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We investigate Nagaoka ferromagnetism in the two-dimensional Hubbard model with one hole using the
spin-adapted [SU(2) conserving] full configuration interaction quantum Monte Carlo method. This methodology
gives us access to the ground-state energies of all possible spin states S of finite Hubbard lattices, here obtained
for lattices up to 26 sites for various interaction strengths (U ). The critical interaction strength, Uc, at which the
Nagaoka transition occurs is determined for each lattice and is found to be proportional to the lattice size for the
larger lattices. Below Uc, the overall ground states are found to favour the minimal total spin (S = 1

2 ), and no
intermediate spin state is found to be the overall ground state on lattices larger than 16 sites. However, at Uc, the
energies of all the spin states are found to be nearly degenerate, implying that large fluctuations in total spin can
be expected in the vicinity of the Nagaoka transition.
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I. INTRODUCTION

The two-dimensional Hubbard model is an important theo-
retical model in condensed matter physics, and exact results
are helpful for understanding a plethora of phenomena in
strongly correlated systems, including pairing mechanisms in
unconventional superconductors [1], the Mott metal-insulator
transition [2], and magnetism. The magnetic properties of
the ground-state wave functions, off half-filled, are still an
open problem. The first known example of saturated itiner-
ant electron ferromagnetism is due to Thouless [3] for some
special bipartite lattices, and was later generalized and applied
to nonbipartite lattices by Nagaoka [4], Lieb [5], and Tasaki
[6,7], for systems containing exactly one hole with an infinite
Hubbard repulsion. Today, this phenomenon is known as Na-
gaoka ferromagnetism.

However, a detailed physical picture of the phase transition
point is still not clear; for example, it is not known if there are
states with intermediate spin which are particularly stable in
the vicinity of the phase transition from antiferromagnetism to
ferromagnetism. Furthermore, the existence of Nagaoka ferro-
magnetism in the case of more than one hole is controversial.
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Nagaoka ferromagnetism plays an important role in the study
of the magnetic properties of the Hubbard model because it
states that there is a ferromagnetic ground state in the vicin-
ity of half filled, where an antiferromagnetic spin order is
assumed to be present. It is also a rigorous result, reporting
ferromagnetism in the Hubbard model. Nagaoka proved that
the ground state of certain Hubbard models have saturated fer-
romagnetism if there is one hole and U = ∞. This theorem,
however, does not offer a picture on how the system changes
from an antiferromagnetic state at small U to a saturated
ferromagnetic state at U = ∞. To the best of the authors’
knowledge, there exists no work on locating the Nagaoka
critical strength Uc on finite lattices and studying the physical
properties on such lattices. In this paper, we investigate the
energetics of different spin states in the Nagaoka problem on
finite lattices and obtain insight into the spin spectrum as Uc is
approached. In addition, this problem also offers an extreme
example of a strongly correlated itinerant system, which can
be used to test and improve newly developed methods for
strong correlations.

To get the most reliable benchmark results on strongly
correlated systems, one usually needs to use various kinds
of highly accurate methods. The Lanczos-based exact diag-
onalization (ED) method is computationally very expensive,
especially the demand for memory is extremely high. For
the Hubbard model, it is generally prohibitive to use the ED
method on lattices larger than 20 sites [8–10]. The recently
developed full configuration interaction quantum Monte Carlo
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(FCIQMC) method [11] is capable of generating highly ac-
curate benchmark results with a lower memory requirement
than ED, even in its original formulation [12], where no ini-
tiator approximation [13] is applied. The FCIQMC method
and its initiator approximation have been tested on various
molecular systems [14–17] as well as on some lattice [18–20]
and solid [21,22] systems. The ground-state wave function
of such systems usually contains a relatively small number
(typically not more than a few thousand) of important ref-
erence determinants, which form the dominant part of the
wave function. This part of the wave function is normally
very stable in the course of the Monte Carlo simulation,
and can be used as a trial wave function to project out the
ground-state energy. This, however, is not the case in Nagaoka
ferromagnetic states, where all determinants containing no
double occupation are equally important and it is very difficult
to get a stable projection energy, especially when U is close
to Uc. Therefore, Nagaoka ferromagnetism is a challenging
problem for this methodology.

In FCIQMC, the basis is usually formulated in the Hilbert
space of Slater determinants (SDs), where each individual de-
terminant is an eigenstate of Ŝz, but generally not of the square

of the total spin operator, Ŝ
2
. To study magnetism, especially

in systems with small spin gaps, it is useful to impose the
SU(2) symmetry arising from the commutator [Ĥ , Ŝ2] = 0 by
using a basis with a specific total spin. This enables one to
target specific spin states which are not necessarily the ground
state (for example, intermediate spin states), and in projective
methods also leads to faster convergence, as unwanted spin
components are rigorously absent from the Hilbert space. It
also helps to reduce the size of the Hilbert space. As a price
for these advantages, one has to construct such a spin-adapted
basis in a sophisticated way. In this paper, SU(2) symmetry
is imposed via the graphical unitary group approach (GUGA)
[23–25], which dynamically constrains the total spin S of a
multiconfigurational and highly open-shell wave function in
an efficacious manner. Recently, a spin-adapted version of
the FCIQMC algorithm based on GUGA has been developed
in our group [26–28], with applications so far only to ab
initio systems. In this paper, we report an application of the
GUGA-FCIQMC method to the Hubbard model in the large
U regime, where spin gaps are very small, and we apply an
exact spin-adapted methodology to the Nagaoka problem.

The rest of this paper is organized as follows. In Sec. II, the
GUGA-FCIQMC method is briefly introduced. In Sec. III, we
present the computation results on various lattices with this
method. In Sec. IV, we make some conclusions of this paper.

II. GUGA-FCIQMC METHOD APPLIED TO THE
REAL-SPACE HUBBARD MODEL

The Hamiltonian of the Hubbard model in real space takes
the form

Ĥ = −t
∑
〈i j〉σ

a†
i,σ a j,σ + U

∑
i

niσ niσ , (1)

where a†
iσ (aiσ ) creates (annihilates) an electron with spin σ

on site i and niσ is the particle number operator. U refers to
the Coulomb interaction strength. We consider only nearest-

neighbor hopping terms, where t is positive and which we use
as the unit of the energy.

This model represents an itinerant strongly correlated sys-
tems, especially in the large U regime off half-filled. To get
reliable ED-quality results on such strongly correlated sys-
tems, the recently developed FCIQMC method is used to
obtain the ground-state wave function �0 by Monte Carlo
simulation of the imaginary-time evolution of wave functions

�(τ ) = e−τ (Ĥ−E0 )�(0), (2)

which leads to �0 in the long time limit �(τ → ∞). If the
initial wave function �(0) has a definite spin S (which may be
different to the spin of the true ground state), this procedure,
in principle, leads to the lowest energy state of that spin. This,
however, requires that the imaginary-time propagation of the
wave function rigorously preserves the spin from one iteration
to the next, otherwise any noise leads to the collapse of the
wave function onto the true ground state with a possibly differ-
ent spin, and the desired spin state remains inaccessible. The
exact preservation of spin is a major challenge for stochastic
projection techniques working in SD spaces, since the SDs
are generally not individually spin eigenfunctions. For this
reason, special algorithms such as the GUGA-FCIQMC al-
gorithm need to be devised, in which the spin is rigorously
preserved even in a stochastic simulation.

The wave function is expressed in terms of a complete basis
of spin eigenfunctions {|μ〉}:

�(τ ) =
∑

μ

cμ(τ )|μ〉. (3)

The coefficients cμ are determined via a population dynam-
ics of signed walkers, sνδ(ν − μ), sν = ±1, such that Nμ =∑

ν sνδ(μ − ν) represents the population of walkers on |μ〉.
This population dynamics follows the master equation:

−dNμ

dτ
= (Hμμ − E )Nμ +

∑
ν �=μ

HμνNν . (4)

Here Hμν = 〈μ|Ĥ |ν〉 is a matrix element of Ĥ in the given ba-
sis. The efficient on-the-fly evaluation of such matrix elements
is key in any iterative method, and in a spin-adapted basis,
this forms the main technical problem to be overcome. The
parameter E , called the shift parameter, plays an important
role to control the population growth and converges to the
ground-state energy E0 in the long-time limit.

In a spin-adapted method, the basis functions {|μ〉} are
chosen to be eigenstates of Ŝ2 and Ŝz. Expanded in a SD basis,
such spin eigenfunctions generally entail a combinatorially
large number of SDs, dependent on the total spin and the
number of singly occupied orbitals in the constituent SDs.
In the large U Hubbard model, the latter is essentially the
number of electrons (there are very few doubly occupied sites)
and therefore spin-adapted bases are extremely multidetermi-
nantal in Nagaoka-type problems. For this reason, one must
seek methods in which matrix-element calculation can be
performed directly and entirely in a spin-adapted basis rather
than via expansions in SDs. The GUGA approach is one such
approach that uses the algebra of the unitary group to perform
efficient matrix-element calculations, and below we briefly
describe the basis of this method.
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The Hubbard Hamiltonian can be reformulated in terms of
spin-free excitation operators as

Ĥ = −t
∑
〈i j〉

Êi j + U

2

∑
i

êii,ii, (5)

where the sums i, j run over the Ns lattice sites, and

Êi j =
∑

σ=↑,↓
a†

i,σ a j,σ

and

êii,ii =
∑

σ

a†
i,σ a†

i,σ ai,σ ai,σ (6)

are singlet one-body and two-body excitation operators. Since
these excitation operators commute with the total spin op-
erator Ŝ2 and the z component Ŝz, they preserve the S and
Sz values upon acting on a spin eigenstate |S, Sz〉. Because
the spin-free excitation operators in Eq. (5) obey the same
commutation relations as the generators of the unitary group
U (n) (n = Ns being the number of spatial orbitals), U (n)
can be used to construct a spin-adapted basis, also known as
configuration state functions (CSFs), via the Gel’fand-Tsetlin
(GT) representation of U (n) [23]. This formalism results in
the GUGA method, and can be applied to the Hubbard model
in the form given in Eq. (5). Paldus [29] has given a detailed
derivation of the matrix elements of the unitary group gen-
erators in the GT basis, and for the implementation of the
GUGA formalism within the stochastic FCIQMC framework
the reader is referred to Ref. [26]. For the purposes of this
study, it should be noted that, because of the simple form of
the Hubbard Hamiltonian, only a small subset of the possible
GUGA matrix elements are necessary to be calculated here,
and fortunately the required ones are relatively simple com-
pared to the general forms which are necessary for ab initio
Hamiltonians. Thus, for the off-diagonal matrix elements,
〈μ′|Ĥ |μ〉, only the one-body terms contribute and necessary
GUGA matrix elements are of the form 〈μ′|Êi j |μ〉, which
are given in Appendix A of Ref. [26]. The diagonal matrix
elements 〈μ|Ĥ |μ〉 require only the GUGA matrix elements
of the form 〈μ′|êii,ii|μ〉, whose expression is given in Eq.
(B4) of Appendix B of Ref. [26], and can be calculated in
O(Ns) effort. The GUGA-FCIQMC method thus allows us to
treat the Hubbard model efficiently and entirely in a spin-pure
basis.

In this spin-adapted formalism, the dimension f of the
Hilbert space of a system with Ns sites, Ne electrons, and spin
S is given by the Weyl-Paldus formula [23]:

f (Ns, Ne, S) = 2S + 1

Ns + 1

(
Ns + 1

Ne/2 − S

)(
Ns + 1

Ns − Ne/2 − S

)
. (7)

In this paper, we use the GUGA-FCIQMC method up to
Ns = 26. The corresponding largest Hilbert space results for
Ne = 25, S = 3/2, i.e., f ∼ 3.36 × 1013. This would be the
dimension that an ED method would need to allocate to store
the ground-state eigenvector. Such calculations would only be
feasible with specialized code on supercomputers with large
amounts of memory.

The Hilbert space associated with the no-double occupancy
sector fND is much smaller, and this is where the majority of

18-site20-site

24-site26-site

FIG. 1. The four lattices with tilted periodic boundary conditions
studied in this paper.

the ground-state eigenvectors in the large U limit resides. For
the one-hole Nagaoka problem, fND is given by the Sherman
van-Vleck formula [30] multiplied by the number of sites:

fND(Ns, Ne, S) = Ns ×
((

Ne

Ne/2 − S

)
−

(
Ne

Ne/2 − S − 1

))
.

(8)

For the 26-site lattice with 25 electrons and S = 3/2, fND ∼
3.09 × 107. In the full GUGA-FCIQMC method reported
in this paper (i.e., without the initiator approximation), the
number of walkers required to resolve the sign problem for
Nagaoka-type problems is found to be roughly 5 − 10 times
fND, i.e., on the order of 108 walkers, which is still consid-
erably less than the 1013 Hilbert space an exact deterministic
spin-adapted calculation would need to solve this problem. It
is this saving that makes these essentially exact calculations
possible on a medium-size machine (several tens of proces-
sors).

III. RESULTS

In this paper, we investigate the 2D Hubbard model on
square lattices with periodic boundary conditions, where the
existence of the Nagaoka ferromagnetism has been proven
for the case of t > 0 and U = ∞. Calculations are mainly
performed on lattices of five different sizes. Besides a simple
16-site (4 × 4) square lattice, we also take four other square
lattices under the tilted periodic boundary conditions, which
are the 18-site lattice with lattice vectors (3, 3), (3,−3), the
20-site lattice with lattice vectors (4,−2), (−2,−4), the 24-
site lattice with lattice vectors (5, 1), (−1,−5), and 26-site
lattices with lattice vectors (5, 1), (1,−5). These tilted lattices
have an optimum shape for finite clusters, and help to reduce
finite-size effects [31]. In Fig. 1, the four tilted lattices are
presented with the filled circles, where the solid lines depict
the shape of the supercells. The lattice sites sitting on the solid
lines are shared by the neighboring supercells, and therefore
only half the sites on the side lines and one quarter of the sites
at the corners belong to each supercell.
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TABLE I. Comparison between the spin-dependent ground-state energies calculated by GUGA-FCIQMC and those by the ED on the
16-site square lattice Hubbard model. The number of electrons is 15 (one hole) and the Hubbard repulsion parameter is taken as U = 60.

Method/Stotal
1
2

3
2

5
2

7
2

9
2

11
2

13
2

GUGA-FCIQMC −4.0724(1) −4.0690(1) −4.0753(1) −4.0662(1) −4.0138(1) −4.0195(1) −3.9949(1)
Exact diagonalization −4.07242 −4.06923 −4.07535 −4.06603 −4.01379 −4.019409 −3.994902

To benchmark the performance of the GUGA-FCIQMC
method for Hubbard model, we first apply it to a 4 × 4 lattice
with one hole and compare the results directly with those of a
Lanzcos-based ED method in SD space in different Sz sectors
starting from Sz = maximal and reducing Sz successively to 1

2 .
By calculating multiple roots of the many-body Hamiltonian,
the total spin S of each root can be retrospectively assigned. In
GUGA-FCIQMC, the ground-state energy for a chosen total
spin S is obtained by Eq. (4) in the long-time limit. We target a
certain S by initializing the calculation with a spin-pure start-
ing CSF with the desired total spin and in the large U limit it is
beneficial to choose an open-shell CSF with no doubly occu-
pied sites. The GUGA formalism then ensures that the chosen
spin symmetry sector of the initial state is never left during the
simulation and thus we obtain the ground-state energy for the
given S. The results for U = 60 are presented in Table I, where
the results for Smax (= 15

2 ), which is the Nagaoka ferromag-
netic state, is not shown since the ground-state energy of this
state is identically equal to −4, and can expressed by a small
multiconfigurational wave function. For all the different spin
states, the results of the two methods agree extremely well, to
within the stochastic error of ∼10−4, and confirm the correct
implementation of the GUGA-FCIQMC methodology. We
also checked the performance of GUGA-FCIQMC on the 20-
site tilted lattice at U = 20 with S = Smin = 1

2 , where the ED
results are available [10]. In case of half filled, one-, and two-
hole, the ground-state energies are calculated as −4.6648(3),
−7.1585(2) and −9.7936(2), which agree very well
with the ED results −4.664764,−7.15938, and −9.79293
respectively.

In Fig. 2, the results of the ground-state energies E (S) of
systems with one hole with spin S are presented for the 16-,
18-, 20-, and 24-site lattices for different values of U . The
value of U = Uc at which the maximal spin state becomes the
ground state locates the Nagaoka transition and is numerically
found to be strongly dependent on the lattice size, namely,
Uc = 68, 92, 103, and 127, respectively, for the 16-, 18-, 20-,
and 24-site lattices. To compare the behavior of the E (S) for
the different lattices at different U , the displayed values of U
are normalized to these Uc’s. The behavior of the functions
E (S) is quite similar for the four lattices. At small interaction
strength U , the ground-state energy with S = Smin = 1

2 takes
the lowest value among all different spins, with a monotonic
increase in energy with S. With increasing U , the shape of
this curve steadily flattens, with energy E ( 1

2 ) rising up and
finally exceeding the ground-state energy at the maximum
spin E (Smax) = −4. It is observed that in the vicinity of
U/Uc = 1, the function E (S) is almost flat for all S, implying
near degeneracy of all spin states.

The largest lattice we have simulated is the 26-site tilted
lattice. Because of the greatly increased Hilbert space, calcu-

lations on this lattice are much more demanding than those on
the smaller lattices, both in terms of the number of walkers
needed to fully resolve the sign problem and because the
time step has to be smaller due to increased connectivity
between the spin-adapted functions. For the one-hole sys-
tem, we used 3 × 108 walkers and the time step set to 10−5.
Calculations are performed for S = 1

2 at U = 150 and 140,
and the ground-state energies are calculated as −3.93(3) and
−4.00(3), respectively. From these results, we can obtain
an estimate of the critical strength Uc ≈ 140 for this lattice,
consistent with the scaling of Uc observed from the smaller
lattices.

It is interesting to ask how this phase transition takes place:
whether it is a sudden jump from a state with S = 1

2 to the
state with S = Smax or if it is more gradual, i.e., if there exists
a regime of U where the lowest energy state takes an interme-
diate value of spin 1

2 < S < Smax. On the 16-site lattice, we
find that at U/Uc = 0.81 and U/Uc = 0.96 the states with the
lowest energies have an intermediate spin S = 5

2 . On the three
larger lattices, however, we find at all different interaction
strengths, the states with the lowest energies take either the

0 1 2 3 4 5 6 7 8
S

-6

-5.5

-5

-4.5

-4

E
(S

)

(a)

U/Uc=1.18
U/Uc=0.96
U/Uc=0.81
U/Uc=0.59
U/Uc=0.29

0 1 2 3 4 5 6 7 8 9
S

-5.0

-4.8

-4.6

-4.4

-4.2

-4.0
E

(S
)

(b)

U/Uc=1.09
U/Uc=0.98
U/Uc=0.87
U/Uc=0.76
U/Uc=0.44

0 1 2 3 4 5 6 7 8 9 10
S

-5

-4.8

-4.6

-4.4

-4.2

-4

E
(S

)

U/Uc=1.07
U/Uc=0.97
U/Uc=0.87
U/Uc=0.58
U/Uc=0.44

(c)

0 2 4 6 8 10 12
S

-4.8

-4.6

-4.4

-4.2

-4

E
(S

)

(d)

U/Uc=1.02
U/Uc=0.98
U/Uc=0.95
U/Uc=0.87
U/Uc=0.47

FIG. 2. Ground-state energy E (in units of |t |) versus the total
spin S on (a) 16-, (b) 18-, (c) 20-, and (d) 24-site lattices with one
hole. In the plots, the U ’s are referred to the Uc, which are taken
as 68, 92, 103, and 127 for the four lattices. This means that when
U/Uc = 1, the energy of the S = 1

2 state is equal to within error bars
to that of the maximal spin. The lines are a guide to the eye.
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(a)

18,half-filled
16,half-filled
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1/U
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3.0

4.0

ΔE

24,two-hole
18,two-hole
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(c)

FIG. 3. The width of the spin spectrum �E versus 1/U in case of (a) half filled, (b) one hole, and (c) two holes on different lattices. The
lines are a guide the eye and the statistical errors of �E cannot be seen on this scale.

minimum spin (S = 1
2 ) or the maximum spin (S = Smax). We

regard the existence of an intermediate spin ground state on
the 16-site square lattice as an artifact of the small lattice
size.

To get some more insight into these results, we also
measure the width of spin spectrum �E = Emax − Emin for
every given strength U , where Emax = max (E (S)), Emin =
min (E (S)) are the maximal and minimal values of the energy
over all spin states for a given U . In Fig. 3, the results of �E
are plotted as functions of 1/U , for the half-filled, one-hole
and two-holes systems, respectively, in the various lattices.
For the half-filled system [see Fig. 3(a)], �E is simply pro-
portional to U −1 and it converges to 0 in the limit U −1 → 0.
This result is expected, namely, only at U = ∞ is the system
fully spin degenerate.

The situation for the one-hole system, see Fig. 3(b), is
quite different. As a function of decreasing U −1 (increasing
U ), the spin spectrum gets linearly reduced, achieving a small
value at Uc, and then in a cusplike manner increasing again.
The quality of the linear fit is striking, and this makes it
possible to locate the phase transition point Uc with a few
calculations in a U regime away from the difficult Uc point.
At Uc, the width �E gets a minimum value, which is mea-
sured as <0.03, meaning that at the transition point the
ground-state energies of all the spin states are nearly degen-
erate to within this energy window. This implies that very
large spin fluctuations can be expected in the vicinity of
the Nagaoka transition. A further consequence of this mas-
sive near-degeneracy should be nontrivial behavior of the
entropy and heat capacity through this transition. This, how-
ever, would be best studied using a finite-temperature method
[32,33] rather than a ground-state technique.

To study the dependence of Uc on the lattice size Ns, we
plot the inverse of the transition strength (1/Uc) as a function
of the inverse of the lattice size (1/Ns) in Fig. 4. On small
lattices, such as the 8-, 10-, and 16-site square lattices, there
is no clear relationship between 1/Uc and 1/Ns. This may be
understood as the consequence of strong finite-size effects. On
the other hand, we find that the linear extrapolation of the four
results on 18-, 20-, 24-, and 26-site square lattices point to

(0,0), where the result for the large Ns limit should be located
(i.e., for 1/Ns → 0, 1/Uc → 0). This already gives us a sim-
ple linear relation between 1/Uc and 1/Ns in the asymptotic
large lattice regime, numerically found to be 1/Uc = 0.19/Ns,
which means that Uc grows linearly with system size, achiev-
ing the value of infinity in the limit of infinite Ns, consistent
with the Nagaoka theorem.

The situation with two holes, see Fig. 3(c), is also inter-
esting. There, the spin spectrum retains a finite width even
at very large values of U , with the S = 0 state remaining the
ground state with a noticeable gap in these finite systems to
higher spin states. This implies that the type of spin near-
degeneracy observed in the one-hole system does not occur in
the two-hole case. However, we also observe a clear change in
slope in the width of the spin spectrum as the system passes
through Uc. Preliminary analysis of this behavior indicates the
onset of ferromagnetic domains in the two-hole system, which
are antiferromagnetically aligned with respect to each other,

0 0.02 0.04 0.06 0.08 0.1 0.12
1/Ns

0

0.01

0.02

0.03

0.04

0.05

1/
U

c

y=0.19x

FIG. 4. The inverse of the critical interaction strength, 1/Uc,
versus the inverse of the lattice size, 1/Ns. The (0,0) point is assumed
to be the Nagaoka result at the Ns = ∞ and U = ∞ limit. This point
is extremely well-extrapolated from the 18-, 20-, 24-, and 26-site
results (red line). This demonstrates that Uc is expected to scale
linearly with Ns for square lattices larger than 18 sites.
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leading to an overall S = 0 ground state. This indicates that
Nagaoka physics also remains in multiple-hole systems but is
much more complicated due to effective interactions between
different ferromagnetic domains. This is a topic we hope to
address in a future publication.

IV. CONCLUSION

The spin-adapted GUGA-FCIQMC is used to study Na-
gaoka ferromagnetism of the 2D Hubbard model with one
hole on finite lattices. The largest lattice is up to 26 sites,
where the finite-size effect in the large U regime is very weak.
Based on the results, we find that below the phase transition
strength Uc, the ground states always prefer the minimum total
spin S = 1

2 , and there is no partial spin polarization on square
lattices larger than 16 sites. At the phase transition strength
Uc, the ground states becomes nearly degenerate among all
different spins. The results also show that the phase transi-
tion strength (Uc) is proportional to the lattice size (Ns). The

present methodology can be extended to the calculation of
reduced density matrices, giving insight into the spatial and
spin correlations in the observed wave functions, and will be
reported in a future publication.
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