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Detecting delocalization-localization transitions from full density distributions
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Characterizing the delocalization transition in closed quantum systems with a many-body localized phase is
a key open question in the field of nonequilibrium physics. We exploit the fact that localization of particles as
realized in Anderson localization and standard many-body localization (MBL) implies Fock-space localization
in single-particle basis sets characterized by a real-space index. Using a recently introduced quantitative measure
for Fock-space localization computed from the density distributions, the occupation distance, we systematically
study its scaling behavior across delocalization transitions and identify critical points from scaling collapses
of numerical data. Excellent agreement with literature results is found for the critical disorder strengths of
noninteracting fermions, such as the one-dimensional Aubry-André model and the three-dimensional Anderson
model. We observe a distinctively different scaling behavior in the case of interacting fermions with random
disorder consistent with a Kosterlitz-Thouless transition. Finally, we use our measure to extract the transition
point as a function of filling for interacting fermions.
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I. INTRODUCTION

Anderson localization [1] generalizes to disordered sys-
tems of interacting particles [2,3], leading to many-body
localization (MBL). MBL conceptually fits into the frame-
work of thermalization in closed quantum systems [4–7] as
a generic exception from eigenstate thermalization [8–12].
The MBL transition is visible in properties of many-body
eigenstates at a finite energy density [9], such as area-law
entanglement [13–15], and in properties of time-evolved
states in global quenches, such as slow logarithmic en-
tanglement entropy growth [16–18] and persistent density
inhomogeneities [19,20]. Experiments with ultracold atoms
[19–28], solid-state spin systems [29,30], trapped ions [31],
and superconducting qubits [32–36] emulated various lattice
models with disorder and probed their localization proper-
ties [19–35]. Some of the experiments measure eigenstate
properties, e.g., the level statistics [31,33], while most of the
efforts address dynamical aspects, including the imbalance
[19,20,22–25,35], the time-dependent entanglement entropy
[26,31,32,34], and n-point correlators [27,28,30].

There is, however, an ongoing debate on the nature of the
ergodic-to-MBL transition, and even the very existence of
MBL in the field’s standard model, namely, interacting spin-
less fermions in one dimension, has been challenged [37–47].
The current proposals for the transition in the thermodynam-
ical limit are (i) a continuous transition with a power-law
scaling of correlations [48,49], (ii) a transition involving
Griffiths regions [50,51], (iii) Kosterlitz-Thouless- (KT) type
scaling [41,52–58] as a special case of proposal (ii) [51],
and (iv) the absence of a true MBL phase in the thermo-
dynamic limit [37,41–44,46,47]. While numerical methods
play a key role, they are limited with regard to the accessible
system sizes [11,14–17,37–49,56,59–67]. Therefore, there is

a clear need to identify observables for the characterization of
localization-delocalization transitions that can be measured in
state-of-the-art and future experiments with quantum simula-
tors and are easy to compute numerically as well.

Motivated by these open questions, in this work, we es-
tablish the recently introduced occupation distance [67] as a
useful quantitative measure for characterizing delocalization-
localization transitions. As our main results, we first show that
the occupation distance detects localization-delocalization
transitions in noninteracting Hamiltonians, including the
one-dimensional (1D) Aubry-André model (AAM) and the
three-dimensional (3D) Anderson model (3AM), finding
excellent agreement with literature results for the critical dis-
order strengths. Second, we report evidence for a KT scaling
for interacting spinless fermions in one dimension. Third,
as an application, we study the dependence of the critical
disorder strength on filling in the interacting model.

Given a single-particle basis set |φα〉 and corresponding
creation and annihilation operators c†

α and cα , the occupation
distance is

δnα = |nα − [nα]|, (1)

where [nα] is the closest integer to the occupation nα =
〈�|c†

αcα|�〉 in a given many-body state |�〉. In Anderson and
MBL insulators, there is Fock-space localization [3,63,68,69]
in the basis of quasiparticles (l-bits) [18,70–72], the eigen-
basis of one-particle density matrices [63,67,73–78], the
Anderson eigenstates [73], and the basis of physical densities
ni = 〈�|c†

i ci|�〉 [67,73]. Here, we concentrate on the latter
since these objects are the easiest to obtain numerically and
experimentally.

To illustrate the concept of our approach, in Fig. 1, we
show a typical distribution of ni sampled over eigenstates and
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FIG. 1. Interacting fermions, Eq. (3), with V/J = 1, ε = 1, n =
1/2: Full distributions of local occupations ni in (a) the delocal-
ized phase (W/J = 1) and (b) the localized phase (W/J = 6) for
L = 10, 12, 14, 16, 18. In (b), the distributions overlap.

disorder realizations for a half-filled chain of interacting
spinless fermions [64,67,79], whose model is defined in
Eq. (3) below. The distribution has a Gaussian-like shape in
the delocalized regime [see Fig. 1(a)], and its width shrinks as
the system size increases. By contrast, in the localized regime
[see Fig. 1(b)], the distribution has a bimodal structure and is
independent of system size, which is typical for the localized
phase.

In Fig. 2, we show typical distributions of δni correspond-
ing to the distributions of ni in Fig. 1. The distribution has
a maximum at δni = n = 0.5 in the delocalized regime [see
Fig. 2(a)] which gets larger as the system size increases. By
contrast, in the localized regime [see Fig. 2(b)], the distri-
bution has a sharp maximum at δni = 0, and its shape is
almost independent of L. Hence, in the delocalized regime, the
disorder-averaged occupation distance δni approaches the av-
erage particle filling n = N/L for N, L → ∞ (N is the particle
number, and L is the number of sites), while in the localized
regime, it saturates to a lower value [67]. In the following,
we determine the position of the critical point by studying the
scaling properties of n − δni.

II. MODELS

To establish the validity of our approach, we first apply it
to noninteracting systems given by

H = −J
∑
〈i j〉

(c†
i c j + H.c.) +

∑
i

εini (2)

FIG. 2. Interacting fermions, Eq. (3), with V/J = 1, ε = 1, n =
1/2: Full distributions of the occupation distances δni (a) in the de-
localized phase (W/J = 1) and (b) in the localized phase (W/J = 6)
for L = 10, 12, 14, 16, 18. For the localized phase in (b), the distri-
butions overlap.

that exhibit a localization-delocalization transition (J is the
hopping matrix element). For the AAM, the external potential
in Eq. (2) is quasiperiodic, εi = W cos(2πqi + φ), where φ

is a global phase and W is the amplitude of the potential,
which is incommensurate for an irrational wave number q. A
standard choice for q is the inverse golden ratio q =

√
5−1
2 .

The AAM has an inherent self-duality at Wc/J = 2, giving
rise to a sharp metal-insulator transition [80–90], observed
experimentally using cold atoms [91,92] and photonic lattices
[93]. In the 3AM, fermions hop on a 3D lattice with uncorre-
lated random on-site energies εi ∈ [−W/2,W/2]. Numerical
studies of transport properties [94–97] based on the transfer-
matrix technique have shown that, at half filling, the system
remains insulating for W > Wc ≈ 16.54J [98] and, below Wc,
it is diffusive [99,100]. At the transition, the 3AM exhibits
subdiffusion [99] and multifractal single-particle wave func-
tions [101,102].

To investigate the MBL transition, we consider spinless
fermions with a nearest-neighbor interaction described by the
Hamiltonian

H =
L∑

i=1

[
−J

2
(c†

i ci+1 + H.c.) + εi

(
ni − 1

2

)

+ V

(
ni − 1

2

)(
ni+1 − 1

2

)]
, (3)

where c(†)
i is a fermionic creation (annihilation) operator, ni =

c†
i ci is the density at site i, J/2 is the hopping matrix element,

V is the strength of the nearest-neighbor interactions, and εi

is a random potential drawn from a uniform box distribution
[−W,W ] (we use a different convention for W compared to
the 3AM to be consistent with the MBL literature). Using a
Jordan-Wigner transformation, Eq. (3) maps onto a spin-1/2
XXZ chain with random local magnetic field (note the factor
J
2 in front of the hopping term), a standard system for studies
of MBL [12,48,60,61].

We define the target energy density via ε = 2(E−Emin )
Emax−Emin

,
where E is the many-body energy of a particular eigenstate
and Emax and Emin are the maximum and minimum energies
for each disorder realization, respectively. Hence, ε = 1 cor-
responds to the middle of the many-body spectrum.

III. RESULTS FOR NONINTERACTING MODELS

We solve the single-particle problem Hφα = εαφα with
periodic boundary conditions using full exact diagonaliza-
tion for L � 20 000. To obtain those single-particle states
εα contributing to ε = 1 many-body states, we use a Monte
Carlo generation to sample the statistics of occupied single-
particle orbitals. To this end we generate two arrays, O and
U , containing the indices of occupied and unoccupied single-
particle states, respectively (for half filling both arrays have
length L/2). The initialization of these two arrays is ran-
dom. Once we have the two arrays, we check whether the
many-body energy E = ∑

α∈O εα belongs to the target energy
window. If not, then we generate a new many-body state by
taking a random integer from each array, rO and rU , and we ex-
change the corresponding elements OrO ↔ UrU . We continue
until we find a many-body state with E which belongs to the
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FIG. 3. AAM: n − δni as a function of W/J for L = 16, 32, 64,
128, 256, 512, 1000, 20 000. The arrow specifies increasing L, and
the dashed line denotes the transition point [80]. Inset: Log-log plot
of the data from the main panel as a function of L deep in the delo-
calized regime (W/J = 0.02–1.62, in steps of 0.2, red), close to the
transition (W/J = 1.82–2.22, in steps of 0.02, yellow being the tran-
sition point), and deep in the localized phase (W/J = 6.02–12.02, in
steps of 2, blue). The arrow indicates increasing disorder strength.

target energy window. For each disorder realization out of (up
to) 104 samples, we take one such many-body eigenstate with
ε ∈ (0.9995, 1.0005).

In the main panel in Fig. 3, we plot n − δni as a function
of disorder strength for different system sizes. As expected, in
the delocalized phase (W/J < 2), this quantity quickly decays
to zero for L → ∞, while in the localized phase (W/J > 2), it
saturates to a finite value. This saturation is reached for system
sizes larger than the localization length. For the largest system
sizes, we observe saturation in almost the whole localized
phase except for a tiny window around the transition, where
the localization length diverges.

To get further insights, in the inset in Fig. 3, we plot n − δni

as a function of L in log-log scale for different disorder
strengths W/J . For L > 200, the decay is governed by a power
law L−α with α ≈ 0.5 for all values of W/J < 2. Remarkably,
exactly at the transition point, the decay is governed by a dif-
ferent exponent, αc ≈ 0.25, revealing the different nature of
the single-particle wave functions at the critical point [82–90].
In the localized regime, the saturation is reached already for
L ≈ 1000 even for values of W/J close to the transition point.
To summarize, for the AAM, there is a remarkable difference
in the behavior of the occupation distance when comparing
the localized and delocalized phases. The power-law decay of
n − δni in the metallic phase and its saturation to a constant in
the localized regime are clearly reminiscent of the behavior of
the inverse participation ratio in the single-particle problem.

The corresponding analog of Fig. 3 for the 3AM is dis-
played in Fig. 4. Here, n − δni clearly decays to zero for
L → ∞ in the delocalized phase (W/J < 16). Oppositely,
in the localized regime, there is a clear onset of saturation
for L ≈ 20–36 for W/J > 17. The trends are less clear for
Wc/J ≈ 16–17, i.e., close to the estimated transition Wc/J ≈
16.54 [98]. We observe that for all L values considered here,
the decay in the delocalized phase is governed by a power
law L−α , but the exponent α now depends on the disorder

FIG. 4. 3AM: n − δni as a function of W/J for L3 =
43, 63, 83, 103, 123, 203, 283, 363. The arrow specifies increasing
system size, and the dashed line denotes the transition point esti-
mated from other measures, Wc/J ≈ 16.54 [98]. Inset: Log-log plot
of the data from the main panel as a function of L in the delocalized
regime (W/J = 0.02–16.02 in steps of 2, red), at the estimated tran-
sition point [98] (Wc/J ≈ 16.54, yellow), and in the localized phase
(W/J = 17.02, 18.02–40.02 in steps of 2, blue). The arrow specifies
increasing disorder strength.

strength, most likely due to the limited system sizes available.
At the estimated transition point [98], we find that the decay
is governed by the exponent αc ≈ 0.75(5).

We next perform a scaling collapse of the data in Fig. 3,
focusing on the delocalized phase and the vicinity of the
transition point. For this purpose, in Fig. 5, we replot the
data using the dimensionless variables w = L1/ν (W − Wc)/J
and (n − δni )Lμ for the x and y axes, respectively. To get the
best-quality estimate of the exponent ν, the scaling collapse
needs to be performed for system sizes in the scaling regime.
Therefore, we include only systems with L � 256, which is a
posteriori justified by the results (see the inset in Fig. 3). For
the AAM, we then find μ 
 0.25(5), Wc/J = 2.00(5), and the

FIG. 5. AAM: Scaling collapse of n − δni for L = 256,
512, 1000, 20000 and fitting parameters Wc = 2.00(5)J, μ =
0.25(5), ν = 1.05(5). Inset: Scaling collapse for the 3AM using
L3 = 123, 203, 283, 363 with fitting parameters Wc = 16.3(2)J, μ =
0.50(5), ν = 1.60(5).

235112-3



HOPJAN, ORSO, AND HEIDRICH-MEISNER PHYSICAL REVIEW B 104, 235112 (2021)

expected critical exponent ν 
 1.05(5) (see the main panel in
Fig. 5). As a side remark, note that μ 
 αc, so that the product
(n − δni )Lμ takes a finite value at the transition point. Inter-
estingly, we have recovered the values of Wc/J = 2 and ν = 1
known from the single-particle transition [80,81], which sug-
gests that the Fock-space delocalization-localization transition
is driven by the divergent localization length in the single-
particle states.

We carry out the same scaling-collapse procedure for the
3AM. Here, the best up-to-date estimate for the critical dis-
order strength is Wc/J ≈ 16.54 [98], which is obtained using
the transfer-matrix method for the midspectrum states of the
single-particle Hamiltonian. In the inset in Fig. 5, we show
the scaling collapse, obtained by retaining only the data sets
with L � 12 (see the inset in Fig. 4). We then find μ 

0.50(5), Wc/J = 16.3(2), and the expected critical exponent
ν 
 1.60(5) (see the inset in Fig. 5). The estimates of the
critical point Wc/J 
 16.3(2) and the critical exponent ν 

1.60(5) are quite close to the values Wc/J = 16.54, ν = 1.572
obtained with the transfer-matrix method [98], where much
larger system sizes (up to L = 64) were considered. We at-
tribute the small differences between the estimates to residual
finite-size effects. Additionally, the many-body Slater deter-
minant can contain a fraction of single-particle states whose
energy lies close to the band edge. Since these states localize
for a much weaker disorder, it is, in principle, possible that
n − δni saturates to a small, but finite, value in the vicinity
of the critical point, in contrast to the scaling ansatz. For the
system sizes that we considered, however, we do not find clear
evidence for this effect.

The presented results for the AAM and the 3AM con-
firm that the occupation distance accurately captures the
transitions. Thus, remarkably, by exploiting Fock-space lo-
calization, the transition points can be determined from the
distributions of the simple-to-calculate quantity ni. More-
over, the advances in characterizing MBL also feed back
into devising hitherto unexplored approaches for disordered
noninteracting models (see also [103–105]).

IV. RESULTS FOR INTERACTING MODELS

We now turn our attention to the interacting model in
Eq. (3), considering values of the filling in the range 1/10 �
n � 2/3, L � 30, and 104 disorder realizations (see the Ap-
pendix for details). We impose periodic boundary conditions.
For a given disorder realization, we use the shift-and-invert
method [48,106] to efficiently extract the six eigenstates clos-
est to the target energy ε = 1.

The main panel in Fig. 6 shows n − δni as a function
of disorder strength for n = 1/3 (for other values of n, the
behavior is similar). For W/J < 3.6, there is a clear decay
towards zero, while for W/J > 4.2, there is a slow saturation
to a finite value. However, the decay in the delocalized phase
has a character different from the one previously observed
for the noninteracting models. In particular, as seen in the
inset in Fig. 6, the decay of the average occupation distance
is not algebraic, but exponential. This is a consequence of
the exponential decay of the fluctuations according to the
eigenstate thermalization hypothesis [4–6,107].

FIG. 6. 1D interacting fermions, Eq. (3) (ε = 1,V/J = 1, n =
1/3): n − δni as a function of W/J for L = 9, 12, 15, 18, 21. The
arrow specifies increasing system size, and the shaded area indicates
the estimated range of the transition point. Inset: Log-log plot of the
data from the main panel as a function of L in the delocalized regime
(red symbols, W/J = 1.2–3.6, in steps of 0.2) and in the localized
phase (blue symbols, W/J = 4.2, 5.0, 6.0). The arrow specifies in-
creasing disorder strength.

The exponential dependence on L in the delocalized phase
suggests that, for the interacting system, the scaling collapse
of the data in Fig. 6 is of the KT type. We also add that the
KT form of the scaling is inspired by the recent literature
on the phenomenological renormalization group theories of
the MBL transitions [52–54]. To verify this hypothesis, in
Fig. 7 (main panel), we first display n − δni as a function of
J/W . Then, in the inset, we plot the same data as a function
of the variable ln(L/ξ ), where ξ = exp(−a/

√
J/W − J/Wc)

is the KT length, with Wc and a being fitting parameters.
Evidently, a KT-like scaling for the occupation distance
is consistent with our data, and the collapse is of similar

FIG. 7. 1D interacting fermions, Eq. (3), with ε = 1,V/J =
1, n = 1/3: n − δni as a function of J/W for L = 9, 12, 15, 18, 21.
The arrow specifies increasing system size, and the shaded area
indicates the estimated range of the transition point. Inset: Scaling
collapse of the data from the main panel in the delocalized phase as a
function of ln(L/ξ ), where ξ = exp(−a/

√
J/W − J/Wc ) with fitting

parameters Wc/J = 4.1(2) and a = 1.00(5). For the scaling collapse
all the data in the ergodic regime, i.e., with J/W > J/Wc, are used.
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FIG. 8. 1D interacting fermions, Eq. (3), with ε = 1,V/J = 1:
Transition point Wc/J as a function of filling n (dots) estimated from
scaling collapses as in Fig. 7. The dashed line is a power-law fit to
Wc ≈ cnλ, where λ = 0.58(10).

quality in the whole delocalized region. We note that with the
power-law scaling, we did not obtain a satisfactory collapse
of our data (not shown). Interestingly, KT scaling predicts
a jump of the occupation distance at the critical point Wc

for L → ∞, which agrees with the jump of the multifractal
dimension of the eigenstates at the localization-delocalization
transition reported in [58,66,108,109]. Our analysis of full
density distributions is more advantageous than the study of
the minimum deviation from ni = 1 (a single number) stud-
ied in [56] since our measure suffers less from numerical or
experimental uncertainties.

Finally, we repeat the same procedure for different particle
fillings to extract Wc = Wc(n). The full density dependence
of the transition point in the interacting system has not been
explored before and is an additional quantitative prediction
which could be explored in future experiments. The density
dependence of the transition in the interacting system is differ-
ent from the AAM, where the critical disorder strength is the
same for all fillings; thus, the n dependence of Wc/J hints at
a different mechanism of the transition in interacting systems.
The resulting phase boundary between MBL and delocalized
states is displayed in Fig. 8. First, note that the critical disorder
strength is particle-hole symmetric with respect to filling, i.e.,
Wc(n) = Wc(1 − n). Second, Wc takes its maximum value at
half filling, where Wc/J = 4.4(2), consistent with other works
[48,56,63,66,67] (see also [37–41,49,110–114]). Third, for
n < 0.5, Wc/J decreases steadily as the filling diminishes and
must vanish at zero filling. Indeed, all single-particle states are
localized in an infinite lattice, and few-particle states remain
also localized, although short-range interactions can substan-
tially increase their localization length [115–117] (a similar
situation occurs also in two dimensions; see [118]). By fitting
the data in Fig. 8 at low fillings with a power law Wc/J ≈ cnλ,
where c and λ are fitting parameters, we obtain λ = 0.58(10).

V. CONCLUSIONS

We demonstrated that the quantitative analysis of den-
sity distributions is instrumental for the characterization of
localization-delocalization transitions. Our approach based on
the occupation distance exploits both real-space and Fock-
space localization as characteristic properties of states with
localized (quasi)particles. We showed that the average occu-
pation distance [67], extracted from the density distributions,
exhibits critical scaling behavior at the transition of noninter-
acting models such as the 1D Aubry-André and 3D Anderson

models as well as of interacting spinless fermions. In the non-
interacting models, the average occupation distance collapses
with a power-law decay, while in the interacting model, the
observed KT scaling hints at a different mechanism of the
MBL transition consistent with the predictions of [41,52–
54,56,57]. Finally, we extracted the filling dependence of the
transition point and observed an approximate square-root de-
pendence, Wc ∝ √

n.
The measurement of densities is simple and suffers less

from errors in numerical methods such as the density ma-
trix renormalization group than more complicated observables
and time-dependent objects [119]. Regarding quantum-gas
experiments, while they do not access eigenstates, the mea-
surement of distributions of densities after slow loading
processes into disorder potentials may yield similar infor-
mation, which should be studied further. Such experiments
would neither be restricted to small systems, as is the case
for the measurement of the entanglement entropy [26,34],
nor require time-dependent measurements, further reducing
uncertainties. Our results thus provide a path for study-
ing delocalization-localization transitions in future scaled-up
quantum-gas microscope experiments, aiming at clarifying
the nature of the transition in interacting systems and the
existence of the MBL phase.

Research data is partially available as ancillary files [120].
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APPENDIX: FINITE-SIZE SCALING ANSATZ
AND DATA COLLAPSES

We now turn to the scaling collapses of n − δni. For
the noninteracting models, i.e., the AAM and the 3AM, we
consider a scaling ansatz of the form L−μ f (wL1/ν ), where
w = W/J − Wc/J is the distance from the transition point,
f (t ) is the scaling function of interest, and {Wc, μ, ν} are the
fitting parameters. In the interacting model, we use an ansatz
of the KT form, g[ln(L) − ln(a/

√
J/W − J/Wc)], with g(t )

being the scaling function of interest and {Wc, a} being the
fitting parameters. The system sizes considered for the inter-
acting model are listed in Table I. We calculate six eigenstates
close to ε = 1/2 for the 104 disorder realization for Hilbert
spaces < 25 000 and the 102–103 disorder realization for the
larger ones. Note that this gives, in total, L × 6 × 104 and
L × 6 × (102–103) values of the density ni for the density
histograms, which is sufficient for converged results for the
averages.

To assess the quality of the scaling collapses, i.e., the
smoothness of the functions f (t ) and g(t ) of the argument t ,
we use a cost function introduced in Ref. [41]:

CX =
∑Np−1

j=1 |Xj+1 − Xj |
max{Xj} − min{Xj} − 1, (A1)

where X stands for the values of f and g and the set
{Xj} of Np values Xj is ordered by the values of the
argument t .
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TABLE I. System sizes for the interacting system considered in this study; the corresponding sizes of the Hilbert space are written in
parentheses.

n L(dim) L(dim) L(dim) L(dim) L(dim)

2
3 9 (84) 12 (495) 15 (3003) 18 (18 564) 21 (116 280)
1
2 10 (252) 12 (924) 14 (3432) 16 (12 870) 18 (48 620)
1
3 9 (84) 12 (495) 15 (3003) 18 (18 564) 21 (116 280)
1
4 12 (220) 16 (1820) 20 (15 504)
1
5 15 (3003) 20 (4845) 25 (53 130)
1
6 12 (66) 18 (816) 24 (10 626)
1
7 14 (91) 21 (1330) 28 (20 475)
1

10 20 (190) 30 (4060)
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