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Diffraction of helical x-rays by optically active achiral crystals
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Four crystal classes are optically active yet not chiral (nonenantiomorphic). Corresponding Bragg diffraction
patterns calculated for circularly polarized (helical) x-rays tuned to an atomic resonance display angular
anisotropy in the distribution of electrons at spots not indexed on the chemical structure (defined by a space group
derived from Thomson scattering by perfect spheres of charge). Templeton-Templeton scattering, as it is usually
called, of helical x-rays is quantified in terms of a chiral signature defined as the partial diffracted intensity
hallmarked by x-ray helicity. Our electric dipole-electric dipole (E1-E1) chiral signature for a space group in
the optically active crystal class 4̄2m (D2d ) affords a complete interpretation in terms of copper quadrupoles of
diffraction data collected on copper metaborate [Ovchinnikova et al., J. Synchrotron Radiat. 28, 1455 (2021)].
An example of a chiral signature derived from a parity-odd resonance event (E1-E2) is included in our study. It
is firmly established that tuning the energy of x-rays to an atomic resonance enhances the intensity of inherently
weak Templeton-Templeton scattering and renders space-group forbidden Bragg spots element specific. Our
chiral signature as a function of rotation about the reflection vector (azimuthal-angle scan) is specific to position
multiplicity, Wyckoff letter and symmetry in a favorable space group.
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I. INTRODUCTION

J. Willard Gibbs, best known for pioneer work on statistical
mechanics perhaps, used Maxwell’s equations of electrody-
namics in a demonstration that certain crystals can be both
optically active (rotation of the plane of polarization of light)
and achiral (nonenantiomorphic) [1]. Different theory, based
on a pseudotensor of rank 2, was adopted in subsequent work
which established that crystal classes m (Cs), mm2 (C2v),
4̄ (S4), and 4̄2m (D2d ) possess the dual properties; see, for
example, Refs. [2,3]. The pseudotensor is certainly zero for
materials that possess a center of inversion symmetry. It can
be different from zero for 11 enantiomorphic crystal classes
(absence of both a center and a plane of symmetry), and
the named four nonenantiomorphic classes that are identical
to their mirror images. Optical experiments on crystal types
4̄2m (silver thiogallate) and 4̄ (cadmium gallium sulphide)
by Hobden published between 1967 and 1969 confirmed that
nonenantiomorphic crystals can present optical rotation or
gyration, as it is sometimes known [4–7]. The crystals show
birefringence (double refraction) that overwhelms optical ac-
tivity. At specific wavelengths, the crystals are accidentally
isotropic, however, which allowed Hobden to study optical
activity without the difficulties arising from the presence of
birefringence.

Coupling of helicity in a beam of x-rays and a crystal chiral
axis has been confirmed in diffraction by several enantiomor-
phic materials [8–13], together with imaging the chirality of
domains in racemic twinned Cs Cu Cl3 [14]. Weak Bragg
spots not indexed on the chemical crystal structure are created
by angular anisotropy in the distribution of atomic electrons. It

is often referred to as Templeton-Templeton scattering (T&T)
after the pioneers [15,16]. Signal enhancement is gained by
tuning the energy of primary photons to an atomic resonance,
which adds specification of an element to the desirable fea-
tures of the x-ray diffraction technique. To date, there are
successful experiments on low quartz, tellurium, and berli-
nite (Al P O4) with enantiomorphs that belong to trigonal
P3121 (right-handed screw) and P3221 (left-handed screw),
and resonant ions occupy sites with multiplicity three [8–13].
Diffraction patterns and azimuthal-angle scans (rotation of the
diffracting crystal about the axis of the reflection vector) were
measured with the energy of primary x-rays tuned to K edges
(1s) of Si and Al, for example.

We investigate Bragg diffraction of circularly polarized
x-rays by crystal classes Cs, C2v, S4, and D2d, and thereby
extend our understanding of what can be learned from appro-
priate experiments. Calculated scattering amplitudes account
for the enhancement of Bragg spots by an atomic resonance
and a rotation of the crystal about the reflection vector. Use is
made of a chiral signature ϒ specific to position multiplicity,
Wyckoff letter, and symmetry in a space group. Our findings
imply a universal azimuthal-angle dependence of ϒ in diffrac-
tion enhanced by electric dipole-electric dipole (E1-E1) and
electric dipole-electric quadrupole (E1-E2) absorption events.
The signal is absent for the four space groups in the Cs crystal
class, and the two space groups in S4. By way of an exam-
ple, copper and neodymium ions in the one-dimensional type
cuprate Nd2Ba4Cu2O9 occupy sites 4 f in the tetragonal space
group P4̄n2 in crystal class D2d. Their contributions to a Bragg
diffraction pattern are specified by the energy of the chosen
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FIG. 1. Primary (σ, π ) and secondary (σ ′, π ′) states of polariza-
tion. Corresponding wave vectors q and q′ subtend an angle 2θ , and
the reflection vector κ = q − q′.

atomic resonance, and specific electronic structures that create
quadrupoles and the chiral signature.

II. RESONANT SCATTERING

The nature of the electronic ground state accessed in res-
onant diffraction depends on both the quantum labels of the
virtual, intermediate state and the type of the absorption event,
whose actual strength may depend on its energy. An E1 event
and absorption of hard x-rays (energy E ≈ 5–9 keV) at a K
edge can access p-like atomic states, while an E2 event can
access d-like states. Levels of enhancement are very small
set against factors enjoyed at actinide M4;5 absorption edges.
Direct access with an E1 event to d-like states is allowed
by absorption at L edges, and an even larger enhancement
is expected. It can even be comparable to the intensities of
Thomson reflections from the chemical structure. Not all crys-
tal structures satisfy the Laue condition for Bragg diffraction
with an x-ray wavelength ≈ (12.4/E ) Å and E in units of keV.

Assuming that virtual intermediate states are spherically
symmetric, to a good approximation, the x-ray scattering
length ≈ {Fμη/(E – � + i�/2)} in the region of the reso-
nance, where � is the total width of the resonance at an energy
� [10,17–19]. The numerator Fμη is an amplitude, or unit-cell
structure factor, for Bragg diffraction in the scattering channel
with primary (secondary) polarization η(μ). By convention,
σ denotes polarization normal to the plane of scattering, and
π denotes polarization within the plane of scattering. Fig-
ure 1 depicts polarization states, wave vectors, and the Bragg
condition.

III. CHIRAL SIGNATURE

Photon and electronic quantities in the scattering ampli-
tude are partitioned in a generalized scalar product Fμη =
{XK • 〈OK〉}, with implied sums on rank K and associated
projections Q in the interval –K � Q � K [18,19]. Angular
brackets about the atomic tensor operator OK

Q in an electronic
multipole 〈OK

Q〉 denote its time average, or expectation value.
Selection rules on K and Q for the multipole imposed by
symmetry of the site used by the resonant ion are evidently

duplicated in the x-ray factor XK . The latter is specific to
a resonant event. One finds XK is independent of photon
wave vectors for an E1-E1 event (K = 0–2) but this is not
so for E1-E2 (K = 1–3) and E2-E2 (K = 0–4) absorption
events. All information on x-ray factors needed here is found
in Refs. [18,19]. Electronic multipoles can be calculated us-
ing standard tools of atomic physics given a suitable wave
function [9]. Alternatively, multipoles can be estimated from
a tried and tested simulation program of electronic struc-
ture [10]. The complex conjugate of an atomic multipole
〈OK

Q〉∗ = (–1)Q〈OK
–Q〉, with a phase convention 〈OK

Q〉 =
[〈OK

Q〉′ + i〈OK
Q〉′′] for real and imaginary parts labeled by

single and double primes, respectively.
Henceforth, we adopt a shorthand (μη) for the scattering

amplitude Fμη. Scattered intensity picked out by circular po-
larization in the primary photon beam = P2ϒ ,

ϒ = {(σ ′π )∗(σ ′σ ) + (π ′π )∗(π ′σ )}′′, (1)

and the Stokes parameter P2 (a purely real pseudoscalar)
measures helicity in the primary x-ray beam; cf. Eq. (12)
in Ref. [10]. Since intensity is a scalar quantity, ϒ and P2

must possess identical discrete symmetries, specifically, both
scalars are time even and parity odd. The signature ϒ is ex-
tracted from observed intensities by subtraction of intensities
measured with opposite-handed primary x-rays, namely, ±P2.
Intensity of a Bragg spot in the rotated channel of polarization
is proportional to |(π ′σ )|2, and likewise for unrotated chan-
nels of polarization.

We use 	K
Q = [exp(iκ • d)〈OK

Q〉d] for an electronic
structure factor, where the reflection vector κ is defined by
integer Miller indices (h, k, l), and the implied sum in 	K

Q is
over all sites d in a unit cell used by resonant ions. Construc-
tion of 	K

Q requires symmetry operators for a space group
together with the symmetry of occupied sites. All necessary
information is available on the Bilbao server [20]. The four
amplitudes required in the chiral signature defined in Eq. (1)
are derived from 	K

Q and universal expressions for E1-E1
and E1-E2 scattering amplitudes [19].

IV. OPTICALLY ACTIVE ACHIRAL SPACE GROUPS

Calculations return null chiral signatures for crystal classes
Cs and S4. For the two remaining optically active achiral space
groups our goal is to raise awareness of the virtue of the chiral
signature. Many real samples have been identified [21], and
likely more wait to be discovered, and it is not prudent to
attempt construction of a catalog of materials.

A. C2v

There are 22 space groups in the orthorhombic crystal
class mm2 (C2v), with cell lengths a �= b �= c. Space group
Pca21 (No. 29) is chosen as an opening illustration because
it consists of sites 4a alone. Sites have no symmetry. In
consequence, projections Q in the interval –K � Q � K for
a multipole 〈OK

Q〉 are unrestricted. The electronic structure
factor is

	K
Q(4a)

= 〈
OK

Q
〉
[exp(iδ) + (−1)Q+l exp (−iδ)] (No. 29)
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+ σπ

〈
OK

Q
〉∗

(−1)K+h

× [exp (iχ ) + (–1)Q+l exp (–iχ )], (2)

where δ = 2π (xh + yk), χ = 2π (xh – yk), and x and y are
general coordinates. The parity signature σπ = +1( – 1) for
a parity-even (parity-odd) absorption event, e.g., E1-E1 (E1-
E2). Examination of 	K

0(4a) with K even and σπ = +1
reveals that reflections (h, 0, 0) and (0, k, l) with Miller indices
h and l odd, respectively, are not indexed on the crystal struc-
ture, i.e., 	K

0(4a) is zero for said conditions. T&T scattering
at such Bragg spots is created by nondiagonal multipoles with
projections |Q| > 0.

We proceed with a study of (h, 0, 0) and h odd utiliz-
ing the E1-E1 event. Multipoles with σπ = +1 are denoted
〈T K

Q〉. Let the two quantities A = – 4sin(ϕh)〈T 2+1〉′′ and
B = 4icos(ϕh)〈T 2+2〉′′ in which δ = χ = ϕh = 2πxh. Scat-
tering amplitudes are [19]

(σ ′σ ) = −i sin(2ψ ) A, (π ′π ) = sin2(θ ) (σ ′σ ),

(π ′σ ) = −i sin(θ ) cos(2ψ ) A + i cos(θ ) sin (ψ ) B,

(2m + 1, 0, 0; No. 29) (3)

and (σ ′π ) is derived from (π ′σ ) by a change in sign to A.
The Bragg angle θ is defined in Fig. 1. Note that amplitudes
(σ ′σ ) and (π ′π ) are purely imaginary, while (σ ′π ) and (π ′σ )

are complex. The azimuthal angle ψ measures rotation of the
crystal about the reflection vector, and the crystal b axis is in
the plane of scattering for ψ = 0. It follows that the chiral
signature of the Bragg spot (h, 0, 0) enhanced by an E1-E1
absorption event is

ϒ+(4a) = −8�(ϕh, ψ )
〈
T 2+1

〉′′〈
T 2+2

〉′′
,

(2m + 1, 0, 0; No. 29), (4)

where

�(ϕh, ψ ) = cos3(θ ) sin(2ϕh) sin(ψ ) sin(2ψ ). (5)

The azimuthal-angle dependence captured in �(ϕh, ψ ) ap-
pears to be universal to E1-E1 and E1-E2 absorption events.
The two multipoles that create ϒ have angular characters (yz)
and (xy). Dependence of ϒ on ϕh = 2πxh will likely gener-
ate optimal chiral signatures at particular Bragg spots. The
subscript on ϒ+(4a) denotes the fact that the parity signature
σπ = +1.

The fundamental structure of ϒ−(4a) for an E1-E2 event
is similar to ϒ+(4a). The number of multipoles engaged is
the defining difference, and it arises from the fact that polar
multipoles 〈U K

Q〉 have ranks K = 1, 2, and 3 and projections
Q are unrestricted by site symmetry. Scattering amplitudes
in unrotated channels of polarization are purely imaginary.
Amplitudes in rotated channels are complex, and their real
parts allow ϒ−(4a) different from zero. For E1-E2 we find

ϒ−(4a) = (16/(15
√

5)) sin2(θ )�(ϕh, ψ )
[
3
〈
U 1+1

〉′′ + 2
√

5
〈
U 2+1

〉′ − 〈
U 3+1

〉′′ + √
15

〈
U 3+3

〉′′]

× [√
6
〈
U 2

0
〉 + 〈

U 2+2
〉′ + √

2
〈
U 3+2

〉′′]
(2m + 1, 0, 0; No. 29). (6)

Notably, ϒ+(4a) and ϒ−(4a) have exactly the same dependence on the azimuthal angle. Also, both chiral signatures are created
by the interference of multipoles with even and odd projections.

Space group Pna21 (No. 33) likewise comprises sites 4a alone that have no symmetry. Reflections (0, k, l) with k + l odd are
space-group forbidden, and ϒ+(4a) ∝ [〈T 2+1〉′〈T 2+2〉′′] for an E1-E1 absorption event.

A more typical structure comprises sites with more than one multiplicity. There are four sites with multiplicity 2 in space group
Pcc2 (No. 27). All have site symmetry 2z. The latter restricts projections to Q = ±2n, including Q = 0. Diagonal components
(Q = 0) of the electronic structure factor, by definition, are zero at space-group forbidden reflections. Quadrupoles in T&T
scattering are 〈T 2±2〉 at sites with 2z symmetry. In consequence, the chiral signature is zero for such high-symmetry sites since
it relies on interference between multipoles that differ by projections or ranks, or both; cf. Eq. (6).

Remaining positions 4e in Pcc2 have no symmetry. Reflections (h, 0, l) and (0, k, l) with l odd are forbidden. Consider the
Bragg spot (h, 0, l) first. Scattering amplitudes are functions of the two quantities,

A = 4
[
p sin(ϕh)

〈
T 2+1

〉′′ − −i r cos(ϕh)
〈
T 2+2

〉′′]
,

B = −4
[
p cos (ϕh)

〈
T 2+1

〉′′ + i r sin (ϕh)
〈
T 2+2

〉′′]
. (h, 0, 2m + 1; No. 27) (7)

Scattering amplitudes are derived from Eq. (3) on using these expressions. In Eq. (7), (p, 0, r) is a unit vector parallel to the
reflection vector, i.e., p ∝ h and r ∝ (al/c). With ψ = 0 and (h, 0, 2m + 1) the crystal b axis is in the plane of scattering, and
for (0, k, 2m + 1) the a axis is in the plane.

Chiral signatures of the Bragg spots (h, 0, l) and (0, k, l) with l odd are

ϒ+(4e) = −8�(ϕh, ψ )
〈
T 2+1

〉′′ 〈
T 2+2

〉′′
, (h, 0, 2m + 1; No. 27)

ϒ+(4e) = 8�(ϕk, ψ )
〈
T 2+1

〉′ 〈
T 2+2

〉′′
. (0, k, 2m + 1; No. 27) (8)

Evidently, ϒ+(4e) = 0 for (0, 0, 2m + 1). Components of 〈T 2+1〉 = [〈T 2+1〉′ + i〈T 2+1〉′′] are different at the two Bragg spots.
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B. D2d

Copper and neodymium ions in Nd2Ba4Cu2O9 occupy sites 4 f in the tetragonal space group P4̄ n2 (No. 118) [22], with cell
lengths a = b �= c. Multipoles are unchanged by a dyad 2 – xy, and Thomson diffraction is forbidden for reflections of the type
(h, 0, 0) with h odd. General extinction rules for P4̄n2 are readily derived from the electronic structure factor,

	K
Q(4 f ) = 〈

OK
Q
〉
[exp (iχ ) + (–1)Q exp (–iχ )] (No. 118)

+ σπ

〈
OK

–Q
〉
(–1)K+Q(–1)h+k+l [exp (iδ) + (–1)Q exp (–iδ)], (9)

with x = y in the spatial angles χ and δ. Multipoles are obliged by site symmetry to satisfy 〈OK
Q〉 =

( – 1)K exp( – iπQ/2)〈OK
– Q〉.

Scattering amplitudes and the chiral signature for an E1-E1 event are

(σ ′σ ) = 4i sin (ϕ) sin (2ψ )
〈
T 2+1

〉′
, (π ′π ) = sin2(θ )(σ ′σ ),

(π ′σ )′ = (σ ′π )′ = −4 cos (ϕ) cos (θ ) sin (ψ )
〈
T 2+2

〉′′
, (2m + 1, 0, 0; No. 118)

ϒ+(4 f ) = −8�(ϕh, ψ )
〈
T 2+1

〉′〈
T 2+2

〉′′
, (10)

with ϕh = 2πxh. General coordinates for ions using 4 f are
significantly different and mean optimal Bragg spots occur at
different Miller indices h (Nd2Ba4Cu2O9, x ≈ 0.388 (Nd) and
0.101 (Cu) [22]). Quadrupoles satisfy 〈T 2+1〉′ = 〈T 2+1〉′′.

As a second example of the crystal class type, consider
space group I 4̄2d (No. 122) with the condition h + k + l even
imposed on Miller indices by body centering. Compounds
using this space group include Ag Ga S2, Cu Fe S2, and Cu
B2 O4. Ions occupy sites with multiplicities 4 and 8. Sites
4a, 4b are not of interest in the study in hand because they
do not contribute T&T diffraction in E1-E1. Not so for sites
8d with symmetry 2x used by S2 – ions in silver thiogallate
and chalcopyrite, and Cu2+ ions in copper metaborate [23].
Reflections (h, h, 0) with h odd are space-group forbidden,
for example. The corresponding chiral signature ϒ+(8d ) is
the same as in Eq. (10) on replacing quadrupoles therein by
〈T 2+1〉′′ and 〈T 2+2〉′, and multiplication by a factor – 2

√
2.

The fractional coordinate x ≈ 0.082 for copper ions in Cu B2

O4 [23]. Our result ϒ+(8d ) accounts for an azimuthal scan
on the Bragg spot h = 1, and it specifies the nature of Cu
quadrupoles exposed by helicity in the primary beam of x-rays
[24].

V. DISCUSSION

An answer to the intriguing question as to whether opti-
cally active achiral crystals possess a chemical structure that
interacts with helicity in a beam of x-rays is found in work
reported by Ovchinnikova et al. [24]. The authors measured
a partial intensity, defined as the difference between the in-
tensity of Bragg spots observed with left- and right-handed
x-ray, for copper metaborate with the energy of x-rays tuned
to the copper K edge (E ≈ 8991 eV, 1s → 4p). The material
is described by one of 12 space groups in the optically active
nonenantiomorphic crystal class D2d.

Our calculations using C2v and D2d of the partial inten-
sity, a chiral signature denoted by ϒ, imply that it has a
universal structure for diffraction enhanced by an electric
dipole-electric dipole (E1-E1) absorption event. As a function
of rotation through an azimuthal angle ψ about the reflection
vector, ϒ ∝ sin(ψ ) sin(2ψ ) and, thus, zero for ψ multi-

ples of 90◦, and its size and sign depend on Miller indices.
As in Templeton-Templeton scattering, quadrupoles make up
the electronic content of ϒ, and we identify the specific
quadrupoles observed in the experiment reported on Cu B2 O4

[24]. Multipoles are perfectly defined atomic quantities that
can be calculated using a suitable electronic wave function, or
calculated using a simulation of electronic structure [18,25].

Small intensity was measured ≈10 eV below the main
intensity at an energy E ≈ 8991 eV in the copper absorption
spectrum, at which Bragg diffraction was performed [24]. A
parity-odd E1-E2 absorption event is one candidate mecha-
nism for the blip in intensity. We report a calculation of the
chiral signature for E1-E2 and find it is essentially the same as
for an E1-E1 event. Specifically, the azimuthal-angle depen-
dence is the same for both absorption events. While ϒ(E1-E1)
is a product of two parity-even quadrupoles with different
angular anisotropies ϒ(E1-E2) can contain polar multipoles
with different ranks and projections, as in the example we
report, Eq. (6). We have not found ϒ(E1-E1) different from
zero for chemical structures that belong to Cs and S4 crystal
classes.

A few materials that belong to crystal classes C2v and D2d

are listed in Table I. Our chiral signature defined in Eq. (1) can
be different from zero for ions using the sites mentioned. Its
specific form is deduced from results presented in the main

TABLE I. Representative examples of optically active achiral
materials in crystal classes C2v (space groups No. 25–46, Sec. IV A)
and D2d (No. 111–122, Sec. IV B). Our chiral signature ϒ defined in
Eq. (1) can be different from zero for ions in the cited sites.

Te2 O3 (S O4), Pmn21 (No. 31) sites 4b; Te4+, O2 – [26]

Na3 W O3 N, Pmn21 (No. 31) sites 4b; Na1+, O2 – , N3 – [27]

Nd Os O4, Pna21 (No. 33) sites 4a; Nd3+, Os5+, O2 – [28]

Rb2 Cd Br2 I2, Ama2 (No. 40) sites 8c; I [29]

Ba Cu2 Sn Se4, Ama2 (No. 40) sites 8c; Cu, Se [30]

Nd2Ba4Cu2O9, P4̄n2 (No. 118) sites 4 f ; Nd3+, Cu2+, O2 – [22]

Cu B2 O4, I 4̄2d (No. 122) sites 8d; Cu2+ [23]

Ag Ga S2, I 4̄2d (No. 122) sites 8d; S2 – [31]
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text, and always it is proportional to �(ϕ,ψ ) in Eq. (5).
In the example of the tellurium sulfate [26], the signature
ϒ(4b) for space-group forbidden spots (2m + 1, 0, 0) is given
by Eq. (4) apart from an overall minus sign. With a cell
length a ≈ 8.880 Å, recovered from powder neutron diffrac-
tion patterns, the Laue condition for Bragg diffraction is not
satisfied at the oxygen K edge. Absorption at the tellurium
L3 edge (E ≈ 4.345 keV) gives access to Bragg spots with
Miller indices h = 1, 3, and 5, and many more spots are acces-
sible with absorption at the K edge (E ≈ 31.817 keV). From
Eq. (4), ϒ(4b) ∝ sin(4πxh) with x ≈ 0.301 for tellurium, and
sin(4πxh) ≈ – 0.935(+0.980) for h = 3(7), while this spatial

phase factor ≈+0.082 for h = 5. Resonance-enhanced Bragg
diffraction by oxygen ions can be realized with crystals of Nd
Os O4 since the cell length is much larger, a ≈ 14.859 Å [28].
Regarding the other two elements in this compound, x-rays
tuned to the M3 and M4 edges likely yield strong enhance-
ments, with the M4 edge at E ≈ 1.000 keV (E ≈ 2.033 keV)
for Nd (Os).
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