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Broken Luttinger theorem in the two-dimensional Fermi-Hubbard model
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One of the fundamental questions about high-temperature cuprate superconductors is the size of the Fermi
surface underlying the superconducting state. By analyzing the single-particle spectral function for the Fermi-
Hubbard model as a function of repulsion U and chemical potential μ, we find that the Fermi surface in the
normal state undergoes a transition from a large Fermi surface matching the Luttinger volume as expected in a
Fermi liquid, to a Fermi surface that encloses fewer electrons that we dub the “Luttinger breaking” phase, as the
Mott insulator is approached. This transition into a non-Fermi-liquid phase that violates the Luttinger count oc-
curs at a critical density in the absence of any other broken symmetry. We obtain the Fermi-surface contour from
the spectral weight Ak(ω = 0) and from an analysis of the singularities of the Green’s function Re Gk(E = 0),
calculated using determinantal quantum Monte Carlo and analytic continuation methods. We discuss our
numerical results in connection with experiments on Hall measurements, scanning tunneling spectroscopy, and
angle-resolved photoemission spectroscopy.
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I. INTRODUCTION

A question of fundamental importance for strongly corre-
lated metals near a Mott transition is, What is the size of the
Fermi surface (FS)? Does it count all the electrons or only
the carriers relative to the Mott filling? In other words, is the
Fermi surface large or small [1]? And furthermore, if the FS
deviates from the Luttinger volume, is it due to reconstruction
of the FS due to competing order or due to topological order?

We are motivated by three sets of experiments on the
cuprates: the Hall coefficient which gives information on the
density and type of carriers [2,3], scanning tunneling spec-
troscopy [4–6] that gives information about broken charge
density and pair density order, and angle-resolved photoe-
mission spectroscopy [7–10] that gives information about the
momentum-resolved density of states. The Hall number nH

in YBa2Cu3Oy (YBCO) shows a distinct change at a critical
doping pH

c from nH ≈ 1 + p at high doping p of holes to
nH ≈ p for low doping [2]. The next question is whether the
change in behavior of the Hall coefficient occurs due to broken
symmetry in the charge, spin, or pairing channels. Scanning
tunneling spectroscopy experiments indicate that charge order
is observed in YBCO below a critical doping pCDW

c < pH
c

[4–6,11], which suggests that the mechanism causing the
change of the Hall coefficient and the mechanism driving
charge order are distinct phenomena.

Here we sharpen the question for the celebrated Hubbard
model rather than focusing on analysis of experiments, the
latter being undoubtedly more complicated. Early quantum
Monte Carlo (QMC) calculations of the spectral function
related antiferromagnetic fluctuations to pseudogap forma-
tion and quasiparticle weight transfer [12–15]. More recent
work focused on systems with particle-hole asymmetry, intro-
duced by next-nearest-neighbor hopping. Cluster dynamical
mean-field theory (CDMFT) studies have shown that the

quasiparticles show momentum-dependent renormalizations
due to proximity to the Mott transition, even in the absence
of long-ranged antiferromagnetic correlations [16–21].

In this paper, our aim is to extract the underlying FS as
a function of doping, with particular emphasis on the region
close to the Mott transition [22]. We focus on the particle-hole
symmetric Hubbard model with only nearest-neighbor
hopping. Our main result is that the FS volume follows the
Luttinger volume for high densities, but starts deviating below
a critical density nc, as the Mott density is approached (Fig. 1).
In other words, the Luttinger-breaking FS does not change
abruptly from a volume that counts (1 + p) holes to p holes,
but evolves continuously below nc. A similar evolution occurs
on the hole-doped side as well, by particle-hole symmetry
for the case studied here with zero next-nearest-neighbor
hopping. We also discuss the behavior of Re G [Eq. (4)]
which shows sign changes as the Mott insulator is approached
[23,24].

This evolution from a large FS to a small FS is
observed in Hall coefficient of single-layer cuprates such as
Ti2Ba2CuO6+δ and Bi2Sr2CuO6+δ and is cited as evidence for
a “hidden” order that may be responsible for the pairing mech-
anism of high-Tc superconductors [3,25]. Such ideas have also
been discussed in the literature previously [15,16,24,26,27].
The significance of the quantum Monte Carlo simulation
results presented here are the insights obtained from the
momentum space contour of the spectral function at ω = 0
for a model instead of a material that allows us to interpret
features in the spectral function solely to Mott physics.
Furthermore, the availability of QMC data on larger lattices
allows us to obtain the spectral function on the FS contour on a
finer mesh of k points to observe the violation of the Luttinger
count close to the Mott transition. The use of four different
approaches to obtain the Fermi-surface volume strengthens
our findings.
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FIG. 1. Evidence for Luttinger-breaking Fermi surface: The
Fermi-surface volume deviates strongly from the expected Luttinger
volume which is proportional to the charge carrier density, below
a critical density nc as the Mott insulator at n = 1 is approached.
Determinantal QMC results for the Hubbard model on a 16×16
square lattice for U/t = 10t and βt = 2 showing nc ≈ 1.2.

We calculate the FS contour by using determinantal quan-
tum Monte Carlo methods to obtain the imaginary-time
Green’s function, Gk(τ ), as a function of the interaction
strength, carrier concentration, and temperature. Analytic
continuation of G yields the spectral function Ak(ω) [28–33]
whose contour at ω = 0 then yields the FS.

We also analyze the behavior of the Green’s function,
Re Gk(E ), and find that it changes sign at zero chemical
potential in two distinct ways: (i) For densities away from
unity, the sign change occurs through a pole, as expected
for a system with well-defined quasiparticles [16]. (ii) As the
Mott density is approached, the sign change occurs through a
zero. Such a behavior was first pointed out by Dzyaloshinskii
[23] as occurring in a Mott insulator. In this paper, we find
remarkably that the breakdown of the Luttinger count happens
in the metallic state approaching the Mott insulator. We show
that proximity to a Mott insulator naturally fractionalizes the
spectral function into an incoherent lump and a sharper quasi-
particle piece, and furthermore the contour in momentum
space at zero energy violates the Luttinger count. Notably, the
reorganization of states is found to occur in the absence of
any competing order, indicating the emergence of a “Luttinger
breaking” (LB) non-Fermi-liquid phase.

II. MODELS AND METHODS

The Fermi-Hubbard model is the paradigmatic model
for Mott insulators, strongly correlated metals, and high-
temperature superconductors. In its particle-hole symmetric
form, the Hamiltonian is given by

H = − t
∑

〈i, j〉,σ
(ĉ†

i,σ ĉ j,σ + H.c.)

+ U
∑

i

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
− μN̂, (1)

defined so that when the chemical potential μ = 0, the aver-
age density is unity ensuring that the system is half filled. Here

t is the tunneling amplitude for a fermion to hop from one
site to a neighbor without changing the spin, σ =↑,↓, and U
is the on-site Coulomb repulsion. The spatial index i labels
a site on a 2D square lattice, and ĉi,σ and ĉ†

i,σ are fermionic
annihilation and creation operators, respectively. The num-
ber operator is defined as n̂i,σ ≡ ĉ†

i,σ ĉi,σ , n̂i = n̂i,↑ + n̂i,↓, and
the particle density per site n = ∑

i 〈n̂i〉/Ns, where Ns is the
total number of sites. Relative to the filled band with two
electrons per site, the hole density is 1 + p. Particle-hole sym-
metry is exhibited by the transformation of particle creation
and annihilation operators for hole annihilation and creation
operators, respectively: c†

σ i −→ (−1)idσ i, cσ i −→ (−1)id†
σ i. A

finite next-nearest-neighbor hopping term, t ′, which we do
not include in our discussion here, would break particle-hole
symmetry in Eq. (1). We calculate thermodynamic properties
and the single-particle Green’s function by implementing the
determinantal QMC algorithm.

III. OBTAINING THE FERMI-SURFACE CONTOUR

Luttinger’s theorem asserts that the volume enclosed by the
Fermi surface of an interacting Fermi liquid is proportional to
the number of particles in the system [1]. This allows us to
find the reference noninteracting Fermi surface corresponding
to the actual density obtained by QMC for the specific set of
parameters (U, T, μ) [orange contour in Fig. 2(a); see also
Fig. 3].

It is also useful to compare with the contour obtained
from the momentum distribution function (MDF) [Fig. 4(b)]
nk = 1/2 calculated by QMC [shown in white in Fig. 2(a)].
In the thermodynamic limit for a noninteracting system at
T = 0, the MDF has a jump of size unity Z = 1 at the Fermi
wave vector kF (k) when the system transitions from occupied
states below kF to zero occupancy above. In a Fermi liquid,
following Luttinger’s theorem, kF (k) does not change upon
including electron-electron interactions and 0 < Z � 1. Due
to interelectron interactions, some of the states below kF (k)
are scattered into states above but nevertheless in a Fermi liq-
uid, a finite step at kF persists at T = 0. At finite T , naturally
the step gets rounded; however, from the peak in the gradient
of the MDF [Fig. 4(b)] as a function of k, we can extract the
location of the underlying FS.

From QMC we directly calculate the Green’s function in
imaginary time τ and from that using an analytic continuation
procedure we obtain the spectral function:

Gk(τ ) =
∫ ∞

−∞
dω

[
e−ωτ

1 + e−βω

]
Ak(ω). (2)

The spectral function Ak(ω) = −(1/π )Im Gret
k (ω) gives

information about the probability of finding an electron in
state (k, ω). In the noninteracting and thermodynamic limits
the only k states that have spectral weight at ω = 0 are the
states on the Fermi surface. For the interacting system, we use
this property to find the size of the Fermi surface by examining
the k states that are found at zero bias energy.

We implement an iterative maximum-entropy method to
calculate the spectral function that most accurately reproduces
the input Green’s function within error bars [29]. The Fermi
surface is constructed by finding the energy that maximizes
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FIG. 2. Spectral functions of Hubbard model: (a) Fermi-surface contours for a square lattice Brillouin zone calculated by 4 different
methods for the Hubbard model at U = 10t as a function of density: (i) Luttinger’s theorem applied to a free system (orange); (ii) momentum
distribution function (MDF) contour formed by nk = 1/2 (white); (iii) spectral weight at the Fermi energy Ak(ω = 0) (black); and (iv) the zero
of the real part of the retarded Green’s function Gret

k (E = 0) (green). Lattice size 16×16 sites and βt = 2. (b) Spectral function Ak(ω) averaged
over k states on the Fermi-surface contour. The total spectral weight is normalized

∫ ∞
−∞ Ak(ω)dω = 1. For comparison the noninteracting metal

spectral function is shown at the same temperature, and on the same lattice size (dashed) and contrasted with the interacting metal for n = 1.41.
“Interacting metal” is distinguished from the “Luttinger breaking” (LB) regime by the agreement of the MDF and spectral contours. The Mott
insulator occurs at n = 1. (c) The real part of the Green’s function is calculated using Eq. (4) for the spectral functions shown in (b). A polelike
sign change of the Green’s function at E = 0 indicates the presence of a quasiparticle on the Fermi surface, consistent with the behavior in a
Fermi liquid. The behavior changes dramatically in the Luttinger-breaking regime with sign changes at finite energy. In the Mott insulator at
n = 1 the Green’s function changes sign at zero energy via a zero, instead of a pole.

the function

f (E ) =
∫

E=−2t (cos kx+cos ky )
Ak(ω = 0)dk, (3)

where E corresponds to a tight-binding contour in the Bril-
louin zone. In essence, we determine the tight-binding contour
that most closely fits the peaks of the spectral function,
Ak(ω = 0) at the energy E f = −2t (cos kk + cos ky), thereby
locating the approximate Fermi surface. Note that the choice
to approximate the Fermi surface with a tight-binding contour
[black curve in Fig. 2(a)] is justified by the Hubbard-I approx-
imation (Sec. V).

A related quantity, the real part of the Green’s function,
defined by the sum over Matsubara frequencies,

Re Gk(E ) =
∑
ωn �=E

Ak(ωn)

ωn − E
(4)

provides a second indicator of the Fermi surface contour as the
sign change across Re Gk(E = 0) marks the Fermi surface
boundary (shown in green) [23,34]. We construct the Fermi

surface by finding the contour over the Brillouin zone where
the Green’s function changes sign, or when Gret

k (E = 0) = 0.
When the sign change is polelike, instead of zerolike, a quasi-
particle is present on the Fermi surface for momentum k. Note
that while Ak(ω = 0) uses only information at ω = 0 to map
the Fermi-surface contour, Re Gk(E = 0) uses information
over the entire spectral range of Ak(ω) to map the contour.

IV. RESULTS

For dopings greater than p � 0.2 each of these methods
of finding the FS show stark agreement. Such a validity of
Luttinger volume is found even for large U for sufficiently
large doping. However, when the doping is less than p � 0.2,
we observe a departure of the FS contours obtained from these
four methods. The size of the white and orange surfaces, cor-
responding to the nk = 1/2 contour and the Luttinger surface,
respectively, count the total electronic density. The spectral
weight and retarded Green’s function boundaries, black and
green contours, respectively, on the other hand, recede to
include fewer states. In other words, the spectral function
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FIG. 3. Fermi-surface contours for a square lattice Brillouin zone
calculated by 4 different methods for the Hubbard model at U = 10t
as a function of density. (i) Luttinger’s theorem applied to a free sys-
tem (orange); (ii) momentum distribution function (MDF) contour
formed by nk = 1/2 (white); (iii) spectral weight at the Fermi energy
Ak(ω = 0) (black); and (iv) singularity of retarded Green’s function
Gret

k (E = 0) (green). Lattice size 16×16 sites and βt = 2.

methods indicate that the Fermi surface is reconfigured from a
large Fermi surface enclosing n = 1 + p fermions to a smaller
one as quantified in Fig. 1, below a critical density of nc ≈ 1.2.
As observed in Fig. 2(a), the black and green contours trans-
form from being close to a diamond-shaped Fermi surface to
a small circular Fermi surface centered around the � point;
the deviation occurs for densities n � 1.2. The critical doping
at which the FS volume deviates from the Luttinger count is
above the doping for the Lifshitz transition at which the FS
changes character from holelike to electronlike as the Fermi
surface decreases in size, as also seen from Fig. 1, and in
agreement with other numerical studies [19]. Our results on
the smooth evolution of the FS from obeying the Luttinger

count to a LB Fermi surface are consistent with the mea-
surements of the Hall number in single-layer cuprates such
as Ti2Ba2CuO6+δ and Bi2Sr2CuO6+δ [3].

The quasiparticle weight, shown in Fig. 4(a), shows the
fraction of the spectral function, Ak f (ω), around zero en-
ergy, defined by QW = ∫ ε

−ε
Ak f (ω)dω. As a reference we

use the U = 0 spectral function of the finite-size broadened
noninteracting metal from a delta function to a Lorentzian
distribution of width 2ε in Fig. 2(b) (lowest panel) to ac-
count for the resolution in the analytic continuation procedure.
The interacting system shows the development of incoherent
sidebands or Mott bands around the peaked spectral function
at ω = 0. The Fermi-surface restructuring is already visible
below n ≈ 1.2 and the deviation of the actual Fermi contour
from the Luttinger contour only gets more pronounced as
the incoherent weight increases upon approaching the Mott
transition at n = 1.

It is important to note that there is no evidence of
long-range antiferromagnetic order at the temperatures and
parameters at which we are analyzing the Fermi surface.
As previously noted [15] the spectral functions obtained by
the Hubbard-I approximation [35], which neglects spin cor-
relations, are remarkably similar to the QMC ones at half
filling in this range of parameters. The spin structure factor at
(π, π ), shown in Fig. 4(c), shows a small peak at n = 1 which
gets quickly suppressed as the density moves away from this
commensurate value. The absence of long-range order in the
presence of a reconfiguration of the Fermi surface is a strong
indication of some hidden order [25] or topological order in
the absence of a Landau symmetry breaking.

V. HUBBARD-I APPROXIMATION

The Luttinger-breaking phase can be qualitatively under-
stood by analyzing the Hubbard-I approximation [15,35],
which transforms Eq. (1) via

ci,σ = ci,σ ni,−σ + ci,σ (1 − ni,−σ ) (5)

≡ (di,σ + h†
i,σ ). (6)

FIG. 4. (a) Behavior of (i) the occupation of the nk = (0, 0) state, (ii) the quasiparticle weight around the chemical potential, (iii) the
compressibility n2κ = dn/dμ, and (iv) the FS volume (also shown in Fig. 1), all plotted as a function of density. (b) Momentum distribution
function n(k) as a function of density for multiple values of n. (c) Structure factor across the Brillouin zone for multiple values of n obtained
from the spin-spin correlations showing the absence of long-range magnetic ordering. Lattice size 16×16, U = 10t , βt = 2.
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We have split up the particle annihilation operator into
a doublon annihilation and a holon creation operator. The
Hamiltonian [Eq. (1)] becomes

HHub−I = − t

2

∑
〈i, j〉,σ

(d̂†
i,σ d̂ j,σ + ĥi,σ ĥ†

j,σ )

− t

2

∑
〈i, j〉,σ

(d̂†
i,σ ĥ†

j,σ + H.c.) − U
∑
i,σ

(ĥi,σ ĥ†
i,σ ).

(7)

In this picture, the single-particle occupied sites are treated
as the background vacuum from which doublons and holons
are created and propagate. The Hubbard-I approximation as-
sumes that spin interactions are negligible. We need to account
for this by halving the hopping term (t −→ t/2) because Pauli
exclusion limits the possible avenues for a doublon to hop
to a singly occupied site by half. The new operators have
anticommutation relations

{d̂i,σ , d̂†
j,σ ′ } = δi, j (δσ,σ ′ (1 − ĥ†

i,σ ĥi,σ ) + δσ,−σ ′ d̂i,σ d̂†
j,σ ′ ), (8)

{ĥi,σ , ĥ†
j,σ ′ } = δi, j (δσ,σ ′ (1 − d̂†

i,σ d̂i,σ ) + δσ,−σ ′ ĥi,σ ĥ†
j,σ ′ ), (9)

which we approximate as canonical anti-commutation rela-
tions in the limit U � t due to the suppression of hopping:
〈d̂†

i,σ d̂i,σ 〉 = 〈ĥ†
i,σ ĥi,σ 〉 ≈ 0. The Fourier transform of the

Hubbard-I Hamiltonian is

HHub−I =
∑
k,σ

(
εk

2
d̂†

k,σ d̂k,σ + εk − U

2
ĥk,σ ĥ†

k,σ

)

+
∑
k,σ

εk

2

(
d̂†

k,σ ĥ†
−k,σ + H.c.

)
(10)

= �†
σ

( εk
2

εk
2

εk
2

εk
2 − U

)
�σ , (11)

where ε(k) = −2t (cos kx + cos ky), and �†
σ = (d̂†

k,σ , ĥ−k,σ ).
Diagonalizing the Bogoliubov–de Gennes Hamiltonian gives
the dispersion: two bands each with a bandwidth of approxi-
mately t and separated by a gap U ,

E±(k) = 1
2 (ε(k) − U ±

√
ε(k)2 + U 2). (12)

The associated Brillouin zones for each band possess the
same number of states: two spin flavors for every momentum
state, which is double the number of degrees of freedom
from the traditional Hubbard model, but this is resolved by
the redundancy in our implementation: d̂†

i↑d̂i,↑ = d̂†
i↓d̂i,↓, and

likewise for holons. The implication of this large-U approx-
imation is that the doped Fermi surface constructed on the
Brillouin zone in this limit [Fig. 2(a)] is the Fermi surface of
upper-band quasiparticles across the Brillouin zone of upper-
band quasiparticles.

The energy bands derived above are explicitly for the
half-filled limit. To solve for the energy bands of the doped
Hubbard-I model requires analysis of the Green’s functions of
the doublon and holon operators [36]:

E±
n (k) ≈ 1

2 (ε(k) − U ±
√

U 2 + ε(k)2 − 2(1 − n)ε(k)U ).

(13)

FIG. 5. The Fermi-surface area (FSA) of the well-established
Hubbard-I approximation compared to our DQMC results show simi-
lar features. The FSA of the doped Hubbard-I model is calculated for
the doublon Brilluoin zone, and n = 1 + d where d is the doublon
density.

The Fermi-surface area is taken to be the number of filled
states in the upper band which is a function of n(μ) and
μ. Figure 5 shows the comparison of our results and the
Hubbard-I approximation. Attempts to increase the precision
of this approximation by adding spin interactions [15] show a
similar dependence on the doping at n ≈ 1.

The compressibility κ serves as a diagnostic of Hubbard-I
physics as it is a measure of the number of conducting quasi-
particles, which is proportional to the number of states on the
Fermi surface. The Mott insulator, where κ (T = 0) = 0, con-
tains no conducting quasiparticles since the chemical potential
is in the Hubbard-I band gap. We obtain the compressibility
using the fluctuation dissipation theorem:

κn2 = 1

Ns

d〈N̂〉
dμ

= β

Ns
(〈N̂2〉 − 〈N̂〉2), (14)

where the number fluctuations 〈N̂2〉 are given in terms of
correlation functions 〈∑i, j n̂in̂ j〉 and calculated directly using
QMC techniques.

A Mott insulator to metal transition is driven by tuning the
chemical potential at fixed interaction strength, as seen by the
strong suppression of the compressibility in Fig. 6(b).

Upon doping the Mott insulator, the system transitions to a
strongly interacting metal with suppressed compressibility as
shown in Fig. 6(b). The background single-particle occupied
sites are frozen and do not contribute to the compressibility,
while the excess doubly occupied sites (doublons) are free to
propagate.

According to the Hubbard-I approximation, the number of
particles on the Fermi surface (∝ κ) in the tight-binding model
for an electron density n is about twice that of the number
of quasiparticles on the Fermi surface in the upper Hubbard-
I band for an electron density n/2 + 1, which we verify is
qualitatively correct in Fig. 6(c).
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FIG. 6. (a) Compressibility, κn2, is calculated on a 6×6 lattice as a function of interaction potential (U ) and chemical potential (μ) at
βt = 2. The compressibility is a measure of the number of conducting quasiparticles which is proportional to the number of particles on the
Fermi surface. (b) Compressibility is examined for lattice sizes from 6×6 to 16×16 with a fixed interaction strength (U = 10t) and varying
density/chemical potential (μ) for βt = 2. Closed symbols are data extracted from numerical derivatives dn/dμ and open symbols from
fluctuation dissipation theorem. (c) Compressibility of a strongly interacting system and a noninteracting system shows distinct evidence for
Hubbard-I physics.

VI. LOWER TEMPERATURES

Does the Luttinger-breaking phase survive to lower tem-
peratures? The Hubbard-I approximation implies that we
should see this effect at zero temperature. In Fig. 7 we show
the Fermi surface for n = 1.03 and n = 1.07, as well as for the
temperatures β = 2 and β = 3/t . We find that the LB phase is
present at both densities and survives to lower temperatures.

Our results are explained by the fractionalization of the
spectral function which can only increase at lower tempera-
tures. Furthermore, it is striking that even at temperatures as
high as β = 2/t one is able to see the LB phase. While lower
temperatures do need to be examined to get a more refined
picture of this phase, the presence of the LB phase above and
below the exchange temperature of T = 4t2/U is a clear sign
that it is not arising from magnetic ordering.

VII. DISCUSSION AND OUTLOOK

We have presented QMC simulation results coupled with
analytic continuation to obtain spectral functions of the
Hubbard model in two dimensions. We have obtained the
Fermi-surface contour by analyzing the spectral function at
the chemical potential μ. As the system approaches half fill-
ing, most of the spectral weight resides in a broad incoherent
lump.

With increase in electron or hole density, we see sharp
spectral features at μ but the volume enclosed by the zero-
energy contour at μ falls short of the Luttinger count and does
not enclose all the electrons. This “Luttinger breaking” (LB)
region in density is consistent with the strange metal region
discussed in cuprates [3] and persists to about 18% in our sim-
ulations. Our results suggest that if secondary ordering in the

FIG. 7. On the left, we show the function Ak(ω = 0) plotted over
the reduced Brillouin zone for smaller temperatures than examined
in the bulk of this paper. Compare these figures with their equal-
density, high-T counterparts found on the right. The black curve is
the maximal noninteracting contour of the function Ak(ω = 0) and
the orange contour is the noninteracting Fermi surface that obeys
Luttinger’s theorem. The bottom left figure is simulated at smaller
U/t ; however, the phenomenon of the Luttinger-breaking phase per-
sists. We note that the effect persists at temperatures lower than the
critical exchange temperature of β = U/4t2.
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spin, charge, or pairing channel is suppressed, the proximity
to a Mott insulator alone drives the formation of such a LB
phase.

A topological framework [23,37,38] for understanding the
transition from a Fermi liquid obeying the Luttinger count to
the LB phase that violates this count is obtained by expressing
the Luttinger volume as the winding number of the single-
particle Green’s function at finite temperatures. Further, the
winding number can be connected with the distribution of
quasiparticles and the Luttinger volume, and it can be shown
nonperturbatively that for a strongly interacting Hamiltonian
that preserves particle-hole symmetry both types of behavior,
pole and zero, of the Green’s function at zero energy are
observed.

It has been suggested that doped quantum spin liquids
are perhaps a promising platform observing non-Fermi-liquid
phases. Sachdev, Senthil, and collaborators have proposed the
possibility of a non-Fermi-liquid phase (dubbed FL*) with
a Fermi surface composed of fractionalized spinons with a
volume (n − 1) mod 2 [39]. They claim that quantum fluc-
tuations of the antiferromagnetic order parameter generate
emergent gauge fields that lead to a new state of matter
with topological order [40–42]. Further diagnostics on the
entanglement properties of these non-Fermi-liquid phases are
required to understand the connection between our discovery
of the LB phase that encloses a shrinking volume below a
critical density as the Mott insulator is approached and the
proposed FL* phases that encloses a Luttinger volume of
(n − 1).

Going forward, further simulations are necessary to study
an extended Hubbard model with nearest-neighbor hopping to
describe the more realistic parameters for the cuprates. Here
our aim was to show the emergence of the Luttinger-breaking
phase in the very simplest case with only nearest-neighbor
hopping. It would also be interesting to push the calculations
to lower temperatures to see the emergence of the supercon-
ducting phase from the LB phase and contrast that with the
superconducting phase that emerges from the FL phase above
this critical value.

ACKNOWLEDGMENTS

We acknowledge useful discussions with Hasan Khan
during the initial stages of this project. We also acknowl-
edge insightful discussions with Mohit Randeria, Aavishkar
Patel, Philip Philips, and Sumilan Banerjee. I.O. and N.T.
acknowledge the support of the DOE-BES Grant No. DE-
FG02-07ER46423. T.P. acknowledges support from CNPq,
FAPERJ, and Instituto Nacional de Ciência e Tecnologia de
Informação Quântica (INCT-IQ).

APPENDIX: SOURCES OF ERROR

We discuss below sources of errors in the determinantal
QMC (DQMC) simulations and in the maximum-entropy pro-
cedure to extract the spectral function.

1. Finite-size effects

We have obtained data for different system sizes, ranging
from 6×6 to 20×20. Figure 6(b) clearly shows that finite-size
effects are smaller than error bars for the compressibility for

FIG. 8. The effect of cluster size on the resolution of the Bril-
louin zone and efforts to improve resolution.

βt = 2 and U/t = 10. Finite-size effects in transport data
from quantum Monte Carlo simulations were shown to be
most relevant for particular densities with closed-shell con-
figurations and small U/t [43], not the cases considered here.

In Fig. 8 we show the locations of the k points for different
size lattices and it becomes quickly evident that a finer mesh
is essential to see the structure of the spectral functions near
the Fermi surface.

We use a technique of combining multiple complimentary
cluster sizes to increase the number of unique momentum
states from which we can resolve features of the Brillouin
zone. The technique works best for system sizes where L1/2
shares no common factors with L2/2, where L2 is the number
of lattice sites. Instead of overlapping, one Brillouin zone
fills in the gaps of the other and the resolution increases. We
do not change any other parameters except system size and
check that the size does not have a significant effect on any
thermodynamic properties. We combine data from L1 = 16
and L2 = 14. A demonstration of the effect of combining data
has on the resolution is shown in Fig. 8. Lastly, we use a spline
interpolation function to construct A(k, ω = 0) as a function
for all k in the Brillouin zone in the thermodynamic limit.

2. Trotter errors

We calculate thermodynamic properties and the single-
particle Green’s function by implementing a determinantal
QMC algorithm which essentially employs a Trotter-Suzuki
decomposition to break up the noncommuting hopping and
interaction terms in imaginary time τ [44–47]. This maps the
original 2D quantum problem to a (2+1)D classical problem
where the extra dimension is set by the inverse temperature
β = 1/(kBT ). In the quantum Monte Carlo implementa-
tion used here the interaction term is decoupled through a
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FIG. 9. Blue: The maximum of the function Ak(ω = 0) for n =
1.07 along a contour defined by a straight line that starts at the
Gamma point of the Brillouin zone and makes an angle θ with the
kx axis. Orange: The noninteracting Fermi surface (FS) that closely
tracks with the interacting Fermi surface. The fluctuations in the
interacting Fermi surface are taken to be spurious and due to both
finite-size effects and error in the maximum-entropy procedure.

discrete Hubbard-Stratonovich transformation, which intro-
duces an auxiliary Ising field [46] that leads to an error
O(
τ 2). Extrapolations to 
τ 2 → 0 show that the coefficient
of 
τ 2 changes in value and sign for different quantities [43],
but for 
τ = 1/40 used here the error should be negligible.

3. Maximum-entropy procedure

The calculation of the spectral function Ak(ω) is done by
numerically performing the inverse Laplace transformation in
Eq. (7) at a given temperature. There are different available
procedures to perform the analytical continuation in the liter-
ature [28,30,32,33] but our purpose here is not to perform a
systematic study of the different methods’ outstanding issues;
instead, we adopt the maximum-entropy procedure [29].

The use of tight-binding contours to approximate the Fermi
surface is justified based on the Hubbard-I approximation and
error in the maximum-entropy procedure. Figure 9 compares
the maximum of the function Ak(ω = 0) for n = 1.07 along
radial lines starting from the Gamma point and making an
angle θ with the kx axis, and the tight-binding contour which
maximizes the function f (E ) in Eq. (3). We present the non-
interacting contour in figures like Fig. 2(a) and Fig. 3 because
it encloses approximately the same number of states as the
interacting contour, which has fluctuations due to errors in
the maximum-entropy procedure and finite-size effects. We
choose not to allow the spurious fluctuations to become a
focus.

FIG. 10. Average total sign as a function of density for lattice
sizes from 6×6 to 20×20. Temperature is set such that βt = 2, and
the interaction potential is U = 10t .

4. Sign problem

In DQMC the grand partition function is expressed as a
sum over all Ising spin configurations c ≡ {s} at each space-
time lattice point, of a product of determinants,

Z = (
1
2

)Ld M
Tr{s} det O↑({s}) · det O↓({s}), (A1)

where M = β/
τ , L is the linear size of the system, and d the
dimension. The “Boltzmann weight” is given by the product
p(c) = det O↑({s}) · det O↓({s}) which is not always positive.
We can keep track of the sign by writing

p(c) = sign(c)|p(c)|, (A2)

where sign(c) = ±1; this way the absolute value is used as the
weight in the Monte Carlo procedure and the sign is included
in the measurements. Any expectation value 〈A〉 is then given
by

〈A〉 =
∑

c p(c)A(c)∑
c p(c)

=
∑

c |p(c)|sign(c)A(c)∑
c |p(c)|sign(c)

≡ 〈sign A〉
〈sign〉 .

(A3)

At low temperatures, both 〈signA〉 and 〈sign〉 become very
small, leading to the well known “fermion sign problem.”
[45,48,49]. The fermion sign problem is also known to get
worse with increasing system size as is shown in Fig. 10. We
have then restricted our system sizes to lattices up to 16×16,
where 〈sign〉 > 0.5.
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