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We study quantum effects of the vacuum light-matter interaction in materials embedded in optical cavities. We
focus on the electronic response of a two-dimensional semiconductor placed inside a planar cavity. By using a
diagrammatic expansion of the electron-photon interaction, we describe signatures of light-matter hybridization
characterized by large asymmetric shifts of the spectral weight at resonant frequencies. We follow the evolution
of the light dressing from the cavity to the free-space limit. In the cavity limit, light-matter hybridization results
in a modification of the optical gap with sizable spectral weight appearing below the bare gap edge. In the limit
of large cavities, we find a residual redistribution of spectral weight which becomes independent of the distance
between the two mirrors. We show that the photon dressing of the electronic response can be fully explained
by using a classical description of light. The classical description is found to hold up to a strong coupling
regime of the light-matter interaction highlighted by the large modification of the photon spectra with respect
to the empty cavity. We show that, despite the strong coupling, quantum corrections are negligibly small and
weakly dependent on the cavity confinement. As a consequence, in contrast to the optical gap, the single-particle
electronic band gap is not sensibly modified by strong coupling. Our results show that quantum corrections are
dominated by off-resonant photon modes at high energy. As such, cavity confinement can hardly be seen as a
knob to control the quantum effects of the light-matter interaction in vacuum.
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I. INTRODUCTION

The interaction of light and matter in vacuum conditions,
i.e., in the absence of driving fields, has been proposed as
an advanced frontier for the control of matter properties [1].
In this perspective, electromagnetic environments capable of
confining light over small volumes, namely cavities, play a
fundamental role.

The spatial confinement can enhance fluctuations of elec-
tromagnetic fields and in turn result in a significant increase
of the strength of the vacuum light-matter interaction. These
effects become manifest in the so-called strong and ultra-
strong coupling regimes of light-matter interaction in which
matter and light degrees of freedom mix and form strongly
intertwined excitations known as polaritons [2,3].

Recently, several proposals have suggested light-matter hy-
bridization as a novel tool to control emergent macroscopic
phenomena, such as superconductivity, ferroelectricity and
magnetic or topological phases by embedding so-called quan-
tum materials in such electromagnetic environments [4–17].
The general idea is that when a material is embedded inside
a cavity, interaction effects due to vacuum quantum fluctua-
tions of the electromagnetic fields become strong enough to
induce major modifications of the ground state properties of
the material. The new perspective has been termed the quan-
tum route towards the light manipulation of matter [18,19],
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as opposed to the classical approach which instead relies on
the stimulation of matter by means of coherent driving fields
[20–22]. The main difference between the two approaches
can be traced back to the different roles played by the pho-
tonic degrees of freedom in the dynamics of the coupled
light-matter system. In the classical regime, the driving field
contains a macroscopically large number of photons whose
dynamics is assumed to be entirely determined by external
sources. In contrast, in the quantum case vacuum photons are
considered to be active degrees of freedom whose dynamics is
self-consistently determined by the coupling with the matter
microscopic excitations as described in the framework of the
nonrelativistic quantum electrodynamics (QED).

Despite this conceptual distinction, the differences be-
tween the two regimes of the light-matter interaction can be,
in reality, much less sharply defined. Indeed, as originally
pointed out in a seminal work by Jaynes and Cummings
[23], semiclassical approaches based on Maxwell’s equations
can be extremely effective in describing light-matter coupling
down to the vacuum limit. At the same time, even in the
presence of coherent driving fields, the feedback of internal
sources onto driving photons can play an important role as
recently discussed in the context of light-stimulated strongly
correlated electron systems [24].

In this context, a deeper understanding of the crossover
between quantum and classical regimes of the light-matter
interactions as a function of the environment represents a
fundamental step towards practical cavity applications of
solid-state materials [25]. General open questions concern, for
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example, the effectiveness of the coupling in the modification
of the ground state properties of a material and how these
effects depend on the resonance conditions between multiple
matter excitations and the electromagnetic modes of the envi-
ronment.

In this paper, we address these questions by analyzing the
effects of light-matter hybridization on the electronic response
of a two-dimensional semiconductor embedded in a planar
cavity. Photon dressing of the dc electronic transport prop-
erties has been recently discussed in the context of organic
semiconductors [26–28] and two-dimensional electron gases
[29–31]. These descriptions usually rely on effective models
in which the effect of the cavity is incorporated as effective
coupling strengths. Here we consider a multimode electron-
photon Hamiltonian for which, at fixed electronic structure of
the material, the light-matter interaction is entirely controlled
by the distance between the mirrors. This allows us to fol-
low the evolution of the light dressing from the cavity limit,
characterized by a strong light confinement, to the free-space
limit, in which effects of the light-matter interaction become
independent of the environment.

By making use of a diagrammatic expansion of the
electron-photon interaction, we show sharp redistributions of
spectral weight in the frequency dependent conductivity due
to the hybridization of resonant modes with the continuum
of electronic excitations in the material. The shift results in a
modification of the optical gap which smoothly evolves into a
residual subgap redistribution of the spectral weight persisting
up to the free-space limit. We rationalize the results of the di-
agrammatic expansion in terms of a semiclassical description
of the vacuum fluctuations in which classical electromagnetic
fields are sourced by current fluctuations in the material. By
comparing the two approaches, we show that the classical
description exactly reproduces the results of the diagrammatic
expansion in the Gaussian approximation up to the strong
coupling limit.

We estimate the size of quantum effects by computing
corrections beyond the Gaussian approximation. We show
that, because of the small photon density of states at low
energies, quantum corrections are expected to be negligibly
small and dominated by off-resonant modes at high energy.
Therefore quantum corrections are weakly dependent on the
cavity confinement. The direct consequence of our results is
that, while the optical gap, described by the current-current re-
sponse function, is sensibly modified by the optical dressing in
the cavity, the electronic band gap, determined by the single-
particle electronic Greens’ function, remains unchanged.

We organize the paper as follows. In Sec. II, we present
the setup studied in this work. Section III reports the detail of
the linear response theory and the diagrammatic expansion.
In Sec. IV, we present main results concerning signatures of
the light-matter hybridization in the conductivity. Eventually,
in Sec. V, we address the comparison between the classical
description and the quantum theory.

II. THEORETICAL FRAMEWORK

The theoretical framework used in this work is specified by
the cavity, the electronic system, and the interaction Hamilto-
nian.

mirror

mirror

material

FIG. 1. (Top left) Sketch of a two-dimensional material placed
between two perfectly conducting mirrors separated by a distance
L. (Top right) Electronic bands of the two-dimensional system as
obtained by using the periodic potential defined by the parameters
v0 = 5.0 eV, λ = 0.2 nm−1, α = 2, and ξ = 0.1 nm, see text. (Bot-
tom) Photon dispersions for two cavity lengths. Red dashed line
indicate a photon cutoff used in the calculations. The massless mode
drawn with a dashed line represents the mode with zero in-plane
component.

A. Cavity

We consider a two-dimensional material placed in the
center of a planar cavity made by two parallel perfectly
conducting mirrors separated by a distance L, see Fig. 1.
Following Ref. [32], the quantization of the electromagnetic
field in the planar geometry leads to the expansion of the
vector potential operator

A(x, z) =
∑
qqzσ

γqqz√
V

(
wqqzσ (x, z)a†

qqzσ
+ H.c.

)
, (1)

where a†
qqzσ

are creation operators of photons with in-plane
momentum q, out-of-plane momentum qz and polarization

σ . The amplitudes γqqz ≡
√

h̄2

2ε0ωqqz
depends on the energy

of the photon modes ωqqz ≡ h̄c
√

q2 + q2
z . In the rest of the

paper, we will measure all the frequencies in energy units by
incorporating the h̄ in the definition of frequency. V = S × L
is the cavity volume, being S the area of the mirrors, which is
assumed to be equal to that of the embedded material. Eventu-
ally we will take the thermodynamic limit, by sending S → ∞
and keeping the density of electrons in the material fixed. As
a consequence, q is described by a continuous variable in
the (qx, qy) plane, whereas qz is quantized as qz = π

L n, with
n a positive integer. Dispersion of the modes for two cavity
lengths are reported in Fig. 1.

The mode functions wqqzσ (x, z) ≡ eiqxvqqzσ (z) are deter-
mined by imposing the boundary conditions at the mirrors
E‖(x, z = 0) = E‖(x, z = L) = 0, B⊥(x, z = 0) = B⊥(x, z =
L) = 0 and the transversality condition ∇ · A = 0. For each
momentum (q, qz ), there exist two orthogonal polarizations
wqqzσ · wqqzσ ′ ∝ δσσ ′ . The mode functions are specified by the
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vectors vqqzσ (z) which depend on the momenta and polariza-
tion [32].

B. Electrons

We model the electronic properties of the material by
considering a two-dimensional periodic potential on a square
lattice with lattice parameter a = 0.5 nm. The periodic poten-
tial is defined by Vperiodic(x) = ∑

R v(x − R) where the sum
extends over all the points in the Bravais lattice and v(x)
represents a deep potential well centered in the middle of the
square unit cell mimicking an atomic center. We define the
atomic-like potential as v(x) = −v0 exp(−λ|x|)/(|x|α + ξα ).
The parameters v0, λ, α and η are chosen in order to get a band
structure with bandwidths of the order of the eV, see Fig. 1.

We tune the chemical potential in the middle of the band
gap. The size of the indirect band gap is ∼2 eV, slightly
smaller than the direct optical gap at the � point ∼2.25 eV.
The details of the band structure, as for example the fact that
the electronic gap is slightly indirect, do not affect in any
qualitative way the results presented in this paper.

The main goal of this paper is to estimate the effects of
hybridization of matter and transverse photons. As such we
do not consider the effects of the electron-electron interactions
as well as effects on the screening of the Coulomb interaction
due to the image charges on the mirrors [10,33]. Throughout
the paper the electron-photon interaction represents the only
source of scattering. We also consider the electrons spinless.

C. Multimode QED Hamiltionian

The electron-photon interaction is introduced by the mini-
mal coupling p → p + eA(x),

H = H0 +
∫

dx †(x)
(p + eA(x))2

2m
(x)

+
∫

dx †(x)Vperiodic(x)(x), (2)

where A(x) ≡ A(x, z = L/2) is the vector potential oper-
ator evaluated in the middle of the cavity. The fermionic
fields (x) = ∑

kν ϕkν (x)ckν
are expanded onto the complete

set of Bloch wave functions ϕkν (x) of the two-dimensional
periodic potential. H0 = 1

2

∫
dxdz ε0E2(x, z) + 1

μ0
B2(x, z) =∑

Q ωQa†
QaQ is the total energy of the electromagnetic field

inside the cavity. In the last expansion, we used the compact
notation Q ≡ (q, qz, σ ). Expansion of the Hamiltonian gives

H =
∑

Q

ωQa†
QaQ +

∑
kν

εkνc†
kνckν

+ HAP + HAA (3)

with

HAP = e

m

∑
Q

γQ√
V

(vQ · P(q)aQ + H.c.), (4)

HAA = e2

2m

∑
QQ′

γQ√
V

γQ′√
V

(v∗
Q · vQ′ ρ̂(q′ − q)a†

QaQ′

+ v∗
Q · v∗

Q′ ρ̂(−q′ − q)a†
Qa†

Q′ + H.c.). (5)

In the last equations, P(q) ≡ ∫
dx†(x)eiqxp(x) and

ρ̂(q) ≡ ∫
dx†(x)eiqx(x) are, respectively, the momentum

and density operators at in-plane wave vectors q and vQ ≡
vQ(z = L/2).

The coupling constants that define the interaction terms
HAP and HAA depend on the electronic structure of the material
through the matrix elements of the momentum and density op-
erators and on the cavity geometry through the mode functions
vQ and the amplitudes γQ. We keep the electronic structure
fixed so that the light-matter interaction is controlled by the
distance between the mirrors L.

As L is increased, the photon spectrum becomes denser, as
shown in Fig. 1. Here, in order to properly take into account
the effects of the light-matter interaction in both limits of
small and large cavities, we retain the full multimode structure
of the photon field. We notice that, in principle, the multimode
QED Hamiltonian, Eq. (2), describes interaction with photon
modes at all energy scales. However, as we are interested in
interaction effects due to coupling with low-energy photons
confined by the mirrors, we cutoff the photon spectrum at an
energy �ph. Physically, this cutoff corresponds to the largest
energy of photon modes that can be confined by the cavity and
is expected to be of the order of the plasma frequency of the
mirrors. We assume all the effects of renormalization of the
electronic properties due to interaction with photons of energy
higher than the cutoff to be already included in the electronic
structure defined by the periodic potential Vperiodic(x). If not
explicitly stated otherwise the photon spectrum cutoff is set to
�ph = 20 eV.

In order to ensure invariance of the results with respect to
equivalent representations of the light-matter Hamiltonian, we
expand the electronic Hamiltonian onto a large subspace of
electronic degrees of freedom [34–39]. Specifically, we retain
a total of Nb = 30 electronic bands.

All the presented results are converged with respect to the
cutoff in the number of electronic bands. Convergence with
respect to the photon cutoff will be discussed in the rest of the
paper.

III. LINEAR RESPONSE THEORY

We investigate the effects of the light-matter interaction on
the material properties by focusing on the long wavelength
response to an arbitrary small electric field. The electronic
response is defined by the conductivity tensor

σi j (ω) = χi j (ω)

iω
+ δi j

iω

e2

m
ρ0, (6)

where ρ0 is the average electronic density and

χi j (t ) = −iθ (t )〈{Ji(t ), Jj}〉 (7)

is the current-current response function being J = 1
S

∫
dx j(x)

the average current density. Here we consider a system with
time reversal symmetry so that σi j = δi jσii. Moreover, due to
the symmetry of the square lattice σxx = σyy = σ.

Since the electronic problem is strictly two-dimensional
j(x) represents a surface current density and is defined by the
continuity equation ie[†, H] = −∇ j. The current density
operator contains a purely electronic term plus a diamagnetic
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contribution coming from the vacuum electromagnetic field
j(x) = jP(x) + jA(x)

jP(x) = e

2m
†(x)p(x) + H.c., (8)

jA(x) = e2

m
†(x)(x)A(x). (9)

The response function decomposes in three terms χJJ =
χPP + χPA + χAA defined, respectively, as the purely elec-
tronic χPP = χJP,JP , the mixed χPA = χJP,JA + χJA,JP and the
purely diamagnetic χAA = χJA,JA response functions. In the
last definitions Jλ = 1

S

∫
dx jλ(x), with λ = (A, P), and

χJλ,Jλ′ (t ) = −iθ (t )〈[Jλ(t ), Jλ′ ]〉. The pure diamagnetic re-

sponse χAA should not be confused with the term e2

m ρ0 in
Eq. (6) which instead is the diamagnetic contribution of the
probing field that cancels the 1/ω divergence in the imaginary
part of σ .

In order to compute correlation functions we make the
approximation of decoupling electronic and photonic contri-
bution in the diamagnetic term on the Hamiltonian (5) as

†(x)(x)A2(x)

� 〈†(x)(x)〉0A2(x) + 〈A2(x)〉0
†(x)(x), (10)

where 〈·〉0 indicates averages computed using the noninteract-
ing Hamiltonians. This decoupling is customarily understood
in the standard definitions of Dicke-Hopfield models for QED.
In particular, the A2 term in the Hopfield Hamiltonian is ob-
tained by approximating the density operator with a number,
which is equivalent to the decoupling in Eq. (10). As such,
this approximation fully retains the effect of the A2 term of
bounding from below the photon spectrum [40–44].

A. Current-current response functions

With the above decoupling the interaction term is such
that the photonic degrees of freedom can be integrated out
to obtain effective electron-electron interactions mediated by
photons, see Appendix A. This fact can be conveniently used
to express all the above correlation functions in term of the
single-particle photon propagator, whose retarded component
is defined by

Dq′q′
zσ

′
qqzσ (t ) = −iθ (t )

〈[
�qqzσ (t ),�†

q′q′
zσ

′
]〉
,

�qqzσ =
(

aqqzσ

a†
−qqzσ

)
. (11)

In the empty cavity setup, the photon field has full in-plane
translational invariance, i.e., D ∼ δqq′ . In the presence of the
two-dimensional material, this is reduced to the discrete sym-
metry of the crystal, namely D ∼ δq,q+G with G any vector in
the reciprocal lattice. However, photons of such small wave-
lengths correspond to energies h̄c|G| ∼ 103 eV way larger
than any reasonable physical energy cutoff �ph determined
by the cavity mirrors. We therefore restrict ourself to the
G = 0 case and consider, for each wave vector q, D(q) as
a matrix of dimension 2Nq × 2Nq, with Nq = 2Nz the number
of modes with in-plane momentum q and energy smaller than
the cutoff, where the factor 2 counts the polarizations and

the 2×2 structure of the each block stems for the Nambu
representation.

Thanks to Eq. (10), we incorporate the A2 term in
the definition of the bare photon propagator D−1

0 (q, ω) =
D−1

0 (q, ω) − �AA(q, ω), being D−1
0 (q, ω) = δqzq′

z
δσσ ′ (ωτ̂3 −

ωqqzσ + i�phτ̂3) with �ph a small imaginary broadening mim-
icking dissipation through the mirrors, and τ̂3 the diagonal
Pauli matrix. �AA(q, ω) is the self-energy expression due to
the first term in Eq. (10) and reads

[�AA(q, ω)]
(q′

zσ
′ )

(qzσ ) = δσσ ′
e2

m

γqqz√
L

γqq′
z√

L
v∗

qqzσ
· vqq′

zσ
ρ0 I I†.

(12)

In the last expression, I is the column vector I = (1
1), so that

Eq. (12) represents a 2×2 matrix in the Nambu space.
Exploiting functional integral identities, see Appendix A,

the correlation functions χPP can be related to the dressed
photon propagator D through[

D−1
0 (q, ω)D(q, ω)D−1

0 (q, ω)
](q′

z,σ )

(qz,σ ) − [
D−1

0 (q, ω)
](q′

z,σ )

(qz,σ )

= I I† γqqz√
L

γqq′
z√

L
v∗

qqzσ
· vqq′

zσ
χPP(q, ω), (13)

which is valid for any pair of modes (qz, σ ) and (q′
z, σ ). The

correlation function χPP is obtained by inverting Eq. (13) for
any pair of nonorthogonal modes.

The mixed correlation functions are obtained using equa-
tions of motion technique, after applying the decoupling (10)
to the diamagnetic current jA = e2

m ρ0(x)A(x), being 〈A〉0 =
0. The correlation function χAP reads

χAP(q, ω) =
∑
qzq′

zσ

ρ0
γqqz√

L

γqq′
z√

L
vqqzσ · v∗

qq′
zσ

× I†[D0(q, ω)]
(q′

zσ )
(qzσ )I χPP(q, ω), (14)

and χPA is obtained by computing the advanced component of
(14), χPA(q, ω) = [χadv

AP (q, ω)]∗. Eventually, the purely dia-
magnetic contribution reads

χAA(q, ω) =
∑
qzq′

zσ

ρ2
0
γqqzσ√

L

γqq′
zσ√
L

vqqzσ · v∗
qq′

zσ
I†[D(q, ω)]

(q′
zσ )

(qzσ )I.

(15)

B. Photon propagator

Equations (13)–(15) reduce the problem of the computa-
tion of the response function to the computation of the dressed
photon propagator D. We compute the photon propagator
by treating the electron-photon interaction at the level of
Gaussian fluctuations. This approach corresponds to dressing
the photon propagator with the bare current-current response
function. The Dyson equation for the matrix D(q, ω) reads

D−1(q, ω) = D−1
0 (q, ω) − �0(q, ω) (16)

with the block components of the self-energies

[�0(q, ω)]
(q′

zσ )
(qzσ ) = γq√

V

γq′√
V

vqqzσ · vqq′
zσ

χ0(q, ω)II†. (17)
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FIG. 2. Bare F0(ω) and dressed F (ω) spectral densities for the
q = 0 photons for cavity mirrors at a distance L = 0.2 μm. Bare
photons broadening is set to �ph = 0.01 eV. Shaded area represents
the bare conductivity of the material. Throughout the paper the con-
ductivity is measured with respect to the quantum of conductance
G0 ≡ 2e2

h . The conductivity is plotted in the linear scale, while pho-
ton spectra are plotted in the logarithmic scale (see arrows). Bottom
panels show the photon spectral densities in linear scale around the
single photon resonances.

χ0(q, ω) is the current-current response function for the elec-
tronic system computed in the absence of the light-matter
interaction

χ0(q, t ) = −iθ (t )
〈[

J0
−q(t ), J0

q

]〉
0 (18)

with

J0
q = e

m
P(q) = e

m

∑
kνν ′

pkν ′
k+qνc†

k+qνckν ′ (19)

with pkν ′
k+qν = −ih̄

∫
dxϕ∗

k+q,νeiqx∇ϕkν ′ (x), being ϕkν (x) the
Bloch functions. Computation of the bare response function
reduces to simple convolutions of single-particle Greens func-
tions. In Matsubara frequencies, this reads

χ0(q, i�n) = e2

m2

∑
kνν ′

∣∣pkν ′
k+qν

∣∣2

× T
∑
iωn

G0
k+q,ν (iωn + i�n)G0

k,ν ′ (iωn) (20)

with G0
k(iωn) = (iωn − εkν )−1 with i�n and iωn representing,

respectively, bosonic and fermionic Matsubara frequencies.
The retarded component is therefore obtained through analyt-
ical continuation i�n → � + i0+. Eventually, χ0 is plugged
into Eq. (17) to get the dressed photon propagator.

IV. OPTICAL DRESSING OF THE
ELECTRONIC RESPONSE

In this section, we present the main results showing the
effects of the light-matter hybridization in the homogeneous

FIG. 3. (Top) Bare σ0 (orange) and dressed σ (blue) conductiv-
ities for cavity length L = 0.2 μm. The inverted photon spectrum
is reported in the top part of the panel. Photon broadening is
�ph = 0.01 eV. (Bottom) Blow up of the asymmetric feature in the
dressed conductivity around 3.1 eV for different values of the photon
broadening.

(q = 0) response obtained using the above approximation
scheme. As it is clear from Eqs. (13)–(15), in the Gaussian
approximation only the q = 0 photons contribute to the dress-
ing of the q = 0 response. Corrections beyond the Gaussian
approximation will include interaction with photons at finite
in-plane momentum and will be discussed in Sec. V B.

In Fig. 2, we report the total spectral density of photons
at zero in-plane momentum Fσ (ω) = − 1

π

∑
qz,q′

z
Im[D11(q =

0, ω)]
(q′

zσ )
(qzσ ) for a cavity with L = 0.2 μm. The symbol D11 de-

notes the normal component, i.e., 〈aa†〉, of the Nambu photon
propagator. Due to the symmetry of the problem the spectral
density is polarization independent Fσ (ω) = F (ω). The bare
and interacting spectral densities are superimposed to the bare
optical conductivity of the system which characterizes the
absorption of the material in the absence of hybridization
with vacuum photons. The dressed photon spectral density
is characterized by a shift of the resonances and by a broad
redistribution of spectral weight indicating hybridization with
the continuum of optical excitations in the material. Due to
the symmetry of the mode functions the dressing vanishes in
correspondence to the even, i.e., n = 2m, modes for which
v(z = L/2) = 0.

The broad photon dressing corresponds to sharp features
in the conductivity. In Fig. 3, we report the dressed conduc-
tivity σ (ω), computed through Eqs. (6) and (13)–(15). By
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FIG. 4. (Top) Dressed conductivity at different cavity lengths.
(Bottom) Conductivity at resonant lengths Ln = (2n + 1)L0 for L0 =
0.27 (left) and 0.32 μm (right).

comparing to the bare conductivity σ0(ω) we observe sharp
asymmetric shifts of spectral weight in correspondence of the
dressed photon modes. This asymmetric shift is reminiscent
of a Fano-like profile clearly highlighting the hybridization of
a single photon mode with the continuum of electronic excita-
tions. The amount of redistributed spectral weight depends on
the broadening of the photon modes �ph, decreasing for larger
damping.

The resonant frequency of the asymmetric shift is modified
by acting on the cavity length. Figure 4 reports the cases in
which the resonances appear, respectively, at the gap edge
and inside the optical gap. In the former case, we show a
modification of the optical gap characterized by the formation
of a sharp peak at the gap edge with sizable absorption below
the bare gap. When the resonance moves inside the gap, we in-
stead observe the formation of in-gap absorption peaks. In-gap
peaks are much weaker with respect to the sharp resonances
appearing above gap. This is understood as, due to the vanish-
ing small optical absorption, light-matter hybridization below
gap is progressively suppressed. Experimental investigations
along these lines have been carried out in the context of semi-
conductor microcavities embedding intersubband transitions
[12] following the theory in Ref. [45].

We investigate the effects of confinement on the dressing
by looking at cavity lengths Ln(�0) featuring a resonant mode
at frequency �0. The resonance condition is set by

Ln = (2n + 1)L0 (21)

FIG. 5. Spectral weight transfer below the gap edge �gap =
2.25 eV as a function of the distance between the mirrors for two val-
ues of the photon damping. The shaded area highlights the crossover
from the cavity to the free-space limit.

being L0 = h̄c π
�0

the length of a cavity with fundamental

mode at the frequency �0. The integer l = 2n + 1 = 2L
λ

counts the number of half-wavelengths contained in the cavity.
As shown in the bottom panels of Fig. 4, the dressing is sup-
pressed as n is increased. This fact can be directly correlated
to the strength of the coupling constants in the Hamiltonian
which, for a mode at fixed frequency �0, scales as γQ/

√
L ∼

1/
√

�0L ∼ 1/
√

l .
We summarize the effect of light-dressing on the conduc-

tivity by considering the relative amount of spectral weight
which is transferred below the gap. We define the relative
variation of spectral weight below a given frequency � as

�W (�) ≡
∫ �

0 dω[σ (ω) − σ0(ω)]∫ �

0 dωσ0(ω)
. (22)

As expected from conductivity sum rules, our results
correctly predict conservation of total spectral weight
lim�→∞ �W (�) → 0. Figure 5 show the evolution of
�W (� = �gap) computed at the energy of the bare direct
optical gap �gap = 2.25 eV, as a function of the distance
between the mirrors. The resonant transfer of spectral weight
below the gap is reflected in the oscillating behavior of �W .
Maxima of transferred spectral weight correspond to cavity
modes resonant with the band edge. The intensity of the max-
ima decreases with L, as anticipated by the results in Fig. 4.
Eventually for L � 5 μm, the amplitude of oscillations gets
significantly suppressed and the transferred spectral weight
smoothly evolves towards an asymptotic value independent
of L. This evolution clearly highlights the crossover from a
regime in which the effects of the cavity confinement are pre-
dominant to the free-space regime in which mirrors becomes
irrelevant.

Remarkably, we find that a residual finite dressing, corre-
sponding to few percent shift of the spectral weight, persists
up to the free space limit. The dressing in the free-space limit
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FIG. 6. (Top) Dressed conductivity in the large L limit L =
15 μm. (Left) Purely electronic σPP, purely diamagnetic σAA and
mixed σAP contributions to the conductivity. (Right) Bare conductiv-
ity σ0 (orange full) compared to the dressed conductivity σ = σPP +
σAP + σAA (blue dashed). (Inset) Zoom of the dressed conductivity
below the gap showing the transferred spectral weight for two values
of the photon damping �ph. (Bottom) Dressing of conductivity in the
static limit as a function of the cavity length, and for different cutoff
in the number of electronic bands Nb.

can be understood as the regime in which the suppression
of the couplings due to the larger cavity is balanced by the
increasing density of photon modes. As physically expected,
the free-space dressing becomes independent of the photon
broadening �ph. In contrast, in the cavity limit a larger damp-
ing corresponds to a smaller shift of the spectral weight.

The effects of the light-matter hybridization in the free-
space limit can be appreciated by separately looking at the
purely electronic σPP, purely diamagnetic σAA and mixed σAP

contributions that defines the dressed conductivity as σ (ω) =
σPP(ω) + σAP(ω) + σAA(ω), see Eqs. (13)–(15), reported in
Fig. 6 for L = 15 μm. If the couplings with all the photon
modes were set to zero, the various contributions would re-
duce to σAP = σAA = 0 and σPP = σ0. However, due to the
finite density of modes at low energy the single contributions
shows the ∼1/ω divergence as ω → 0 and the full dressed
conductivity reduces to σ � σ0 due to the cancellation of
terms. The cancellation is perfect at ω → 0, whereas it leads
to a residual shift of spectral weight at finite frequency, see
inset in Fig. 6.

The perfect cancellation of the dressing of the static con-
ductivity holds true for all values of cavity lengths, see Fig. 6
bottom panel. Specifically, we found that the cancellation can
be highly sensitive to the cutoff in the number of electronic
bands included in the calculation Nb. Indeed, if Nb is too small,
the cancellation of terms is not perfect, and a finite dressing
of the dc conductivity appears for large cavities. This dressing

is fictitious and disappears as soon as the electronic cutoff is
increased. The sensibility of static quantities to the truncation
of the electronic spectrum is a well known feature of the
representation of the light-interaction Hamiltonian adopted in
this work, Eqs. (4) and (5). Convergence with respect to the
truncation of the electronic subspace can be understood as
a the fulfillment of optical sum rules for coupling constants
[34–37].

We end this section by observing that all the results pre-
sented so far are converged with respect to the cutoff in the
photon spectrum. Specifically, the cutoff was set to �ph =
20 eV whereas reasonable convergence is already reached for
�ph � 10 eV.

V. CLASSICAL DESCRIPTION AND
QUANTUM CORRECTIONS

The above results indicate that the electronic conductivity
contains a contribution from vacuum photons that is larger the
smaller the confining volume provided by cavity mirrors. The
effect of light-matter hybridization can be generically ascribed
to photon fluctuations in vacuum. However, it is possible to
give a more practical physical description of this dressing.
The conductivity measures the fluctuations of the currents in
response to an arbitrary small field. These current fluctuations
act as sources of electromagnetic fields which, in turn, have a
feedback on the current fluctuations.

This observation brings to fundamental question: to what
extent can the optical dressing of the electronic response
be described in terms of classical fields sourced by current
fluctuations in matter? In this section we address this ques-
tion by considering a classical description of the light-matter
hybridization and comparing it to the quantum description
including corrections beyond the Gaussian approximation
presented in the previous section.

A. Classical description

The classical description of the conductivity dressing
builds on the definition of a current in response to an arbitrary
small applied field. Calling J[E0] the current in response to a
field E0 polarized along x we introduce the decomposition

J[E0] = J0[E0] + δJ[E0]. (23)

J0 = σ0E0 is the bare current defined by the bare conductivity
σ0, whereas δJ is the correction to the current which is due to
the field E sourced by the current itself. Since E0 is arbitrarily
small we can assume that also E is small so that we can write
δJ = σ0E . Eventually, we can define the dressed conductivity
as

σ (ω) = lim
E0→0

∂J[E0]

∂E0
= σ0(ω)(1 + η(ω)) (24)

with η(ω) = limE0→0
∂E
∂E0

the correction to the bare σ0.

We compute the correction η(ω) by using Maxwell’s equa-
tion with J defined in Eq. (23) as a source term. For the
geometry considered in this work the Maxwell’s equations
reduce to the one-dimensional wave equation

∂2E (z, t )

∂z2
− 1

c2

∂2E (z, t )

∂t2
= μ0δ(z)

∂J (t )

∂t
(25)
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with boundary conditions E (±L/2) = 0. We expand the field
in plane waves and transform to the frequency domain. To
compare with the result of the previous section we add an
imaginary damping ω → ω + i�ph to match the broadening
of the photon lines. Solving the wave-equation for E (z,ω)

E0
, the

correction to the conductivity is obtained as η(ω) = E (z=0,ω)
E0(ω) .

Close to a resonance ω0 of the cavity, this gives

σ (ω) � σ0(ω)

[
1 − iκ

ω − ω0 + i(κ + �ph)

]
(26)

with κ = μ0σ0(ω0)/L. The equation (26) describes a shift of
the spectral weight centered in ω0. Specifically, the response is
completely suppressed for ω = ω0 when the damping is sent
to zero �ph → 0+. The spectral weight is therefore moved to
higher (lower) frequencies depending on the positive (nega-
tive) sign of the imaginary part of σ0. By taking the static limit
of Eq. (25), we also notice that the correction trivially vanishes
for ω → 0, therefore matching the perfect cancellation of the
dressing of the dc conductivity discussed at the end of Sec. IV.

In Fig. 7, we plot the dressed conductivity obtained by
solving the wave equation (24) for the full multimode struc-
ture of the cavity. The dressed conductivity shows remarkable
agreement with the results of previous section obtained by ap-
plying the Gaussian approximation to the QED Hamiltonian.
For simplicity, we explicitly show in Fig. 7 the comparison for
the dressing of conductivity only in the limit of small cavity.
However, we found the same perfect agreement also for the
dressing in the free-space limit.

To see how the agreement depends on the overall coupling
strength we introduce a parameter Z to renormalize the charge
of the electron as e → √

Ze so that the optical absorption of
the semiconductor increases linearly with Z . As shown in the
bottom panel of Fig. 7, increasing Z results in a stronger dress-
ing of the photon spectral density. Specifically, we see that
Z = 50 produces a huge shift ∼0.4 eV of the energy of the
fundamental mode. This corresponds to an even larger shift of
spectral weight in the optical conductivity with a modification
of the optical gap of about ∼0.5 eV, clearly indicating a
regime of strong coupling between light and matter.

Even in this strong coupling regime the dressing of the
optical conductivity computed using Dyson equation for the
photon propagator perfectly matches the one computed by
using Maxwell’s equation. We therefore conclude that, in-
dependently of the strong coupling regime, the classical
description fully reproduces results of Gaussian approxima-
tion for the QED Hamiltonian.

We emphasise that this strong coupling regime, signalled
by a large shift of the photon resonance and spectral weight
in the electronic response, is equivalent to a large polariton
splitting due to the hybridization of a single photon mode
with single matter excitations, such as excitons or intersub-
band transitions [40,46–48]. The absence of the double peak
structure in the photon spectra [Fig. 7(b)] is due to the fact
that in the present case photons hybridize with a continuum
of electronic transitions giving rise to a smooth absorption
spectrum. The results presented can be readily extended to
the case in which the absorption spectrum is characterized by
sharp resonances and we do not expect major changes to the
underlying physics.

FIG. 7. (Top) Dressed conductivity computed using current
dressing in Maxwell’s equations (full lines) for different values of
the charge renormalization parameter Z = 1 (red), 10 (blue), and 50
(green). White dashed lines indicate the same quantities computed
from the QED Hamiltonian in the Gaussian approximation for the
same values of Z . For comparison, the conductivity curves have
been scaled by the factor Z . The cavity length is L = 0.27 μm
and the broadening �ph = 0.02 eV. Bottom: Photon spectral densi-
ties around the cavity fundamental mode computed using the QED
Hamiltonian in the Gaussian approximation for the same values of Z
shown above. Insets: shift of the photon resonance of the fundamen-
tal cavity mode as a function of Z (circles, right axis). �ω0 is defined
as the energy difference between the peak of the bare F0 and the peak
of the dressed F . Relative shift of the spectral weight Eq. (22) as a
function of Z (squares, left axis).

B. Quantum corrections

The perfect agreement between the classical regime and
Gaussian treatment of the QED Hamiltonian can be expected
as only the bare response function χ0 enters in the dressing of
the photon propagator at the Gaussian level in the same way as
only the bare conductivity σ0 enters in the classical correction
Eq. (24). Therefore corrections to the classical results must be
encoded in the corrections beyond the Gaussian approxima-
tion for the photon propagator.

In this section, we estimate the size of such quantum cor-
rections by focusing on the lowest order electronic self-energy
corresponding to the dressing of the electron propagator with
a single photon line (see sketch in Fig. 8). The self-energy
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FIG. 8. Imaginary parts of the electronic self-energy computed
at the � point for the valence and first two conduction bands and for
two cavity lengths L = 0.27 (left) and 1.89 μm (right). Top panels
show the self-energies for Z = 1. Bottom panels show self-energies
divided by Z for Z = 10 and 50. In the bottom right panel we
reported a sketch of the self-energy diagram considered. The full line
indicates the electronic Green’s function G, while the dashed line
indicates the photon propagator D. The dots indicate the couplings.
For simplicity, in the sketch we omitted all the labels of quantum
numbers as well as the energy and momentum conservation at the
vertices. The noise in the self-energies is due to the discretization of
the q grid for momentum integration of the photon propagator.

expression reads

[�(k, iωn)](ν,ν ′ ) = 1

S

∑
q

∑
qzσ
q′

zσ
′

∑
μμ′

T
∑
i�n

KI†[D(q, i�n)]
(q′

zσ
′ )

(qzσ ) I

× [G(k + q, iωn + i�n)]μμ′ . (27)

The constant K depends on all the outer and inner indices and
is defined as K ≡ γqqz√

L

γqq′
z√

L
(vqqzσ · pkμ

k+qν )(vqq′
zσ

′ · pkμ′
k+qν ′ )∗. The

self-energy corrections are used to dress the single-particle
electronic Greens function G, which enters in the definition of
the self-energy for the photon propagator. Eventually, a self-
consistent procedure is established to simultaneously obtain
the dressed electronic and photon propagators [27].

Before computing the self-energy we estimate the or-
der of magnitude of the corrections by considering a single
electronic transition ν → μ and replacing the photonic and
electronic propagators in Eq. (27) with the bare ones. The
integration over in-plane momenta 1

S

∑
q → ∫ dq

(2π )2 is re-

stricted at momenta |q| < qc = �ph

h̄c . For cutoff energies
�ph ∼ 10–20 eV the momentum cutoff is qc � π

a so that
the integration domain corresponds to a small region around
the q = 0 point in the Brillouin zone. This fact allows to
take the fermionic propagator out of the integral G0(k + q) �
G0(k). We define the constant Kνμ(k) = h̄2e2

2ε0m2 |pkμ

kν |2 and take

the summation over the frequencies. We obtain, after ana-
lytical continuation, Im�ν→μ(k, ω) ∼ Kνμ(k)[b(εkμ − ω) +
f (εkμ)]�(εkμ − ω), with b and f the Bose and Fermi func-
tions, respectively. The function �(�) is defined by the
photon density of states ρph(�) as �(�) = ρph (�)−ρph (−�)

|�| with

ρph(�) � θ (�)
π2

�2

(h̄c)3 . In the last approximation, we consid-
ered the density of states in the continuum limit. At low
temperatures, the phase space for the electron-photon scat-
tering is b(εkμ − ω) + f (εkμ) ∼ −sgn(ω)θ (|ω| − |εkμ|). The
largest contributions in the function � come from the smallest
values of |εkμ|, so that we estimate the order of magnitude of
the self-energy by taking �(εkμ − ω) ∼ �(−ω) from which
Im�ν→μ(k, ω) ∼ Kνμ(k) ρph (|ω|)

|ω| . By assuming |pμ
ν | ∼ π

a , the

constant is Kνμ(k) ∼ Z × eV3 nm3 being Z the electronic
charge renormalization constant. On the other hand the photon
density of states is ρ(|ω|)/|ω| ∼ |ω| × 10−7 eV−3 nm−3. We
therefore obtain Im�νμ ∼ Z|ω|θ (|ω| − ω0) × 10−7 eV being
ω0 the fundamental mode of the cavity.

The above estimation, valid for a single electronic transi-
tion, is confirmed by numerically integrating the self-energy
using the dressed photon propagator and including all the elec-
tronic transitions within the cutoff in the number of electronic
bands. Figure 8 reports the imaginary part of the self-energy
computed at the � point for the valence and the first two
conduction bands. We consider two values of cavity lengths
characterized by modes resonant with the gap edge for which
the largest modification of the optical gap is observed, see
Fig. 4. The self-energies are characterized by some noise
which is due to the finite grid used to discretize the q space
for momentum integration of the photon propagator.

Im� vanishes for frequencies smaller than the fundamental
mode of the cavity and than increases with |ω| remaining of
the order of �10−6 eV for |ω| � 10 eV, in agreement with the
above estimation obtained for a single electronic transition. In
the limit of small cavity it is possible to appreciate a step-like
behavior due to characteristic jumps in the photon density of
states. The jumps are washed out for larger cavities due to
the smoother density of state of photons. We also show that
the self-energy scales linearly with Z (bottom panels). For
larger Z , the self-energies are less noisy due to the additional
broadening in the photon spectral density due to the strong
coupling dressing.

Figure 9 reports the real part of the self-energy which
measures the renormalization of the energies of the single-
electron excitation as given by the pole equation ω∗ − εkν −
Re�νν (k, ω∗) = 0. We observe that the real-part has an intrin-
sic dependence on the photon cutoff �ph. This dependence is
readily understood as the real part is related to the imaginary
part via a Kramers-Kronig transformation (KKT) Re�(ω) =
− 1

π

∫
dω′ Im�(ω′ )

ω−ω′ . Since the imaginary part is proportional
to the photon density of states it increases as a function of
frequency up to the cutoff �ph after which it drops to zero.
Therefore a larger high-energy cutoff will result in a larger
real part at low frequencies.

This observation indicates that renormalization of the elec-
tronic poles by self-energy corrections are actually dominated
by off resonant high-energy modes. As the photon density of
states diverges at ω → ∞, we would expect a divergent real-
part for �ph → ∞. We expect this divergence to correspond to
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FIG. 9. Real parts of the electronic self-energy computed at the
� point for the valence (top) and first conduction (bottom) bands
and for two cavity lengths L = 0.27 (left) and 1.89 μm (right).
Panels show self-energies for Z = 1 and different cutoff energies
�ph = 10 eV, �ph = 15 eV, and �ph = 20 eV.

the well known divergences encountered in the nonrelativistic
description of effects like Lamb shifts. These divergences
are generically cured by introducing a cutoff at the order of
the Compton scale [49]. As the goal here is to understand
the effects of the photons confined by the mirrors below the
physical cutoff of the plasma frequency, we have assumed
that all the effects of photons at such high-energy scales to
be already included in the definition of the bare electronic
dispersion, see Sec. II C. As such, we can argue away these
divergences and restrict ourselves to the interaction effects
below the physical cutoff �ph and focus on their dependence
on the cavity confinement.

For cutoff in the �ph ∼ 10–20 eV range the real part of
the self-energy remains of the same order of magnitude of
the imaginary one. Even considering a very large Z ∼ 102

corrections in the eV range are of the order � 10−4 eV,
meaning that, compared to typical electronic energy scales,
renormalization of the pole of the electronic Green’s function
can be considered as negligible. Most importantly, we observe
that the overall magnitude of the corrections weakly depends
on the cavity confinement which is consistent with the above
arguments showing that the renormalization mostly depends
on the cutoff.

We point out that the smallness of these corrections can
be generically ascribed to the smallness of the photon density
states at low energies. To better appreciate this aspect, it is
useful to compare the density of states of photons with that of
acoustic phonons which have the same dispersion of photons,
with speed of sound c0 � c, and couple to electrons in a
similar way, with different matrix elements. At variance with
photons, phonons have an intrinsic low-energy cutoff set by
the lattice, whereas the photon spectrum is unbounded. It

is immediate to see that at low-energies the phonon density
of states is enhanced by the factor (c/c0)d � 1 being d the
dimensionality of the system. It follows that, while scattering
with phonons at low energy generically leads to a dressing
of the electronic Green’s function, in the case of photons the
largest effects are expected to come from off resonant modes
at high energies for which the density of states becomes large.
Since the cavity modifies the photon spectrum only below
the mirrors’ plasma frequency, it is conceivable that cavity
confinement has a small effect on the photon-dressing of the
single-particle electron Green’s function as shown in Figs. 8
and 9.

Based on these observations we conclude that, for all prac-
tical purposes, dressing of the electronic Green’s function
due to low-energy photons confined by the cavity can be
neglected. We emphasise that this phenomenology is intrinsi-
cally different from the results in Sec. IV which are instead
fully converged with respect to the cutoff �ph and can be
explained without invoking any modification of the single-
electron excitation energies.

Calculation of higher order corrections, included the ver-
tex corrections related to the decoupling of the diamagnetic
term, Eq. (10), are beyond the scope of this work. However,
we expect that similar arguments related to the small photon
density of states at low-energy and to the unbound growth of
density of states up to relativistic energies to apply also to
higher-order corrections.

The main consequence of the above observations is that
corrections to the Gaussian approximation used for the com-
puting the photon propagator are expected to be small and, in
general, weakly dependent on the confinement of the mirrors.
As a result, having shown that results in the Gaussian approxi-
mation can be fully reproduced using the classical description
independently of the strength of the coupling, we conclude
that quantum effects due to confinement of low-frequency
photons can be considered negligible.

VI. CONCLUSIONS

In this paper we have studied the modification of the elec-
tronic properties due to light-matter hybridization in a planar
cavity. We have focused on the electronic conductivity of
a two-dimensional material placed in between two parallel
mirrors that confine the electromagnetic field on a length scale
L. We have treated the light-matter interaction by considering
the multimode expansion of the nonrelativistic QED Hamil-
tonian including all the photon modes below an energy cutoff
�ph, physically corresponding to the plasma frequency of the
mirrors.

We have shown sharp signatures of the light-matter hy-
bridization corresponding to sizable redistribution of spectral
weight at resonant frequencies. At the gap edge for optical
absorption, the light-matter hybridization results into a renor-
malization of the optical gap. Following the conductivity as
a function of the distance between the mirrors, we have de-
scribed the crossover from the cavity to the free-space limit.
In the cavity limit, the confinement gives rise to significantly
larger shifts of the spectral weight. In the free-space limit,
we observe a residual dressing which is independent of the
mirrors.
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We have shown that both limits can be accurately re-
produced using a classical description in which current
fluctuations get dressed by self-interaction with the fields
sourced by the current fluctuations. By introducing an ef-
fective renormalization of the electronic charge, we have
demonstrated that the classical description remains valid even
in the strong coupling regime, where the shift of the cavity
resonance due to the light-matter interaction becomes of a
sizable fraction of its bare value.

Using this comparison, we have investigated the quantum
effects of the light-matter interaction by considering correc-
tions beyond the Gaussian approximation. We have shown
that for low-energy photons confined in the cavity, these cor-
rections are negligibly small up to the very strong coupling
regime. Most importantly, these corrections weakly depend on
the cavity confinement. As a result, the single-particle proper-
ties are not substantially modified by the cavity confinement.

Our results indicate that, despite a significant effect of
light-matter dressing on the optical gap, the strong coupling
regime does not automatically correspond to an equally large
modification of the single-particle properties, namely the elec-
tronic dispersion and the electronic band gap. This difference
can be understood by observing that the response functions
contributing to the optical conductivity have poles at the en-
ergies of the so-called bright polaritons, which correspond to
the transitions from the ground state to an excited state with
the same number of electron upon emission or absorption
of a photon. On the contrary, the poles in the single-particle
Green’s functions are determined by the virtual transitions
from the ground states to all excited states with one particle
added or removed. Therefore, unlike the response functions,
the poles in the single-particle Green’s function have no direct
connection with the bright or dark polaritons.

The large modifications of the electronic response are
mostly captured by the classical Maxwell equations, thus
reducing optical dressing due to the low-energy photons con-
fined by the cavity to an essentially classical effect. While the
modifications of the electronic response appear in agreement
with recent spectroscopic experiments [12], future work is
required to unravel implications of these results for different
physical situations, such as, for example, the response beyond
the linear regime, electroluminescence or problems of quan-
tum transport [50–54], and magnetotransport [30,31].

We stress that our results take into account only the ef-
fects of fluctuations of the transverse photons, while we have
neglected effects associated with the longitudinal part of the
electromagnetic fields for which metallic mirrors can have an
impact, e.g., on the screening of the electron-electron interac-
tions. Eventually, we expect the presented results to apply also
in the case of nonmetallic mirrors such as dielectric mirrors.

Note added. Recently, a preprint by J. Li et al. [55] ap-
peared which, in a different context, reaches conclusions
similar to what discussed in Sec. V B regarding the smallness
of the effects of band renormalization in a planar cavity.
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APPENDIX: RESPONSE FUNCTIONS

In this Appendix, we provides details of the derivation of
Eqs. (13)–(15) for calculations the response functions. The
starting point is the partition function Z written as a functional
integral over photonic and electronics degrees of freedom

Z =
∫ ∏

Q

D[�Q,�∗
Q]

∏
kν

D[kν, 
∗
kν]e−S[�,�∗,,∗],

(A1)

where �Q and �∗
Q, with Q ≡ (q, qz, σ ), are pairs of conjugate

complex variables, while kν and ∗
kν are pairs of conju-

gate Grassmann variables. In the following, we will adopt
the compact notation for the functional differential

∫
D� ≡∫ ∏

Q D[�Q,�∗
Q] and

∫
D ≡ ∫ ∏

kν D[kν, 
∗
kν] The ac-

tion S depends on all the variables and reads

S = S0
ph[�,�∗] + S0

el[,∗] + Sint[�,�∗, ,∗], (A2)

where S0
ph = − ∫ β

0 dτdτ ′ ∑
Q �∗

Q(τ )[D0
Q(τ − τ ′)]−1�Q(τ ′)

and S0
el = − ∫ β

0 dτdτ ′ ∑
kν ∗

kν (τ )[G0
kν (τ − τ ′)]−1kν (τ ′)

are the non interacting actions with D0
Q and G0

kν the bare
photonic and electronic propagators, respectively. The
interaction action is split as Sint = SAP + SAA with

SAP =
∫ β

0
dτHAP[�(τ ),�(τ )∗, (τ ), (τ )∗] (A3)

and

SAA =
∫ β

0
dτHAA[�(τ ),�(τ )∗, (τ ), (τ )∗] (A4)

with HAP and HAA the Hamiltonian defined in Eqs. (4) and
(5). Thanks to the decoupling Eq. (10) the term SAA can
be absorbed in the non interacting photonic action S0

ph upon
redefining the photonic propagator D0 → D0 with self-energy
in Eq. (12). Specifically, after introducing the vectorial repre-
sentation �Q ≡ ( �Q

�∗
−Q

), we have

S0
ph + SAA → −1

2

∫ β

0
dτdτ ′ ∑

QQ′
�†

Q(τ )[D0(τ − τ ′)]−1
QQ′�Q′ ,

(A5)

where the photonic propagator is defined as

[D0(τ − τ ′)]−1
QQ′ = −δ(τ − τ ′)(δQQ′∂τ + ωQQ′ ), (A6)

where ωQQ′ are the energy of the modes dressed by the
A2 term via the self-energy Eq. (12) and the symbol
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∂τ = (∂τ 0
0 −∂τ

). Notice that upon decoupling of the diamag-
netic term there is also a purely electronic term that can be
reabsorbed in the noninteracting electronic Hamiltonian. This
term enters as a redefinition of the chemical potential and will
be discarded.

With the above simplifications the interacting Hamiltonian
can be written as

Sint = 1

2

∫
dτ

∑
Q

�†
Q(τ )�Q(τ ) + �†

Q(τ )�Q(τ ), (A7)

where we introduce the spinors

�Q ≡
(

�Q

�∗
−Q

)
= γQ√

L

(
1
1

)
vQ · JP(−q) (A8)

with

JP(q) = e

m

1

S

∑
kνν ′

pkν ′
k+qν

∗
k+qνkν ′ . (A9)

In the compact index notation −Q ≡ (−qqzσ ). By integrating
over photonic variables and by using Gaussian integration, we
get

Z =
∫

De−Sel[,∗]Zph[,∗] (A10)

with

Zph[,∗] ≡
∫

D�e−S0
ph− 1

2

∫
dτ

∑
Q �†

Q(τ )�Q (τ )+�†
Q(τ )�Q(τ )

= e− 1
2

∫ β

0 dτdτ ′ ∑
QQ′ �†

Q (τ )[D(τ−τ ′ )]QQ′�Q′ (τ ′ ). (A11)

By taking the functional derivative δ2

δJi
P (−q,τ )δJ j

P (q,τ ′ )
of both

sides of Eq. (A11) and by integrating over the fermionic
variables we arrive, after simple manipulations, at Eq. (13)
in the main text with χ

i j
PP(q, τ − τ ′) = δi jχPP(q, τ − τ ′) =

−〈Tτ Ji
P(−q, τ )Ji

P(q, τ ′)〉.
The correlation functions involving the diamagnetic con-

tribution to the current are obtained by first applying the
diamagnetic decoupling to the diamagnetic current JA =
e2

m

∫
dxρ(x)A(x), with ρ0(x) the electronic density of the

noninteracting system. The mixed correlation function χAP is
therefore obtained by using the equations of motion. Specifi-
cally, it is straightforward to check that

−∂τ�Q(τ ) =
∑

Q′
ωQQ′�Q′ (τ ) + �Q (A12)

where in the last equation the spinors �Q(τ ) and �Q

should be considered at the operatorial level. By apply-
ing the equation of motion to the correlator χ (q, τ − τ ′) =
−〈Tτ JA(−q, τ )JP(q, τ ′)〉 and using the definition of the pho-
ton propagator dressed by the A2 term, Eq. (A6), we arrive at
Eq. (14) in the text.

Eventually the purely diamagnetic response χAA is straight-
forwardly written in term of the photon propagator by direct
expansion of the vector potential operator.

We notice that in all the above steps we have always
assumed that the photon propagator keeps the full in-plane
translational invariance D ∼ δqq′ as discussed in Sec. III A.
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