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Model studies of topological phase transitions in materials with two types of magnetic atoms
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We study the topological phase transitions induced by Coulomb engineering in three triangular-lattice Hubbard
models, AB2, AC3, and B2C3, each of which consists of two types of magnetic atoms with opposite magnetic
moments. The energy bands are calculated using the Schwinger boson method. We find that a topological phase
transition can be triggered by the second-order (three-site) virtual processes between the two types of magnetic
atoms, the strengths of which are controlled by the on-site Coulomb interaction U . This class of topological
phase transitions has rarely been studied and may be realized in a variety of real magnetic materials.
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I. INTRODUCTION

Topological phase transitions [1–4] play a key role in
condensed-matter physics. Especially, magnetic topological
systems [5–7] often exhibit rich topological phases due to
the complicated interplay between electron-electron interac-
tions, magnetic moments, and spin-orbit coupling, which have
been attracting intensive research interest for years [8–10].
A general model for the description of magnetic topological
insulators is the spin-orbit coupled Hubbard model [11,12]
with on-site Coulomb interaction U . Previous works on
Coulomb engineering and correlation-driven effects in mag-
netic topological systems have studied various aspects of this
topic, including the Hartree-Fock mean-field theory [6,13],
dynamical screening effects [14], and phase transitions due
to magnetic exchange coupling [15–17] using the Schwinger
boson method. These works mostly focus on systems with one
type of magnetic atom, while the topological phase transitions
in systems with two types magnetic atoms are comparatively
less studied.

In this paper, we study systems with two types of magnetic
atoms [18–21] with opposite magnetic moments. In such sys-
tems, the two types of magnetic atoms separately form two
sets of Chern bands, which then interact via a type of second-
order virtual process of order O(t1t2/U ). These processes
involve the hopping from one type of magnetic atom i to atom
j via the other type of magnetic atom k as an intermediate site.
We call these (1/U )-controlled virtual processes the three-
site terms, which can induce interesting topological phase
transitions. We study their effect in a two-dimensional (2D)
hexagonal Hubbard model with three types of lattice sites,
A, B, and C, forming triangular, honeycomb, and kagome
sublattices, respectively. By putting spin-up and spin-down
electrons on two of the three types of lattice sites, we con-
sider AB2, AC3, and B2C3 models and realize (1/U )-controlled
topological phase transitions as characterized by changes in
the Chern numbers of the spin-up and spin-down bands. Our
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results demonstrate the interplay between band topology and
correlation effects and present Coulomb engineering as a pow-
erful tool to manipulate the topological phases of matter, with
potential applications in various solid-state physical systems.

The rest of the paper is organized as follows. In Sec. II,
we give the general formalism of our downfolding technique
in the Schwinger boson representation and obtain the low-
energy effective Hamiltonian containing the three-site terms.
In Sec. III, we apply our formalism to the AB2, AC3, and
B2C3 lattice structures to demonstrate the (1/U )-controlled
topological phase transitions. Section IV contains a summary
and conclusions, with a discussion of potential materials to
realize the topological phase transitions found in our model
studies.

II. FORMALISM

Suppose an insulating magnetic material is described by
the spin-orbit coupled Hubbard model [11,12]

H =
∑
i jαβ

tαβ
i j c†

iαc jβ + U
∑

i

ni↑ni↓, (1)

where i and j are the site indices and α and β label the spin.
Here tαβ

i j contains the spin-orbit coupling (SOC) effect. We
have from the first-principles Hamiltonian that

tαβ
i j = 〈iα| �p2

2me
+ V (�r) + HSO| jβ〉, (2)

HSO = h̄

4m2
ec2

[∇V (�r) × �p] · �σ , (3)

where V (�r) is the periodic crystal potential. In the large-
U limit, electrons try to avoid double occupancy, and thus,
each site becomes spin polarized to form different long-range
orders such as ferromagnetism, antiferromagnetism, ferrimag-
netism, etc. [22,23]. Our Hubbard model in Eq. (1) preserves
the time-reversal (TR) symmetry, whereas TR is broken by the
magnetic order formed due to large U , which can give rise to
topological phases with nonzero Chern numbers.
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To study the large-U limit more conveniently, we go to the
Schwinger boson representation [24,25], where the electron
operator can be represented as

c†
iσ = b†

iσ hi + σd†
i biσ̄ , (4)

where σ = ↑ (+1),↓ (−1) is the spin index, hi and di are the
fermionic holon and doublon operators, biσ and biσ̄ are the
Schwinger boson operators, and σ̄ = −σ is the opposite spin
of σ . By using the downfolding formula [26,27]

Heff = PHP − 1

U
PHP̄HP + O

(
1

U 2

)
, (5)

where P is the projection operator into the Hilbert space
with no doubly occupied sites (doublons) and P̄ = 1 − P, we
keep all O(1/U ) terms and ignore O(1/U 2) and higher-order
terms to obtain the low-energy effective Hamiltonian of the
chargeons

Heff =
∑

i j

t̃i jhih
†
j =

∑
i j

t̃i j f †
i f j . (6)

A particle-hole transformation has been done from the holons
hi �→ f †

i to the chargeons, with the effective hopping ampli-
tudes t̃i j given by

t̃i j =
∑
αβ

b†
iα

⎛
⎝tαβ

i j − 1

U

∑
kγ δ

γ δ tαδ
ik tγ β

k j b†
kδ̄

bkγ̄

⎞
⎠b jβ. (7)

The derivation of Eqs. (6) and (7) is given in Appendix A.
For magnetically ordered systems, the bosonic operators can
be viewed as c numbers in the Bose-Einstein condensa-
tion approximation [28,29]. Previous works on topological
phase transitions mostly focus on those transitions induced by
changes in the electronic hopping amplitudes tαβ

i j , which may
give rise to gap closing, band inversion [30,31], etc. Here with
Eq. (7), we can study two more types of topological phase
transitions in terms of t̃i j , i.e., (i) those induced by changing
the magnetic structure and (ii) those induced by 1/U , which
controls the strengths of the three-site virtual processes. This
paper focuses on the latter situation. We consider gap closing
of the chargeon bands induced by the change of Hubbard
U without changing the magnetic structure. In tuning U , we
make sure U is still in the large-U regime, and therefore, the
O(1/U 2) terms ignored are still negligible compared with the
three-site terms of order O(1/U ) considered in Eq. (7).

For simplicity, we consider a special case for 2D systems
in which the bare hopping tαβ

i j = tα
i jδαβ conserves spin and the

magnetic structure is collinear ferrimagnetic in the z direction.
From Eq. (3), the SOC does not flip spin if the crystal field
∇V (�r) and all hopping bonds (direction of �p) are within the xy
plane. Since the magnetic moments have zero x and y compo-
nents and no double occupancy is allowed in the large-U limit,
every site can be occupied by only the spin-up electrons or the
spin-down electrons. In such a situation, Eq. (7) simplifies to

t̃i j =
∑

σ

z∗
iσ z jσ

(
tσ
i j − 1

U

∑
k

tσ
iktσ

k j |zkσ̄ |2
)
, (8)

where the bosonic operators biσ �→ ziσ have been mapped to
c numbers. Now we have a Hamiltonian with two sets of

FIG. 1. (a) The 2D hexagonal lattice structure AB2C3. The A sites
form a triangular lattice, the B sites form a honeycomb lattice, and
the C sites form a kagome lattice, all sharing the same lattice vectors
�a1 and �a2. (b) Brillouin zone with reciprocal lattice vectors �b1 and �b2

and high-symmetry path �-K-M-�.

bands formed by electrons on spin-up sites and spin-down
sites, which interact via the second-order virtual processes
described by the three-site O(1/U ) terms. In this paper, we
use Eq. (8) as our simplified formula. Other magnetically
ordered systems with more complex spin configurations such
as noncollinear and spiral spin structures can be studied using
Eq. (7).

III. RESULTS

To study the topological phase transitions within the frame-
work of Eq. (8), we construct a 2D lattice structure AB2C3 with
hexagonal symmetry [see Fig. 1(a)]. The A sites form a trian-
gular lattice with one band, which is topologically trivial. The
B sites form a honeycomb lattice with two bands, which real-
ize the Haldane model [32]. The C sites form a kagome lattice
with three bands. We will put opposite magnetic moments on
two of the three types of lattice sites and consider electronic
phases in the AB2, AC3, and B2C3 models, respectively. The
three models can be considered special cases of the AB2C3

model where only two of the three types of lattice sites have
magnetic moments and the magnetically neutral sites have
been downfolded away.

A. The AB2 structure

We consider an electronic phase with N↑ = N↓ = 1 per
unit cell. In the case that the on-site orbital energy of an empty
A site is lower than that of an empty B site, one of the spin
species (e.g., the ↓ electrons) would first singly occupy the
A sites. Then the other spin species (the ↑ electrons) would
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not occupy the A sites because of the Hubbard U but instead
occupy the B sites at an occupancy of 0.5. When the SOC is
considered, the B sites become gapped, and the ↑ electrons
realize the Haldane model [32] with real nearest-neighbor
hopping t1 and complex next-nearest-neighbor hopping t2. We
also consider a real para-position hopping t3 among the B sites
and denote the real nearest A-B site hopping as t . From Eq. (3),
the SOC can make a hopping amplitude complex only when
∇V (�r) is not parallel to �p, i.e., the bond direction. This implies
that hopping amplitudes along bonds about which the crystal
is symmetric should be real.

Following Eq. (8), the effective hopping amplitudes t̃1–3 are
given by

t̃1 = 1

2

(
t1 − 2t2

U

)
, t̃2,3 = 1

2

(
t2,3 − t2

U

)
. (9)

Here we assume the boson fields zA↓ = 1 and zA↑ = 0 on the
A sites and zB↑ = 1/

√
2 and zB↓ = 0 on the B sites. In Eq. (8),

when the i and j labels are on the B sites, we have σ = ↑, and
thus, the k label must be on the A sites, which are occupied by
σ̄ = ↓, to mediate a three-site virtual process j → k → i. All
three hoppings t̃1–3 are renormalized by such three-site virtual
processes. Due to the three-site-enhanced hopping t̃3, the AB2

model can now realize beyond-Haldane phases with occupied-
band Chern numbers of ±2.

In terms of the effective hoppings t̃1–3, the spin-up Hamil-
tonian (i.e., a chargeon Hamiltonian restricted to the B sites)
in the atomic gauge takes the form

HB(�k) =
[

2Re[t̃2ζ ∗
2 (�k)] t̃1ζ ∗

1 (�k) + t̃3ζ1(2�k)

t̃1ζ1(�k) + t̃3ζ ∗
1 (2�k) 2Re[t̃2ζ2(�k)]

]
, (10)

where the functions ζ1,2(�k) are given by

ζ1(�k) = ei�k· �a1−�a2
3 + ei�k· �a1+2�a2

3 + e−i�k· 2�a1+�a2
3 , (11a)

ζ2(�k) = ei�k·�a1 + ei�k·�a2 + e−i�k·(�a1+�a2 ). (11b)

We then use the integral of Berry curvature in the entire
2D Brillouin zone shown in Fig. 1(b) to calculate the Chern
numbers [33]. A topological phase transition can be realized
as shown in Fig. 2. In Fig. 2(a), the Hubbard U = 10 eV
is large. The two spin species are clearly separated by the
Hubbard interaction with almost forbidden three-site virtual
hoppings. The spin-up electrons form a Haldane phase on
the B sites with occupied-band Chern number C1 = +1 and
unoccupied-band Chern number C2 = −1. The spin-down
electrons fully occupy the triangular sites (A sites) and form a
topologically trivial band (not plotted) with a Chern number
of zero. As U gets smaller, the three-site virtual processes
∼O(1/U ) become stronger, and the para-position hopping
t̃3 is significantly enhanced. The band gap in Fig. 2(a) then
closes at the M point at critical U = 5.3 eV and reopens as
U is further reduced to form a beyond-Haldane phase with
C1 = −2 and C2 = +2 [see Fig. 2(b) for U = 4 eV]. In fact,
the transition can be driven by small changes in U across the
critical value.

Since the contribution t2/U of the second-order virtual
processes is real, the imaginary part Im t̃2 = Im t2 remains un-
affected by U . Therefore, the system can undergo topological
phase transitions between C1 = +1 ↔ −2 (if Im t2 > 0) and

FIG. 2. The Chern bands of the B sites (honeycomb) in the AB2

model. Hopping amplitudes t1 = −0.15 eV, t2 = (0.06 + 0.04i) eV,
t3 = −0.01 eV, t = 0.8 eV. Hubbard U = 10 eV in (a), and U =
4 eV in (b). The Chern numbers C1,2 indicate a topological phase
transition (critical U = 5.3 eV).

C1 = −1 ↔ +2 (if Im t2 < 0) but not in between the C1 = ±1
(or ±2) phases by tuning the Hubbard U .

B. The AC3 structure

Consider an electronic phase in which the A sites are singly
occupied by the ↓ electrons and the C sites are occupied by the
↑ electrons at occupancy 1/3. The situation is similar to AB2,
except that the C sites form a kagome lattice. We consider the
nearest-neighbor and next-nearest-neighbor hoppings t1 and t2
and real para-position hopping t3 of the C-site hexagons. Both
t1 and t2 can be complex. The real nearest-neighbor A-C site
hopping is denoted as t . From Eq. (8), we have

t̃1–3 = 1

3

(
t1–3 − t2

U

)
, (12)

assuming zA↓ = 1 and zA↑ = 0 for the A sites and zC↑ = 1/
√

3
and zC↓ = 0 for the C sites. In terms of t̃1–3, the C-site kagome
Hamiltonian takes the form

HC (�k) =
3∑

ν=1

H (ν)
C (�k), (13)
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FIG. 3. The Chern bands of the C sites (kagome) in the AC3

structure. Hopping amplitudes t1 = −(0.6 + 0.2i) eV, t2 = (0.1 +
0.1i) eV, t3 = −0.25 eV, t = 0.8 eV. Hubbard U = 10 eV in (a),
and U = 4 eV in (b). The Chern numbers C1–3 indicate a topological
phase transition (critical U = 4.9 eV).

where the nearest-neighbor hopping H (1)
C (�k), the next-nearest-

neighbor hopping H (2)
C (�k), and the para-position hopping

H (3)
C (�k) Hamiltonians are given specifically in Appendix B.

A topological phase transition analogous to the AB2 situation
is realized in Fig. 3. In Fig. 3(a), the Hubbard U = 10 eV is
large, and the three-site virtual hoppings are almost forbidden.
As U gets smaller, the para-position hopping t̃3 is significantly
enhanced. The occupied-band Chern number changes from
C1 = +1 [see Fig. 3(a)] to C1 = −2 [see Fig. 3(b)] when
the gap closes at the M point at critical U = 4.9 eV. In the
meantime, the Chern number C2 of the middle band changes
from 0 to +3, and the Chern number of the flat band on the
top C3 = −1 remains unchanged.

In Sec. III A and this section, we study the enhancement
effect of the para-position hopping t̃3 due the three-site vir-
tual processes proportional to 1/U . We find that in both the
honeycomb and kagome lattices, the three-site processes can
lead to topological phase transitions of C1 = +1 ↔ −2 (or,
symmetrically, C1 = −1 ↔ +2) by closing the band gap at
the M point. Because t2/U is real, we cannot realize topolog-
ical phase transitions between the C1 = ±1 phases. We will
demonstrate in Sec. III C that the +1 ↔ −1 transitions can be
realized in the B2C3 model by making the contributions of the
three-site processes O(tt ′/U ) complex.

FIG. 4. The Chern bands of the C sites in the B2C3 model.
Hopping amplitudes t1 = (0.6 − 0.1i) eV, t2 = −(0.1 + 0.02i) eV,
t = 0.8 eV, t ′ = (0.1 + 0.1i) eV. Hubbard U = 10 eV in (a), and
U = 4 eV in (b). The Chern numbers C1–3 indicate a topological
phase transition (critical U = 5.3 eV).

C. The B2C3 structure

In this section, we consider an electronic phase with N↑ =
N↓ = 2 per unit cell. Let the two B sites in a unit cell be
singly occupied by the ↓ electrons and the three C sites be
occupied by ↑ electrons at an occupancy of 2/3. We consider
the hoppings t and t ′ between the B-C sites and hoppings t1
and t2 among the C sites, as shown in Fig. 5. Since the total
Chern number of the two spin-down bands on the B sites is
zero [see Fig. 2(a)], we focus on the topological properties of
the kagome bands, which are controlled by 1/U . From Eq. (8),
we have

t̃1 = 2

3

(
t1 − t2

U

)
, t̃2 = 2

3

(
t2 − 2tt ′

U

)
, (14)

assuming zB↓ = 1, zB↑ = 0, zC↑ = √
2/3, and zC↓ = 0. The

para-position hopping t̃3 = 0 of the kagome lattice is ignored.
Even though t̃3 can be mediated by t ′2/U , these contributions
are small assuming |t | � |t ′|. Notice that the B-C-site hopping
t is real, while t ′ can be complex due to SOC. We define
for ↑ electrons that the blue line hoppings in Fig. 5 are t ′ in
clockwise directions and (t ′)∗ in counterclockwise directions.
The Hamiltonian HC (�k) is still given in Appendix B, with the
effective hoppings t̃1,2 now given by Eq. (14). A topological
phase transition is realized, as shown in Fig. 4.
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FIG. 5. The hoppings considered in B2C3. Here t and t ′ are
between the B and C sites, and t1 and t2 are the nearest-neighbor
and next-nearest-neighbor hoppings of the C-site kagome lattice. All
hoppings except t can be complex due to the SOC. The para-position
hoppings are ignored.

In Fig. 4(a), the Hubbard U = 10 eV, and the occupied-
band Chern number C1 + C2 = +1, which is determined by
the imaginary parts Im t̃1,2 of the effective hoppings in the
kagome lattice. As U gets smaller, since t2/U is real, Im t̃1
remains unchanged, so only the tt ′/U term in Eq. (14) can
affect Im t̃2. The band gap closes at the K point at critical
U = 5.3 eV and then reopens to give rise to a C1 + C2 = −1
phase as U further decreases to 4 eV [see Fig. 4(b)]. The
Chern number of the flat band at the bottom C1 = +1 remains
unchanged throughout the process. Because the imaginary
part of the hopping amplitudes can be tuned by 1/U , the
phase separation between Chern numbers ±1 is broken. A
topological phase transition between the ±1 phases can now
be realized by tuning the Hubbard U due to the complex
virtual hopping O(tt ′/U ).

IV. CONCLUSION

We have demonstrated in this paper that the three-site
virtual processes in the large-U limit of the Hubbard model
can exhibit interesting renormalization effects of the hopping
amplitudes and can give rise to topological phase transitions
in the low-energy effective theory. We constructed 2D lattice
models to realize the 1/U control of the honeycomb and
kagome lattices. In the AB2 model, a topological phase transi-
tion between the Haldane phase [32,34] and beyond-Haldane
phase is realized by considering the enhancement effect of
the para-position hopping t̃3 due to the A-site mediated vir-
tual hoppings proportional to 1/U . The AC3 model realizes a
similar phase transition on the kagome lattice [35,36]. Both
transitions close the band gap at the M point. In the B2C3

model, we also realized topological phase transitions on the
kagome lattice, but the band gap closes at the K point. The
contribution O(tt ′/U ) of the three-site processes can be com-
plex and drives the system across the phases boundary of
occupied-band Chern number = ±1.

The phase transitions found in our model studies are real-
ized using collinear antiferromagnetic (or ferrimagnetic) spin
configurations. The spin-up and spin-down electrons occupy

FIG. 6. Possible realizations of the AB2C3 lattice in a 3D hexag-
onal crystal structure with (a) alternating AB2 and C3 layers and
(b) alternating AC3 and B2 layers. Both structures have the P6/mmm
space group symmetry.

inequivalent lattice sites. In the examples shown in this paper,
for simplicity, we let one spin species fully occupy one type of
lattice site to be topologically trivial and use them to control
the topological phase of the other spin species via the three-
site terms. Interesting directions for further studies could be
having both spin species exhibit topological properties and
mutually influence each other via the three-site terms and the
realization of similar Coulomb engineering effects in non-
collinear spin systems. The Coulomb manipulation of surface
states due to the topological phase transitions described in this
paper could also be an important direction for future research.

Finally, we would like to discuss the possible realizations
of our model in real materials. The (1/U )-controlled topolog-
ical phase transitions can be realized without restricting the
atoms to the same 2D plane. Two possible three-dimensional
(3D) structures are shown in Fig. 6, both with P6/mmm sym-
metry. Examples of materials with the structure in Fig. 6(a)
are RCo3B2 [37], with R = rare-earth elements, GdNi3Ga2

[38], etc., which are potential candidates for the AC3 model
with two types of magnetic atoms. Coplanar AC3 candidates
include TiNi3-type compounds [39–41] with shifted layers of
close-packed AC3 structures. Candidates for the AB2 model
include UNi2Al3 [42], EuCo2Al9 [43], etc. In particular,
EuCo2Al9 has the entire AB2C3 structure [Fig. 1(a)] in one 2D
plane, and all six of the other Al atoms are out of plane. We
expect our work to be interesting to the fields of magnetism in
alloys, ferrimagnets, and other materials with multiple types
of magnetic atoms.
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APPENDIX A: DERIVATION OF THE LOW-ENERGY EFFECTIVE HAMILTONIAN

By plugging Eq. (1) into Eq. (5), one obtains

Heff =
∑
i jαβ

tαβ
i j Pc†

iαc jβP − 1

U

∑
i jkl

∑
αβγ δ

tαβ
i j tγ δ

kl Pc†
iαc jβ P̄c†

kγ
clδP. (A1)

Then plugging in Eq. (4), one finds that the projections P pick out the following terms:

Heff =
∑
i jαβ

tαβ
i j hih

†
j b

†
iαb jβ − 1

U

∑
i jkl

∑
αβγ δ

βγ tαβ
i j tγ δ

kl b†
iαb†

jβ̄
bkγ̄ blδ hi (Pdjd

†
k P) h†

l . (A2)

The bosonic operators are automatically normal ordered. Notice that Pdjd
†
k P = δ jk because the doublon created must also be

the doublon destructed to go back to the no-doublon subspace. One may then set j = k and rename the dummy indices l �→ j
and β ↔ δ to obtain

Heff =
∑

i j

hih
†
j

[∑
αβ

b†
iα

(
tαβ
i j − 1

U

∑
k

∑
γ δ

γ δ tαδ
ik tγ β

k j b†
kδ̄

bkγ̄

)
b jβ

]
. (A3)

This result agrees with Eqs. (6) and (7) in the main text by defining the quantity in the square brackets as t̃i j . All O(1/U )
renormalizations of t̃i j are considered in this formalism. Then we do a particle-hole transformation hi �→ f †

i to the holon operators
and map the bosonic operators biσ �→ ziσ to c numbers and obtain

Heff =
∑

i j

f †
i f j

⎡
⎣∑

αβ

z∗
iαz jβ

⎛
⎝tαβ

i j − 1

U

∑
kγ δ

γ δ tαδ
ik tγ β

k j z∗
kδ̄

zkγ̄

⎞
⎠

⎤
⎦ =

∑
i j

t̃i j f †
i f j . (A4)

In the special case in which the bare hopping tαβ
i j = tα

i jδαβ conserves spin, we have

t̃i j =
∑
αβ

z∗
iαz jβ

(
tα
i jδαβ − 1

U

∑
k

αβ tα
iktβ

k jz
∗
kᾱzkβ̄

)
. (A5)

Then the collinear ferrimagnetic structure in the z direction (perpendicular to the 2D lattice plane) with no double occupancy
eliminates the α �= β terms because site k can be occupied by only one type of spin species. Therefore, one obtains Eq. (8) in
the main text.

APPENDIX B: KAGOME HAMILTONIAN IN TERMS OF t̃1–3

In terms of the effective hoppings t̃1–3, the full kagome Hamiltonian HC (�k) contains three parts, as defined by Eq. (13): the
nearest-neighbor hopping Hamiltonian is given by

H (1)
C (�k) =

⎡
⎢⎣

0 2t̃1 cos
(�k · �a1+�a2

2

)
2t̃∗

1 cos
(�k · �a2

2

)
2t̃∗

1 cos
(�k · �a1+�a2

2

)
0 2t̃1 cos

(�k · �a1
2

)
2t̃1 cos

(�k · �a2
2

)
2t̃∗

1 cos
(�k · �a1

2

)
0

⎤
⎥⎦, (B1)

the next-nearest-neighbor hopping Hamiltonian is given by

H (2)
C (�k) =

⎡
⎣ 0 2t̃2 cos

(�k · �a1−�a2
2

)
2t̃∗

2 cos
[�k · (

�a1 + �a2
2

)]
2t̃∗

2 cos
(�k · �a1−�a2

2

)
0 2t̃2 cos

[�k · ( �a1
2 + �a2

)]
2t̃2 cos

[�k · (
�a1 + �a2

2

)]
2t̃∗

2 cos
[�k · ( �a1

2 + �a2
)]

0

⎤
⎦, (B2)

and the para-position hopping Hamiltonian is given by

H (3)
C (�k) =

⎡
⎣2t̃3 cos(�k · �a1) 0 0

0 2t̃3 cos
(�k · �a2

)
0

0 0 2t̃3 cos[�k · (�a1 + �a2)]

⎤
⎦, (B3)

all written in the atomic gauge. In the AC3 model, we consider the 1/U control of all three effective hoppings t̃1–3. In the B2C3

model, we restrict ourselves to t̃1−2, i.e., setting t̃3 = 0.
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