometries (e.g.,
kagome in 2d and pyrochlore in 3d). The rich spin dynamics,
with the moment softening and multipsin coupling effects
present beyond the Heisenberg limit, should be accessible at
finite temperature. However, there are some tough compu-
tational difficulties associated with this attempt. Briefly, the
issues are

(i) Extracting even the static properties correctly (vis-a-vis
Monte Carlo) requires much longer run lengths compared to
the square or triangular case. This occurs due to the rugged
free energy landscape associated with the problem. Novel
strategies, involving simultaneous updation of multiple mo-
ments, ameliorate the situation in specific cases.

(ii) The numerical implementation of the Langevin dy-
namics scheme, using Suzuki-Trotter decomposition, breaks
down when the systematic torque on a site becomes iden-
tically zero. This happens, for instance, for the Heisenberg
model on the 2d kagome lattice. Hence, a more complicated
discretization strategy is called for.

E. Adiabaticity and thermal noise

1. The adiabatic assumption

Our approach has assumed that the characteristic timescale
for magnetic fluctuations is much greater than electronic
timescales, in analogy with the electron-phonon problem [87].
In such a situation (i) the electronic energy depends only on
the instantaneous magnetic configuration, and (ii) the leading
contribution to electronic correlators can be computed with-
out invoking retardation effects. This argument holds good
in the strong coupling regime, where the magnetic fluctua-
tions operate on a scale of Jeff ∼ t2/U and the electrons are
gapped at a scale ∼U . However, as U/t reduces, the former
scale rises and the latter diminishes due to closing of the
gap. So, the argument is not very good. We also comment
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that the auxiliary field correlator, which we computed, repro-
duces the essential features of the real spin-spin correlator
〈σi(t ).σ j (t ′)〉, measured in INS experiments as long as the adi-
abaticity assumption holds good. This happens because the
auxiliary field dynamics basically follows the σi field, with the
distinction that its magnitude is not strictly bounded between
0 and 1. As a result, the respective intensities are different.

2. The noise driving the dynamics

The present method for accessing spin dynamics excludes
the effect of quantum fluctuations. This firstly results in the
unphysical freezing of the moments at T = 0 and makes the
method unable to access the ground-state magnon spectrum.
Furthermore, this feature limits the viability of the scheme at
low temperatures for frustrated geometries, where order by
disorder phenomena are observed. To remedy this, the noise
has to be consistently generated with respect to the polariz-
ability of the problem, which itself will depend on the mi(t )
trajectories.

Using a Keldysh formulation of the original Hubbard
model, and decomposing the interaction term using an aux-
iliary vector field mi, we may subsequently assume this field
to be slow with respect to the electrons. This enables one to
write an effective equation of motion for mi,cl of the following
form:

�[
Tr

(
ĜK

ii (t, t )�σ
)] = mi,cl (t ) + �ξi(t )〈

ξ a
i (t )ξ b

j (t ′)
〉 = [�̂K (t, t ′)]ab

i j . (13)

Here GK and �K are the Keldysh Green’s function and
(spin-dependent) polarizability of the electrons respectively.
In the adiabatic limit, each of these maybe expanded in a
Kramers-Moyal series [88]. On assuming that the coefficients
donot have any spatial dependence and the temperature is high
enough compared to characteristic frequency scale of these,
one arrives at a much simpler equation of the LLG form,
which upon neglecting certain multiplicative noise terms re-
duces to Eq. (1).

To include the effect of quantum fluctuations, the high
T approximations done on the coefficients of the Kramers-
Moyal expansion need to be relaxed. Basically, if the
temperature approaches the energy scale of two-particle ex-
citations, the memory-less assumption on the noise becomes
unjustified.

VII. CONCLUSIONS

We have studied the dynamics of magnetic moments in
the Mott insulating phase of the half-filled Hubbard model
on square and triangular lattice geometries, using a Langevin
dynamics based real-time technique. The method reproduces
known results on the Heisenberg model in the strong coupling
limit, and the RPA based low-energy dispersion at low T
faithfully. We observe three broad regimes in the dynamics:
(i) weakly damped, where spin waves are dispersive and
dampings are small; (ii) strongly damped, where one can
see significant broadening due to mode coupling, but the
dispersive character survives; and (iii) diffusive, where the
mode frequencies collapse to zero and the dampings span the
full bandwidth. The main results are twofold: (a) we obtain

the deviation of low-temperature dispersion from the Heisen-
berg results, and (b) we observe the onset of the thermal
crossovers at significantly lower values of T/Jeff , compared
to the Heisenberg case. One also captures the effect of mild
geometric frustration on the mode damping, on going from
the square to the triangle. The method maybe applied to
study equilibrium dynamics in fully frustrated lattices (e.g.,
pyrochlore) in near future.
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APPENDIX A: NUMERICAL DETAILS OF THE LANGEVIN
SCHEME

All of our Langevin dynamics simulations are done by dis-
cretizing Eq. (1) in real time and implemented in a Cartesian
coordinate scheme. The particular technique used to solve
the equations is the Euler-Maruyama method [89]. The time
step is chosen to be 0.01τmag. At each step, the derivatives
appearing in the right-hand side of Eq. (1) are computed
through exact diagonalization of the electronic problem. The
derivative ∂〈HSF 〉

∂mi
for our model is just U (mi − 〈σi〉). Typically,

the simulations are ran for 3 × 106 steps. We gave parallel
runs for each temperature point, with the Hartree-Fock (HF)
state as the initial condition for each value of the Hubbard
coupling. The lattice size for the results shown for both the
square and triangular cases is 18 × 18.

APPENDIX B: NUMERICAL DETAILS OF THE MONTE
CARLO SCHEME

To benchmark the static properties obtained via the
Langevin scheme, we used a competing Monte Carlo (MC)
method. One first writes the Hubbard model in the Mat-
subara formalism and then decouples the quartic interaction
in terms of the mi field. Next, only the zero Matsubara
mode of this field is retained, assuming T � Jeff and tempo-
ral fluctuations of the field can be neglected. However, the
thermal fluctuations and the associated spatial correlations
are treated nonperturbatively. This enables one to write an
effective Hamiltonian for the auxiliary fields as

Heff = − 1

β
log Tre−βHel + U

∑
i

|mi|2

Hel = −
∑
〈i j〉σ

ti j (c
†
iσ c jσ + H.c.) − U

∑
i

mi.σi. (B1)

Finally, configurations of the mi field are sampled using
P(mi ) = Trcc† e−βHeff as the sampling weight. These config-
urations are used for computing static structure factors and
distribution of moment magnitudes, defined in Eq. (5) and
Eq. (7), respectively and shown in Figs. 1(a) and 1(b). We
also mention that the correlation temperatures in Fig. 2(a) are
size dependent, and will ultimately collapse logarithmically
with system size. However, we have still compared the MC
and Langevin answers for the same system size to ensure that
the latter method faithfully reproduces the static properties.
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FIG. 15. Comparison of spin-wave velocities (vSW ) computed
using our Langevin dynamics (LD) technique and the random phase
approximation (RPA) on the square lattice. We observe similar trends
and quantitatively lower values in LD compared to RPA. This is due
to our assumption of classical spins.

APPENDIX C: COMPARISON OF LOW-TEMPERATURE
SPECTRUM WITH RPA

We compare the low-temperature spectra obtained using
our technique with the standard spin-wave theory (RPA) re-
sults for the square lattice in Fig. 15. The spin-wave velocities
are quoted from the work of Singh et al. [41]. One observes
a fair agreement in terms of the trends. The RPA values are
slightly higher. We ascribe this discrepancy to our assump-
tion of classical magnetic moments. However, since our main
focus is on the finite temperature dynamics, the quantitative
mismatch is not very important. The agreement improves as
one approaches the Heisenberg limit.

APPENDIX D: APPROACHING THE MOTT TRANSITION

In the triangular lattice, there is a finite Uc ∼ 4.5t for the
Mott transition. Close to the transition, one observes com-
plex large-period order [19]. However, staying within the
120◦-ordered state (restricting ourselves to large enough U/t
values where the ground state is the former), we observe
signatures of proximity to Uc in the spectrum. Figure 16

FIG. 17. Real-time trajectories of Re(mz
q )(t ) in three thermal

regimes: (i) weakly damped (T/t = 0.001), (ii) strongly damped
(T/t = 0.06), and (iii) diffusive (T/t = 0.2). In (i), we see oscil-
lations with timescale ∼τmag In (ii), some intermediate timescales
emerge, but the earlier scale is still visible. In (iii), the bare-
oscillation scale is obliterated and slow, large amplitude fluctuations
dominate.

shows a marked softening of magnetic modes along the
� − K trajectory and a gradual linear trend of the dispersion
along K − M as the coupling is lowered. We have already
shown the spectra at U/t = 6 in the main text, which is the
lowest coupling we have explored within the 120◦ ordered
family. Ideally, the complex dynamics in the vicinity of the
transition should also be capturable using our strategy, but
requires considerably more numerical effort, as one needs to
do a thermal annealing to even fix the initial state for the
dynamics.

APPENDIX E: REAL TIME DYNAMICS

In Fig. 17, we show the trajectory of the real part of
mz

q for a generic wave vector, q = (π/2, π/2), in real time
for the three representative regimes: (i) weakly damped, (ii)
strongly damped, and (iii) diffusive. These are results for the
square lattice Hubbard model at U/t = 10.0. We have also
scaled the y axis by

√
T , to gauge out the dominant part of

amplitude fluctuations. At the lowest T , we see oscillatory be-
havior, modified by weak noise. The characteristic timescale
is τmag ∼ 1/Jeff . This corresponds to a well-defined lineshape
in frequency. In the second panel [regime (ii)], one observes
the emergence of some new timescales, but the earlier scale
is still visible. This translates in frequency space to broad-
ened lineshapes centered around �q(T = 0). On heating up

FIG. 16. Low-temperature spectra on the triangular lattice on gradually lowering U , approaching the Mott transition. All the couplings
shown display order at zero temperature, with progressively smaller moment magnitudes. One observes a dramatic softening of modes along
the � − K region in momentum space, albeit with a robust magnon bandwidth.
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further, thermal effects kill off the bare-oscillation timescale
and slow oscillations dominate the time series. The ampli-

tude also increases significantly, even after gauging the
√

T
factor.
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