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Converting electrons into emergent fermions at a superconductor–Kitaev spin liquid interface
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We study an interface between a Kitaev spin liquid (KSL) in the chiral phase and a nonchiral superconductor.
When the coupling across the interface is sufficiently strong, the interface undergoes a transition into a phase
characterized by a condensation of a bound state of a Bogoliubov quasiparticle in the superconductor and an
emergent fermionic excitation in the spin liquid. In the condensed phase, electrons in the superconductor can
coherently convert into emergent fermions in the spin liquid and vice versa. As a result, the chiral Majorana edge
mode of the spin liquid becomes visible in the electronic local density of states at the interface, which can be
measured in scanning tunneling spectroscopy experiments. We demonstrate the existence of this phase transition,
and the nonlocal order parameter that characterizes it, using density matrix renormalization group simulations of
a KSL strip coupled at its edge to a superconductor. An analogous phase transition can occur in a simpler system
composed of a one-dimensional spin chain with a spin-flip Z2 symmetry coupled to a superconductor.
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I. INTRODUCTION

Quantum spin liquids (QSL) [1–4] are fascinating phases
of matter where the quantum fluctuations of the spins prevent
magnetic ordering even at zero temperature. Instead, these
phases are characterized by an underlying topological order in
their ground-state wave functions, manifested by the presence
of fractionalized excitations.

Among the many possible quantum spin liquids, there is
particular interest in gapped phases whose excitations exhibit
non-Abelian statistics. A beautiful example of such a phase,
proposed by Kitaev, consists of a spin- 1

2 degrees of freedom
on a honeycomb lattice with strongly anisotropic exchange in-
teractions [5–7]. In the presence of a magnetic field that breaks
time-reversal symmetry, a gap opens in the bulk spectrum,
and a non-Abelian Kitaev spin liquid (KSL) phase is formed.
The edges of this phase are predicted to host gapless chiral
modes of emergent Majorana fermions. Remarkably, the Ki-
taev Hamiltonian was argued to be approximately realized in
certain multiorbital compounds with strong spin-orbital cou-
pling [8], such as irridates and α-RuCl3. In the latter system, a
quantized thermal Hall response in the presence of an applied
magnetic field, consistent with a chiral Majorana edge mode,
has been reported [9], although these results are still being
debated [10–12].

Definitively identifying a quantum spin liquid in experi-
ment is intrinsically hard, due to the lack of magnetic order
or any other kind of local order parameter. In addition, the
fractionalized excitations of a quantum spin liquid are electri-
cally neutral, and do not couple to conventional experimental
probes, making such excitations hard to detect. A variety of
experimental signatures of spin liquids have been proposed
[13–26]. In particular, it has been pointed out that the edges
of a given type of spin liquid can support different kinds of
topologically distinct “boundary phases” [27–30]. Some of
these boundary phases may only be stabilized at the interface

between the spin liquid and another phase of matter, such as
a magnet or a superconductor [31–33]. The properties of such
interfaces can provide unique signatures for the presence of a
quantum spin liquid in the bulk, as well as clues for its precise
nature.

In this study we propose a method for detection of the
characteristic gapless edge state of the KSL by coupling it
to a topologically trivial superconductor (SC) at its edge.
The setup is shown schematically in Fig. 1(a). We show
that the KSL–SC interface can undergo a topological phase
transition where the chiral Majorana mode of the KSL be-
comes hybridized with the superconducting electrons. In the
absence of the coupling to the superconductor, the gap-
less emergent Majorana fermions at the KSL’s edge have
no overlap with ordinary electrons, and hence they cannot
be detected in a tunneling experiment. In contrast, when
the coupling between the KSL and the SC is sufficiently
strong, the emergent fermions can coherently convert into
electrons [31,32]. As a result, the gapless edge mode be-
comes detectable in a scanning tunneling spectroscopy (STM)
experiment.

An analogous transition can occur in a simpler system,
consisting of a one-dimensional (1D) spin chain with a Z2

spin-flip symmetry coupled to a superconductor [Fig. 1(b)].
In this system, upon increasing the strength of the interactions
between the spin chain and the electrons in the superconduc-
tor, a phase transition occurs at which the Jordan-Wigner (JW)
fermions of the spin chain become hybridized with electrons
in the SC. Formally, this phase transition can be viewed as a
symmetry-breaking transition at which both the Z2 symmetry
of the spin chain and the electron number parity symmetry of
the superconductor become spontaneously broken, leaving the
product of the two symmetries unbroken. Both this transition
and the transition at a KSL–SC interface can be described by
a nonlocal order parameter whose expectation value becomes
long ranged in the strongly coupled phase.
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However, unlike in the spin chain case, the transition at
a KSL–SC interface does not require any symmetry. Instead,
the latter transition can be described in terms of a spontaneous
breaking of the emergent fermion parity symmetry associated
with the fermionic excitations of the KSL and the electron
parity symmetry of the superconductor, with their product left
unbroken.

In order to support our conclusions, we study an explicit
model of a KSL strip adjacent to a mean-field superconductor
(taken to be one dimensional for simplicity). We introduce an
interaction between the two systems that couples spins at the
edge of the KSL to an electron bilinear operator in the super-
conductor. Solving the model numerically using the density
matrix renormalization group (DMRG) technique, we locate
the transition as a function of the coupling across the interface.
We calculate the nonlocal order parameter that characterizes
the transition, composed of the product of an electron operator
in the superconductor and an emergent Majorana fermion
operator in the KSL, and show that it becomes long-range
ordered in the strong coupling phase.

Our setup is related to that proposed in Ref. [34] where
an interface between a KSL and a topological SC with a
counterpropagating chiral edge state was considered. In that
system, upon increasing the coupling across the interface past
a critical value, the edge modes are gapped out. In the present
study, the phases on both sides of the transition are gapless
(since the interface is chiral). Thus, after the transition the
gapless edge state of the KSL is not lost, but rather becomes
hybridized with the superconducting electrons.

This paper is organized as follows. In Sec. II we discuss the
one-dimensional toy model in terms of its symmetry-breaking
phase transition and its string order parameter. In Sec. III we
present our setup of an interface between a KSL and a SC. We
argue for the existence of a phase transition along the edge,
and present a nonlocal order parameter that characterizes it.
Finally, Sec. IV describes our numerical DMRG results. In
the Appendixes we briefly review some properties of the KSL,
and analyze the properties of the KSL–SC boundary in an
exactly solvable limit.

II. COUPLED SPIN CHAIN AND SC

For illustrative purposes we start by studying a system
composed of a spin chain with a Z2 symmetry, coupled to
a superconductor [Fig. 1(b)]. Despite being much simpler
than the KSL edge coupled to a one-dimensional spinless
superconductor [Fig. 1(a)], which is the main focus of our
work, the two problems bear some resemblance to each other
in terms of their phase diagram and the interpretation of some
of the possible phases. We will comment on the similarities
and differences below.

We consider the following one-dimensional Hamiltonian:

H1D = − J
∑

i

(
gσ z

i + σ x
i σ x

i+1

)

− t

2

∑
i

(c†
i ci+1 + c†

i c†
i+1 + H.c.) − μ

∑
i

c†
i ci

+ K
∑

i

σ z
i

(
c†

i ci − 1

2

)
. (1)

: 
: 

: 

: 

(a)

(b)

FIG. 1. The analogy between the hybrid KSL–SC system (a) and
a simple 1D superconductor coupled to a spin chain (b) presented in
terms of their symmetries and the symmetry-broken phase of interest.

where σ
x,y,z
i are the Pauli matrices acting on a spin- 1

2 degree
of freedom at a site i in the spin chain, and c†

i creates an
electron at site i in the SC. The spin chain is governed by a
transverse field Ising Hamiltonian with exchange coupling J
and a dimensionless coupling constant g. μ is the chemical
potential in the superconductor. For simplicity, we take the
hopping and the pairing in the superconductor to be both
equal to t . K denotes the strength of the coupling between
the spin chain and the superconductor. Importantly for our
discussion, the Hamiltonian (1) commutes with the fermion
parity operator F , under which ci → −ci, and with a Z2 spin
flip symmetry U that takes σ x

i → −σ x
i .

A convenient way to treat this system is to perform a
Jordan-Wigner transformation on the electronic degrees of
freedom of the superconductor, mapping the problem onto
a system of two coupled spin chains. The transformation is
written as

ci =
(∏

j<i

sz
j

)
s−

i , (2)

where the fermions are represented by a spin- 1
2 degree of

freedom with corresponding Pauli matrices sx,y,z
i . After the

transformation, the Hamiltonian takes the form

H1D = − J
∑

i

(
gσ z

i + σ x
i σ x

i+1

)

+
∑

i

(
−μ

2
sz

i + tsx
i sx

i+1

)
− K

2

∑
i

σ z
i sz

i . (3)

This is simply a system of two coupled transverse field Ising
models with a Z2 × Z2 symmetry—a system which is inti-
mately related to the Ashkin-Teller model [35,36]. The system
supports six distinct gapped phases [37]. These include a triv-
ial symmetric phase, a symmetry protected topological phase
(SPT), three partial symmetry breaking phases, and a fully
symmetry-broken phase. Three of the four symmetry-broken
phases are characterized by breaking either one of the two Z2

symmetries, or both. The first of these phases has 〈σ x
i 〉 �= 0,

the second has 〈sx
i 〉 �= 0, and in the third phase both order

parameters are nonzero. A fourth phase is characterized by
breaking of both the individual Z2 symmetries, while their
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product remains unbroken. In this phase, 〈sx
i σ

x
i 〉 �= 0, while

〈σ x
i 〉 = 〈sx

i 〉 = 0. [To see this, note that 〈sx
i σ

x
i 〉 is invariant

under the product of the two Z2 symmetries, but not under
each symmetry alone.] Within the model (3), this phase is
obtained, e.g., for g = 0, μ = 0, K � J, t > 0. Note that this
phase requires a strong coupling between the two spin chains;
if K is smaller than J and t , each of the two Z2 symmetries is
individually broken.

The latter phase where the two Z2 symmetries are broken
while their product is preserved is our main focus here; we
will show later that an analogous phase can be realized at a
boundary between a superconductor and a two-dimensional
(2D) KSL, even without a global Z2 symmetry. To understand
the properties of this phase in the 1D case, it is useful to note
that since the product of the two Z2 symmetries is unbroken,
the phase is also characterized by the following string order
parameter:

Oi j =
∏

i�l� j

sz
l σ

z
l , (4)

such that 〈Oi j〉 �= 0 in the limit |i − j| → ∞. This is the
disorder parameter for the product of the two Z2 symmetries.
Hence, the product of the two order parameters Oi j and σ x

i sx
i

is also nonzero. To interpret this order parameter, it is useful to
perform a Jordan-Wigner transformation on the original spin
chain, mapping it to a system of fermions:

σ z
i =1 − 2d†

i di,

σ x
i =

∏
j<i

(
1 − 2d†

j d j
)
(di + d†

i ). (5)

In terms of the two types of fermions ci and di, the combined
order parameter composed of the product of Oi j and σ x

i sx
i

is simply the product of the two fermion operators (di +
d†

i )(ci + c†
i ). Therefore, in this phase, the physical electrons

in the superconductor hybridize with the JW fermions of the
spin chain.

III. COUPLED KSL AND SC

We now turn to analyze the interface between a chiral
KSL and a superconductor. We show that, analogously to
the spin chain-SC system described in the previous section,
the electrons in the superconductor can become coherently
hybridized with the emergent fermions of the KSL if the
coupling between the two subsystems is sufficiently strong.
This hybridization onsets at a quantum phase transition along
the edge. We identify a nonlocal string order parameter that
becomes long ranged at the transition.

A. Model for KSL–SC interface

Our system is shown in Fig. 2. A finite strip of KSL in the
gapped (chiral) phase is placed near a superconductor. Since
we are interested in phenomena that occur at the interface be-
tween the two systems, and for computational simplicity, our
model includes only the last row of sites in the superconductor
(i.e., we treat the superconductor as being a one-dimensional
system with a mean-field pairing potential). Electrons in the
superconductor are coupled to spins in the last row of the KSL

KSL

SC

FIG. 2. On the left is a Kitaev spin liquid (circular sites) coupled
to a superconductor (square sites). The bonds are colored according
to orientation: x is blue, y is green, and z is red. The sites are
numbered according to their unit cell (i, j) and their sublattice index
A for white and B for black. On the right, the honeycomb lattice is
deformed into a brick-wall lattice and the sites are ordered row by
row.

strip. The Hamiltonian of the system is written as

H = HKSL + HSC + Hint. (6)

Here HKSL is the Hamiltonian of the KSL strip,

HKSL = − J

[ ∑
x−bonds

σ x
(i, j,A)σ

x
(i. j,B) +

∑
y−bonds

σ
y
(i, j,B)σ

y
(i+1, j,A)

+
∑

z−bonds

σ z
(i, j,B)σ

z
(i, j+1,A)

]

− κ
∑

〈〈J,K,L〉〉
σ x

J σ
y
Kσ z

L −
∑

i

hz
1σ

z
(i,Ny,B). (7)

Here each site of the KSL is labeled by I = (i, j, s), where i ∈
{1, . . . , Nx} and j ∈ {1, . . . , Ny} label the unit cell (see Fig. 2)
and s = A, B labels the two sublattices of the honeycomb
lattice. J is the Kitaev anisotropic exchange coupling. κ is a
three-spin term acting on three neighboring sites denoted by
〈〈J, K, L〉〉, arranged as in the configuration shown in Fig. 2
and every configuration related to that one by a symmetry
of the honeycomb lattice. The κ term breaks time-reversal
symmetry, and can be thought of as arising from a magnetic
field in the (1, 1, 1) direction [5]. This term opens a gap in the
bulk and drives the system into the chiral phase. We have also
included a Zeeman field hz

1 on the last row of sites in the KSL,
in order to prevent a macroscopic accidental degeneracy along
that edge. HKSL is exactly solvable by fermionization [5,38].
We briefly review the method of solution in Appendix A.

The sites of the superconductor are similarly labeled by an
index I = (i, 0, s) with s = A, B, i.e., we label the supercon-
ducting sites as an additional row below the KSL. Each site
has a single (spinless) electronic state, with a corresponding
creation operator c†

I . It is convenient to work with Majorana
operators, αI = c†

I + cI , βI = (c†
I − cI )/i. In terms of these

operators, we choose the Hamiltonian of the superconductor
to be of the form

HSC = − iγ
∑

i

α(i,0,A)α(i,0,B) + iγ
∑

i

α(i,0,B)α(i+1,0,A)

− iεA

∑
i

β(i,0,A)α(i,0,A) + iεB

∑
i

β(i,0,B)α(i,0,B). (8)

235118-3



GILAD KISHONY AND EREZ BERG PHYSICAL REVIEW B 104, 235118 (2021)

which corresponds to a combination of hopping terms and
pairing potentials in terms of the electronic operators cI . The
reason for this choice will become apparent later.

The interaction between the superconductor and the KSL
is written as

Hint = iK
∑

i

σ z
(i,1,A)β(i,0,B)α(i,0,B), (9)

which corresponds to a coupling of the spins in the first row
of the KSL to the density of electrons in the superconductor
iαIβI = 2c†

I cI − 1. Note that this term is not forbidden, since
time-reversal symmetry is broken in our system. Of course
the fermion parity of electrons in the superconductor is con-
served. In additional, the Hamiltonian is invariant under a spin
rotation by π around the z axis.

B. Phase transition along the interface and string
order parameter

In the absence of coupling between the KSL edge and the
SC (K = 0), the KSL edge supports a gapless chiral mode,
while the SC is gapped. The electrons in the superconductor
are expected to remain gapped for nonzero K , as long as K
is sufficiently small. However, beyond a certain value of K , a
phase transition may occur along the interface, beyond which
the electrons in the superconductor become hybridized with
the emergent fermions of the KSL. We now identify a nonlocal
string order parameter that characterizes the phase transition,
and argue that such a transition must occur in the model (6). In
Sec. IV we will study the phase transition numerically, using
DMRG.

The order parameter that we expect to become long-range
ordered at large K is given by the product of the electron
operator in the superconductor times a Majorana operator of
an emergent fermions of the KSL near the boundary with the
SC. For example, we may use the following operator:

O0(i) = iα(i,1,A)α(i,0,B), (10)

where α(i,0,B) is a Majorana operator in sublattice B of the
superconductor, and α(i,1,A) is a Majorana operator defined
through a Jordan-Wigner transformation on the j = 1 row of
spins in the KSL (see Appendix A for an explicit definition).
In the large K phase, we expect the correlation function of
O0 to become long-range ordered along the boundary, i.e.,
S0(i, i′) ≡ 〈O0(i)O0(i′)〉 should approach a nonzero constant
at large |i − i′|. In terms of the spin operators of the KSL,
S0(i, i′) is a nonlocal string order parameter. Explicitly,

S0(i, i′) = 〈σ x
(i,1,A)σ

z
(i,1,B)

∏
i<k<i′

(
σ z

(k,1,A)σ
z
(k,1,B)

)
σ

y
(i′,1,A)

× iα(i,0,B)α(i′,0,B)〉. (11)

In addition, we define a string order parameter in terms of
a product of an electronic operator in the SC times a Ma-
jorana fermion operator at depth D in the KSL: OD(i) =
iα(i−D,2D+1,A)α(i,0,B). The correlation function of this operator
should also become long ranged in the large K phase. How-
ever, as we shall demonstrate below, its asymptotic magnitude
at large |i − i′| decays exponentially with D.

Clearly, when K = 0, S0(i, i′) decays exponentially at large
distances, since S0 decomposes into a product of a corre-

FIG. 3. The correlation of the string order parameter of the KSL
fermion times the SC fermion as a function of distance for different
values of KSL–SC coupling in a system of size Nx = 20, Ny = 2 at
depth 0. The inset shows the same in linear-log scale.

lator in the KSL times the Greens’ function of the SC,
〈iα(i,0,B)α(i′,0,B)〉, and the latter correlation function decays
exponentially since the fermions in the SC are gapped. Con-
versely, in the opposite limit of large K , we now argue that S0

becomes long ranged. This can be seen by first setting εB = 0.
The Hamiltonian (6) is then exactly solvable even for K �= 0,
as we show in Appendix B. This is because for εB = 0, upon
fermionization of the KSL spins, the degrees of freedom of the
superconductor can be regarded as an additional row of the
KSL. In this case, the correlation function S0 can be shown
to be long ranged. Introducing a nonzero εB diminishes the
magnitude of the correlation function, but does not decrease it
immediately to zero (see Appendix B).

Hence, for εB �= 0, there must be a phase transition at
an intermediate value of K where S0 becomes nonzero. The
properties of this transition are studied using DMRG in the
next section.

IV. DMRG SIMULATIONS

In order to demonstrate the existence of a phase transition
on the KSL–SC boundary, we performed DMRG simulations
of the model (6) on a finite strip. Measuring the nonlocal order
parameter at different values of the coupling K across the
interface, we identify a transition beyond which the order pa-
rameter becomes long ranged. The DMRG calculations were
performed using the TeNPy Library [39].

In all the following calculations we fix the parameters
J = 1, γ = 1, κ = 0.1, hz

1 = εA = 0.2, εB = 0.05, and
we vary K and the system size Nx × Ny. We order the
sites in the matrix product state column by column:
(0, 0, A), (0, 1, A), . . . , (0, Ny, A), (0, 0, B), (0, 1, B) . . . .
The bond dimension was increased every few sweeps and
needed to reach a value of up to 1000 for convergence. The
error bars drawn for the results are calculated as a difference
between the value reached at the final bond dimension and
that reached at the second to last value.

Figure 3 shows the string correlation function S0(i, Nx )
[Eq. (11)] as a function of distance Nx − i in a system with
Nx = 20, Ny = 2, for different values of KSL–SC coupling
K . The inset shows the same data in a linear-log scale. It is
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FIG. 4. The correlation of string order parameter of the KSL
fermion times the SC fermion at half the system length as a function
of the KSL–SC coupling for different system lengths. The results are
shown for a system of width Ny = 2 (a) and for Ny = 3 (b).

clearly evident that in the limit of small K , the string order
parameter is exponentially decaying with distance, while be-
yond K ≈ 0.4 the correlation length becomes comparable to
system size.

To support the existence of a phase with long-range string
order, we investigate the dependence of the string correlation
function at half the system, S0(Nx/2, Nx ), on K for different
system sizes. This is shown in Figs. 4(a) and 4(b) for Ny = 2
and Ny = 3, respectively. For both values of Ny, the behavior
is consistent with a continuous transition at Kc ≈ 0.4 where
the string correlation function becomes nonzero in the limit of
large Nx.

Next, we investigate the dependence of the string order
parameter on the depth D at which the KSL fermion is taken.
Figure 5 compares the values of the string order parameter at
depths D = 0 and 1. The order parameter decays rapidly with
depth, as expected due to the strong localization of the KSL
edge state.

As mentioned above, the model (6) possesses a Z2 sym-
metry associated with a π rotation around the z axis in spin
space. However, unlike in the one-dimensional model de-
scribed in Sec. II, we do not expect this symmetry to play
a crucial role in the transition along the KSL–SC interface.
In particular, the transition should exist even if the symmetry
is broken. To demonstrate this, we added to the Hamiltonian

FIG. 5. The correlation of the string order parameter of the KSL
fermion at depths 0, 1 times the SC fermion as a function of distance
for K = 0.5 in a system of size Nx = 15, Ny = 3.

(6) a term H′
int = iK ′ ∑

i σ
x
(i,1,A)β(i,0,B)α(i,0,B) with K ′ = 0.05.

The results for the string correlation function in this case are
shown in Fig. 6. As can be seen in the figure, there still is a

FIG. 6. Breaking the Z2 symmetry in the KSL with K ′ = 0.05
leaves the phase transition intact. The correlation of the string order
parameter of the KSL fermion times the SC fermion as a function
of distance for different values of KSL–SC coupling in a system of
size Nx = 20, Ny = 2 at depth 0 is shown in (a). The inset shows the
same in linear-log scale. The correlation of string order parameter of
the KSL fermion times the SC fermion at half the system length as
a function of the KSL–SC coupling for different system lengths with
Ny = 2 is presented in (b).
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FIG. 7. The Green’s function the β(i,0,A) electron in the SC as a
function of distance for different values of KSL–SC coupling in a
system of size Nx = 20, Ny = 2 in log-log scale. The inset shows the
same in linear-log scale.

clear transition near K = 0.4 where S0(i, Nx ) becomes long
ranged.

Finally, in the phase where the string correlation function
becomes long ranged, we expect the electronic Green’s func-
tion to display power-law correlations along the interface.
This is because the electronic quasiparticles hybridize with
the emergent gapless Majorana fermions at the edge of the
KSL. In our simulations, the electronic Green’s function is
found to decay rapidly along the interface even for K > Kc,
and no power law could be discerned (see Fig. 7). Examining
the electronic Green’s function of the β(i,0,A) electron in the
SC in the exactly solvable limit (Appendix B), εB = 0, we find
that a width of at least Ny � 5 is needed before the power-law
decay along the interface can be clearly seen, explaining this
apparent discrepancy.

V. SUMMARY

To summarize, in this work we have shown that the bound-
ary between a superconductor and a chiral Kitaev spin liquid
displays a phase transition as a function of the coupling be-
tween the two systems. In the strong coupling phase, the
electrons in the superconductor become hybridized with the
emergent fermions of the spin liquid. Hence, in this phase,
electrons can tunnel into the chiral gapless edge modes of the
spin liquid. The resulting gapless electronic density of states
at the interface should be detectable in STM experiments.

The observation of a transition from a gapped electronic
spectrum to a gapless one at the interface is a compelling
signature for the presence of a KSL phase. Generically, if
there is no Kitaev spin liquid in the magnetic material, we do
not expect to see a finite tunneling density of states in STM at
zero energy at a clean interface with the superconductor, since
single electron excitations in both the superconductor and
the magnet are gapped. Moreover, there should be no phase
transition at the interface for any strength of the coupling
between the two materials. If the interface is very disordered,
there could in principle be subgap Yu-Shiba-Rusinov like
subgap states at the interface even if the magnetic material
is not a spin liquid. Such impurity states are likely to give
a different dependence of the density of states on STM bias
voltage near zero energy than that of the chiral edge state
(which gives a constant density of states). How to distinguish

the two scenarios in STM is an interesting question which we
leave for further studies.

An analogous transition to the one discussed here is possi-
ble at the interface of a superconductor with other spin liquid
phases, such as a gapless (Dirac) Kitaev spin liquid. More
generally, any spin liquid that has emergent fermionic bulk
excitations can support this type of interface.

Our numerical results suggest that the transition at the
interface of a superconductor with a chiral KSL is continuous.
This is an unusual one-dimensional quantum critical point,
since it separates two chiral phases. Understanding the uni-
versality class of this transition is an interesting direction for
future investigation.
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APPENDIX A: KITAEV HONEYCOMB MODEL

The Kitaev honeycomb model consists of spin halves, lo-
cated at the vertices of a honeycomb lattice. The bonds in this
lattice are divided into three distinct sets according to their
orientation and are called “x bonds,” “y bonds,” and “z bonds.”
The Hamiltonian is given as follows:

H = − Jx

∑
x−bonds

σ x
(i, j,A)σ

x
(i, j,B)

− Jy

∑
y−bonds

σ
y
(i, j,B)σ

y
(i+1, j,A)

− Jz

∑
z−bonds

σ z
(i, j,B)σ

z
(i, j+1,A)

−
∑

I

(
hxσ

x
I + hyσ

y
I + hzσ

z
I

)
, (A1)

where Jx, Jy, Jz are orientation-dependent coupling strengths
and h is a Zeeman field strength. The strong frustration arising
from these competing couplings suppresses the tendency for
conventional symmetry-breaking order.

With only the J terms present, the ground state and all the
excited states of this system are exactly known.

1. Solution by fermionization

Before introducing our full model for a coupled KSL and
SC, we briefly provide the solution of the exactly solvable
KSL model by fermionization using the method described in
Ref. [38]. This method will be convenient for expressing the
couplings of our interacting model and will also provide us
with a useful exactly solvable limit.

We perform a Jordan-Wigner transformation defined by
deforming the lattice into a “brick-wall” geometry, as shown
in Fig. 2. We order the sites in a 1D contour row by row (see
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figure), and replace the spin operators with complex fermions
c, c†, defined as

σ x
(i, j,s) + iσ y

(i, j,s)

= 2

( ∏
j′< j,i′,s′

σ z
(i′, j′,s′ )

)( ∏
i′<i,s′

σ z
(i′, j,s′ )

)(∏
s′<s

σ z
(i, j,s′ )

)
c†

(i, j,s),

(A2)

σ z
I = 2c†

I cI − 1. (A3)

With this definition, and setting h = 0, the Hamiltonian in
Eq. (A1) becomes

H = Jx

∑
x−bonds

(c† − c)(i, j,A)(c
† + c)(i, j,B)

− Jy

∑
y−bonds

(c† + c)(i, j,B)(c
† − c)(i+1, j,A)

− Jz

∑
z−bonds

(2c†c − 1)(i, j,B)(2c†c − 1)(i, j+1,A). (A4)

Next, we introduce the Majorana fermions α and β for sites
in the A sublattice:

α(i, j,A) = 1

i
(c − c†)(i, j,A), β(i, j,A) = (c + c†)(i, j,A), (A5)

and for sites in the B sublattice:

β(i, j,B) = 1

i
(c − c†)(i, j,B), α(i, j,B) = (c + c†)(i, j,B). (A6)

In these terms, the Hamiltonian becomes

H = − iJx

∑
x−bonds

α(i, j,A)α(i, j,B)

+ iJy

∑
y−bonds

α(i, j,B)α(i+1, j,A)

− Jz

∑
z−bonds

(βα)(i, j,B)(βα)(i, j+1,A). (A7)

It is now clear that the set of operators

ui, j = iβ(i, j,B)β(i, j+1,A), (A8)

defined on all z bonds labeled by the coordinate of the site
in the B sublattice i, j, commute with the Hamiltonian and
with each other. Replacing these operators with their eigen-
values ui, j = ±1 leaves us with the following easily solvable
quadratic Hamiltonian:

Hu = − iJx

∑
x−bonds

α(i, j,A)α(i, j,B)

+ iJy

∑
y−bonds

α(i, j,B)α(i+1, j,A)

− i
∑

z−bonds

Jzui, jα(i, j,B)α(i, j+1,A). (A9)

The ground state is found in the vortex-free sector given by
ui, j = 1 as follows from a theorem proved by Lieb [40].

2. Zeeman field perturbation

Although the model is not exactly solvable in the presence
of the Zeeman field, it can be solved by perturbation theory
where the relevant leading order correction to the low-energy
effective Hamiltonian is given by the following three-spin
term [5]:

H(3)
eff ∼ −κ

∑
(J,K,L)∈	

σ x
J σ

y
Kσ z

L, (A10)

where κ = hxhyhz/J2, and 	 is the set of triplets of sites
equivalent by symmetry to J = (1, 1, A), K = (1, 1, B), L =
(1, 2, A). This three-spin term can be written in terms of the
fermionic operators as

H(3)
eff ∼ −κ

∑
(J,K,L)∈	

αJβKαLβL. (A11)

Upon restricting to the ground state sector, this simply be-
comes a second-nearest-neighbor hopping of the α fermions,

H(3)
eff ∼ κ

∑
(J,K,L)∈	

iαJαL. (A12)

APPENDIX B: KSL–SC MODEL IN THE EXACTLY
SOLVABLE LIMIT AND EDGE STATES

In this Appendix we examine the coupled KSL–SC model
given by Eq. (6) in the exactly solvable limit of εB → 0. We
extract the wave functions and the dispersion of the edge
states and the electronic Green’s function. We solve the model
with periodic boundary conditions lengthwise: (i, j, s) = (i +
Nx, j, s). These results are useful in establishing the existence
of the strongly coupled KSL–SC interface, and in assessing
the role of finite size effects on this phase in a narrow strip
geometry.

The model is solved by writing the fermionized Hamilto-
nian in the ground state sector (without fluxes) in terms of
operators Fourier transformed in the x direction:

H = 1

2
i
∑

1,
2

∑
qx

Ã
1,
2 (qx )a†
qx,
1

aqx,
2 , (B1)

where

aqx,
 = 1√
2Nx

∑
ix

e−iqx ·ix aix,
, (B2)

and we have defined aqx,
 as

aix,
={1,...,2Ny+4} ≡ (β(ix,0,A), α(ix,0,A), α(ix,0,B), α(ix,1,A), α(ix,1,B), . . . , α(ix,Ny,A), α(ix,Ny,B), β(ix,Ny,B) ). (B3)
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FIG. 8. Dispersion of the fermionic states in a KSL–SC strip in the exactly solvable limit (εB = 0). On the left the system width is Ny = 2,
in the center Ny = 3, and on the right Ny = 10. Points are colored according to the degree of confinement of the wave functions to the edge
(given by the weight on the top row of β operators minus the weight on the bottom row of β operators), such that yellow curves correspond to
states localized at the top, and blue corresponds to states at the bottom.

The matrix Ã(qx ) is given by

iÃ(qx ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 iχ 0
−iχ λ is 0

0 −is −λ ir 0
0 −ir λ is −ζ

0 −is −λ ir ζ

−ζ −ir λ is −ζ

ζ −is −λ
. . .

−ζ
. . . 0

. . . −iχ
0 iχ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

where r = 2J , s = −4J cos( qx

2 ), λ = 4κ sin(qx ), ζ =
4κ sin( qx

2 ), and χ = −2hz
1 = −2εA assuming Jx = Jy =

Jz = J .
Next we diagonalize iÃ(qx ) as

iÃ(qx ) = U (qx )D(qx )U †(qx ), (B5)

where D(qx ) is real and diagonal, and U is unitary. Substitut-
ing this leads to

H = 1

2

∑
m

∑
qx

b†
qx,mDm,m(qx )bqx,m, (B6)

where

bqx,m =
∑




U †
m,
(qx ) aqx,
. (B7)

The eigenvectors given as columns of U correspond to the
amplitudes of the different eigenstates of the system on each
row of sites, and the diagonal of D(qx ) gives their dispersions.

Next, we calculate the Green’s function of the β(i,0,A) elec-
tron in the SC by expressing the original fermions in terms of
the diagonalized ones. Since we are interested in the ground
state, we have

〈b†
qx,1,mbqx,2,n〉 = �[−Dm,m(qx1)]δmnδqx,1qx,2 . (B8)

Therefore, the Green’s function is given by

〈β(i1,0,A)β(i2,0,A)〉

= 2

Nx

∑
qx

∑
m

eiqx ·(i2−i1 )U1,m(qx )U †
m,1(qx )�[−Dm,m(qx )].

(B9)

We diagonalize the Hamiltonian numerically for a system
of length Nx = 1000 and various widths Ny. All the other
parameters are set to the same values used in the DMRG simu-
lations, specifically with K = Jz = 1. In Fig. 8 we present the

FIG. 9. The Green’s function of the electronic β(i,0,A) operator in
the SC [Eq. (B9)] as a function of distance along the strip for different
widths in the exactly solvable limit (εB = 0). 1/x decay is shown for
reference by the dashed line.

235118-8



CONVERTING ELECTRONS INTO EMERGENT FERMIONS … PHYSICAL REVIEW B 104, 235118 (2021)

dispersion in systems of width Ny = 2, 3, 10. The overlap of
the eigenstates with the β operators on the edges is depicted
by the coloring of the curves.

Even in very narrow systems (Ny = 2, 3), the chiral edge
states can clearly be seen both in terms of their dispersion
and their localization to the edge. Where there are avoided
crossings between the edge states at the top and bottom of the
strip they become hybridized, but their weight remains on the
edges. The region in momentum space where the edge states
are significantly hybridized becomes smaller as Ny increases,
since the matrix element between the edge states at the oppo-
site edges decays with Ny.

Decreasing the three-spin term κ results in a smaller gap
opening in the bulk which leads to a smaller dispersion of the
edge states and more hybridization between the two edges.
With our choice of parameters, the dispersion of the edge
states is quite flat near qx = 0.

Finally, we show the Green’s function of the electronic
operator β(i,0,A) in the SC as a function of distance along
the strip for different widths in Fig. 9. For systems with a
small width, the Green’s function decays exponentially with
distance. As the width increases, there is a large crossover
regime where the Green’s function decays as 1/x, as expected
for a chiral Majorana mode. However, a width of at about
Ny = 5 or larger is needed to get a clear 1/x regime.
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