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The superconducting (SC) gap structure appearing in systems with single Fermi surface (FS) is generally
described by the single gap function with s- or d-wave symmetry. The organic superconductor λ-(BETS)2GaCl4

[BETS = (CH2)2S2Se2C6Se2S2(CH2)2] endeavors to examine a novel SC gap structure on the distorted single
cylindrical FS. Here, we show an example of the formation of the distorted SC nodal line by using the positive
muon spin rotation (μ+SR) spectroscopy on λ-(BETS)2GaCl4. Our analysis method of the μ+SR data reveals
that the nodal line has a narrower width than that of the traditional d-wave by the steepness factor of 4.6(2.1),
and a flat part with the maximum gap exists. We found that the amplitude of the SC gap is 2�/kBTc = 3.9(2)
and the in-plane penetration depth is λac(0) = 560(5) nm. Our present study gives insight into the relation of the
FS distortion and the unusual Cooper pair formation mediated by the anisotropic spin fluctuations.

DOI: 10.1103/PhysRevB.104.224506

I. INTRODUCTION

The superconducting (SC) gap state appearing in uncon-
ventional superconductors is one of the hardest issues in
condensed matter physics. Since the first discovery of the
d-wave SC state with nodal line in CeCu2Si2 [1], it has
also been reported in the Cu- and Fe-based [2–7] and or-
ganic κ-(ET)2Cu2(NCS)2 [ET = (CH2)2S2S2C6S2S2(CH2)2]
superconductors [8]. Unconventional pairing mechanisms of
these superconductors can be explained by the spin fluctu-
ations mediating the Cooper pair [6]. The criterion of the
d-wave nodal state as a consequence of the unconventional
Cooper-pairing mechanism and suppressed superfluid density
has been debated in the case of Fermi surface (FS) becom-
ing an imperfect spherical or cylindrical shape due to the
lower crystal symmetry. Theoretical and experimental results
suggested deviations from the traditional d-wave symmetry
discussing an anisotropic mixed symmetry [2,3,9], additional
broken symmetry [3], pseudogap [5,6], or multi-SC gaps
[4,7].
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Among strongly correlated systems, organic superconduc-
tors endeavor to investigate new SC gap states with lower FS
symmetry [15]. Recently, interests have increased in the high-
anisotropic organic superconductor, λ-(BETS)2GaCl4 (shortly
λ-Ga), the type-II superconductor with T c ∼ 5.5 K [16]. Fig-
ure 1 shows the crystal and electronic structures of λ-Ga. The
BETS molecules form the λ-type stacking in the conducting
plane, each of which stacks side-by-side along the a axis
[16–19] shown in Figs. 1(a) and 1(b). The highest occupied
molecular orbital (HOMO) is constructed by the π -orbital and
3/4-filled. The dimerization allows the system to be treated as
1/2-filled [10]. The electronic state of λ-Ga can be described
by the Hubbard model with the strong Coulomb interaction
U inside the BETS dimer [17,18]. The relatively narrow
bandwidth W maintains near the Fermi level and partially
nests FS, as plotted numerically by density functional theory
calculation (DFT) in Fig. 1(c) [10]. The U/W of λ-Ga is
0.89 [10,17]. Comparing with κ-(ET)2Cu2(NCS)2, λ-Ga has
the lower crystal symmetry and its HOMO is more widely
spread within the dimer. The folded Brillouin zone (BZ)
is no longer rectangular cuboid and becomes parallelepiped
distorting the shape of FS to be the elliptic cylinder. The
intermolecular interactions in λ-Ga described by the transfer
integrals between dimers do not form an anisotropic triangular
lattice [17,20–22] shown in Fig. 1(b) [10]. This causes orbital
mixings within folded BZ [16–18,23]. Therefore overlapped
FS is disconnected at the crossing point in the diagonal di-
rection of BZ and separated into the quasi-one-dimensional
(q1D) open sheet (blue lines) and q2D close pocket (black
lines). This is approximately 14% of the BZ consistent with
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FIG. 1. (a) Crystal structure of λ-(BETS)2GaCl4. Magenta and brown layers are [GaCl4]− insulating and
[([(CH2)2S2Se2C6Se2S2(CH2)2])2]+ conducting layers, respectively. (b) Conducting plane of λ-(BETS)2GaCl4. Cyan area is the unit
cell. BETS molecule 1–2 and 3–4 form a dimer. The blue and red lobes indicate the maximally localized Wannier orbital of the π orbital
on the BETS dimer (positive: blue, negative: red). In the inset, the first (second) nearest neighbors transfer integrals are indicated by black t
(orange t ′), with t ′/t = 0.8. Another sublattice with the red t , cyan t ′, and t ′/t = 0.2 alternates in the a direction. (c) The 3D Fermi surface
estimated from the DFT calculation [10–14].

the Subnikov-de-Hass experiment [24]. The deformation of
FS was observed in the ultracold erbium atoms caused by
the anisotropic dipole-dipole interaction [25]. That demon-
strated anisotropic many-body phenomena possibly realizing
novel topological phases or anisotropic Fermi liquid proper-
ties [25,26]. In λ-Ga the distorted FS structure unlocks the
formation of a novel SC gap structure within a single FS.

The SC state of λ-Ga is attributed to that of λ-
(BETS)2FeCl4 in the magnetic field above 17 T. While
λ-(BETS)2FeCl4 has the ground state of the antiferromagnet-
ically long-range ordered (AFLRO) state coinciding with the
metal-insulator transition at 8.3 K under zero field [16–18,23].
The microwave conductivity, flux-flow resistivity, heat ca-
pacity, and 13C-NMR studies of λ-Ga contradicted the SC
gap symmetry whether it be the s-wave, d-wave, or mixed
symmetry [27–31]. The 13C-NMR result suggested the devel-
opment of the spin fluctuations in the metallic state showing
the appearance of an unconventional SC state [31,32]. The SC
gap symmetry is accumulated in the temperature dependence
of superfluid density directly related to the inverse square of
London penetration depth, λ−2(T ). The μ+SR is a powerful
tool to measure λ−2(T ) in the vortex state. Here, we show the
detailed analysis results of the λ−2(T ) determined from μ+SR
measurements. By using our suggested analysis method, we
clarify that λ-Ga has the distorted nodal line in the SC gap
structure by having a steeper nodal line than that of the tradi-
tional d-wave alternating with a flat part where the SC gap is
maximum.

II. EXPERIMENTAL DETAILS

About 120 mg single crystals synthesized by common
method [16,20] were packed with random orientation by

a high-purity silver foil. Transverse-field (TF) μ+SR mea-
surements were performed on the ARGUS and MuSR
spectrometer at the RIKEN-RAL/ISIS, Rutherford Appleton
Laboratory, UK [33]. The TF was applied above Tc (T =
10 K) perpendicular to the initial muon-spin polarization,
and the sample was then cooled down maintaining TF. The
μ+SR spectra were measured while warming from 0.3 K to
10 K. The TF dependence measurement at 0.3 K was done
to provide the information for the vortex state. The 15 mT is
within the vortex solid state [10,34], while TF-μ+SR under
3 mT [10] confirmed Refs. [35,36] down to 2 K. About 25 mg
of the same sample was measured by MPMS-XL SQUID
magnetometer down to 1.8 K.

The μ+ site [10,37] was in the center of the unit cell close
to the edge of the BETS molecule [10]. μ+ could deform
the local structure around the muon site, however μ+ saw
the real vortex field since the deformation is quickly gone
at small distance compared to the large vortex size of λ-Ga.
Our DFT calculation including μ+ showed that the electronic
metallic state, therefore the lattice shown in Fig. 1(b), hardly
changes [10].

III. EXPERIMENTAL RESULTS

A. London penetration depth

In this section we determine the temperature evolution of
penetration depth in the vortex state from temperature de-
pendence of TF-μ+SR and the absolute value of in-plane
London penetration depth from the field dependence mea-
sured at 0.3 K. Figures 2(a)–2(c) show TF-μ+SR time spectra
measured at 0.3 and 10 K under 3, 6, and 15 mT, respectively.
μ+SR time spectra were normalized by the amplitude of the
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FIG. 2. (a)–(c) Normalized μ+SR time spectra measured in λ-
(BETS)2GaCl4 under the transverse field (TF) of 3, 6, and 15 mT,
respectively, at 10 K (cyan) and 0.3 K (black). The red and black solid
lines are the best-fitting results using the Gaussian-type-damped
cosine equation. The trace of the envelope represents the damping
behavior of the muon-spin precession at 10 K (red) and 0.3 K (black).
(d) Temperature dependence of the damping rate, σ (T ), and that in
the SC state, σSC(T ), after subtracting the nuclear dipole moment part
above Tc by σ 2 = σ 2

SC + σ 2
NM. The dashed line indicates Tc = 5.3 K

determined from our resistivity and magnetization measurements
[34]. (e) Temperature dependence of field shift extracted from the
fitting parameter of B1 and B2 in the Eq. (1) which is shifted from
those measured at T = 10 K. (f) Transverse-field dependence of
μ+SR damping rate in the superconducting state, σSC(H ). Magenta
circle and solid line are the data and fitting line by using Eq. (3)
roughly estimating Hc2. Cyan and cyan broken lines are the Hc1 and
Hc2 determined by the SQUID measurement in Fig. 3(a).

muon-spin precession at the determined time zero measured
at T = 0.3 K and analyzed by applying the Gaussian-type-
damped cosine equation as

ATF(t ) = A1exp[−σ 2t2]cos(γμB1t + φ)

+ A2cos(γμB2t + φ), (1)

where the first and second terms of the right side describe
muon components from the sample and background, respec-
tively. The background signal resulted from muons stopping
in the high-purity silver foil surrounding the sample did not
cause any damping behavior of the muon-spin precession. We
obtained A1 = 0.48(2) and A2 = 0.51(3) and fixed the value
for fitting time spectra at all temperatures. Here, γμ/2π =
135.5 MHz/T is the gyromagnetic ratio of the muon spin. B1

and B2 are the average magnetic field in the SC state and in
the silver foil, respectively.

FIG. 3. (a) H -T phase diagram of the superconducting state
determined from magnetic susceptibility measurements. Cyan, ma-
genta, and cyan circles show the lower, irreversible, and upper critical
fields, respectively (Hc1, Hirr, Hc2) determined by the isothermal
field dependence of magnetization measurement (MH loop) at sev-
eral temperatures. Colored solid lines are the fitting lines by using
Eq. (4). The inset shows two measured MH loops. (b) Temperature
dependence of normalized inverse square London penetration depth
obtained from TF-μ+SR and SQUID measurement.

Figure 2(d) shows the temperature dependence of the ob-
tained σ from Eq. (1). The σ is expressed as σ 2 = σ 2

SC + σ 2
NM

[5,38], where σSC is the damping rate in the SC state due
to the inhomogeneous field distribution caused by vortices.
The σNM is the damping rate caused by nuclear dipole fields
distributed at the muon site [10] in the normal state (σ at
T = 10 K) and was estimated to be 0.1119(12) μs−1. The σ

at T = 8 and 6 K had the same value within the error bar,
shown in Fig. 2(b). The value of 0.1119 μs−1 was applied for
subtracting each data point of σ . The temperature dependence
of σSC is then related to the London penetration depth λ,
assuming the hexagonal vortex lattice of the quantum flux 	0

[38]. In this case, we can use the Brandt equation [38,39],
√

2σSC(T )/γμ = 0.06091	/λ2(T ), (2)

where 	0 = 2.068 × 10−15 Wb.
Figure 2(e) shows the temperature dependence of B1 −

B1(T =10 K) representing the temperature dependence of the
field shift. The B1 promptly decreased below Tc since the
internal field in the superconducting state has a lower value
than that of the metallic state reminiscent of the diamagnetic
signal.

Figure 2(f) shows TF-dependence measurement of σSC(H )
at the base temperature 0.3 K in the vortex region, 3–60 mT.
The σNM was subtracted from the one measured at 10 K for
each field. From σSC(H ) we can estimate the λeff and Hc2

using the equation given by Brandt [39]

σSC(H ) = 4.83 × 104[(1 − √
Happ/Hc2)3]λ−2

eff (3)

where σSC is in μs−1, λeff in nm, and H in Oe. The λeff and
Hc2 were estimated, respectively, to be 665 ± 12 nm and 43 ±
25 kOe. In order to check this estimation we estimated the
critical fields in the superconducting state from magnetization
measurement using SQUID.

Figure 3 summaries the H-T phase diagram in λ-Ga show-
ing Hc1, irreversibility field Hirr, and Hc2 determined from the
MH-loop measurement at several temperatures. The solid line
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is the fitting by using the two-fluid model equation,

Hi = Hi(0)(1 − (T/Tc)n). (4)

The Hc1, Hirr, and Hc2 were estimated to be 11.4 ± 2.8 Oe,
54.8 ± 0.1 kOe, and 63.3 ± 0.7 kOe, respectively. The su-
perconducting coherence length ξeff is accordingly estimated
from [40],

Hc2 ≈ 	/2πξ 2
eff, (5)

yielding ξeff = 7.2(4) nm.
The Hc2 estimation from TF-μ+SR within the upper limit

of the error bar, Hc2 = 68 kOe, is consistent with the SQUID
measurement result, Hc2 = 64 kOe. This estimation is also
consistent with the single crystal magnetoresistance measure-
ment [41] by considering the spherical average. Information
from single crystals magnetoresistance measurement [41]
yields the anisotropy factor γ of Hc2‖/Hc2⊥ � 4. It appears
that the dependence on the magnetic field orientation of
the Hc2 in λ-(BETS)2GaCl4 is qualitatively similar to the
Ginzburg-Landau anisotropic effective-mass approximation
[24]. When we took its spherical average in the case of random
field orientation, as

1

4π

∫ 2π

0
dφ

∫ π

0
sin θdθ

Hc2(θ = 0)√
cos2(θ ) + γ −2 sin2(θ )

, (6)

the Hc2 was 6.6 T, which is consistent with the estimation from
TF-μ+SR and SQUID measurement. We determine the vortex
solid and liquid region, as shown in Fig. 3(a). Accordingly, the
estimation of effective London penetration depth by Eq. (3) is
consistent with the prediction of the Ginzburg-Landau model,
while the temperature dependence of TF-μ+SR was therefore
done in the vortex solid region.

Furthermore, we are able to evaluate the obtained temper-
ature dependence of TF-μ+SR in the field of 3, 6, and 15 mT.
As shown in Fig. 2(e), temperature dependence of field shift
in the field of 3 and 6 mT has some upturn at low temperature.
This may be due to weak pinning effect since the system was
just entering the vortex solid state. From our measurements
the stable vortex solid state in λ-Ga is in the range of about
10Hc1 < H � Hc2 [34]. In the field of 15 mT the field shift
curve keeps decreasing down to low temperature. The abso-
lute value of this field shift can be estimated as [42,43]

�BT →0 ≈ −0.146 × Hc2
1 − (Happ/Hc2)

κ2 − 0.069
(7)

where κ = ξ

λ
is the Ginzburg-Landau constant. In our case

with Hc2 = 63.3 kOe, λ = 665 nm, and ξ = 7.2 nm, the
�BT →0 ≈ 1.1 G, which is very consistent with the experi-
mental result, 1.2(1) G, as shown in Fig. 2(d). It is also shown
that the field shift of the Ag foil was almost temperature
independent. Indeed, in the low-T region below 50 K such
high-purity Ag foil should not show a temperature depen-
dence.

Since we obtain the information of λeff and ξeff, the Hc1 can
be estimated from [40]

Hc1 = 	0

4πλeff
2 ln

(
λeff

ξeff

)
(8)

yielding Hc1 = 16.3 Oe. This estimation was also close to the
region shown in the phase diagram of Fig. 3(a). This indicated

the robustness of the σ (T ) in the TF of 15 mT, comparing with
curves measured in the TF of 3 and 6 mT [10,35,36], besides
the fact that σSC(T F = 15mT) ≈ λeff = 665 nm.

The inset of Fig. 3(a) shows the MH loop at 1.9 and
2.8 K in the logarithmic scale. The black solid lines are the
linear fitting, and the deviations of the data from the lines
indicate the Hc1. The bifurcations of the loop indicate Hirr

and the vanishing of the magnetization at high field indicates
the system is approaching the lower limit of the Hc2. In the
vortex liquid region we deduced temperature dependence of
λ−2. In the vortex of a type-II superconductor with a large
Ginzburg-Landau parameter the reversible magnetization for
intermediate fields Hc1 � H � Hc2 is given by London’s
phenomenological model [44],

−4πM = 	0

8πλ2
ln

Hc2β

H
, (9)

where the β is a constant of order unity. Then, in the vortex
liquid region, Hirr < H < Hc2, the slope of the linear M(lnH )
dependence is given by

dM

d (lnH )
= 	0

32π2λ2
eff

. (10)

We use this relation to analyze the logarithmic magnetization
curve at various temperatures shown in the inset of Fig. 3(a).
Extrapolating the data by Eq. (4) we then normalized the
data by value of λ(0)−2. The absolute value of λ(0)−2 was
smaller than one estimated from TF-μ+SR and the relatively
large error bar was due to the sensitivity of the fitting result
to the range of the linear region in the MH-loop data used
as a fitting range. However, the overall curve of λ−2(T ) is
in good agreement and is plotted together in Fig. 3(b). This
again puts the indication of robustness of curve shape of
λ−2(T ) obtained from different measurement, and therefore,
the further analysis will be done for the λ−2(T ) measured by
the chosen 15 mT TF-μ+SR.

In this study, the high-anisotropic character of λ-Ga is es-
timated from the ratio of intra- and interlayer transfer integral
[10], t‖/t⊥ 
 13 meV/0.2 meV 
 65, which is much higher
than its in-plane anisotropy within intralayer [Fig. 1(b)], red
t/cyan t ′ = 5.8. Experimentally, considering large Ginzburg-
Landau parameter, κ = λ(0)/ξ (0) ≈ 78 [45], we refer to the
Hc2‖/Hc2⊥ � 4 to determine λ‖/λ⊥ = 4. Therefore the λeff

can be reliably approximated as λeff 
 1.226λac, where λac

is the London penetration depth in the conducting ac plane or
λ⊥ [5,10,46]. From the measurement of σSC(H ) we therefore
obtained λac = 554.4 nm.

B. Superconducting gap structure

Having the temperature dependence of the inverse square
of London penetration depth, λ−2

ac (T ), we deduce in detail
the accumulated information of SC gap structure in this sec-
tion. The λ−2

ac (T ) is proportional to the superfluid density by
the speed of light ρsc−2, and its temperature dependence of
λ−2

ac (T ) contains information about the phase dependence of
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FIG. 4. Temperature dependence of the inverse square of the in-plane London penetration depth, λ−2
ac = ρsc−2, in λ-(BETS)2GaCl4 fitted

by (a) d-wave, (b) s-wave, (c) multigap s + d-wave, and (d) h-wave distorted nodal line symmetry for a = 4.6, respectively. The lower inset
in (c) shows the obtain gap structure considering the upper limit of σNM = 0.1131 μs−1 [10] for deducing the σSC from σ . The broken lines
in (d) indicate the trajectory for a = 1. Black solid lines are the best-fitting results for gap symmetries described by each tested gap function,
g(φ). Green solid lines are the difference between data and the fit. Blue and red color areas in the insets show changes in the sign of the SC
gap phase φ, and the �(φ) is in the unit of meV.

the SC gap by the following SC gap equation,

λ−2
ac (T )

λ−2
ac (0)

= 1 + 1

π

∫ 2π

0

∫ ∞

�(φ,T )

(
δ f

δE

)
EdEdφ√

E2 − �i(φ, T )2)
,

(11)
where f = [1 + exp(E/kBT )]−1 is the Fermi function, and φ

is the angle along the Fermi surface. �i(φ, T ) is expressed
as �(T )g(φ), and i indicates the type of SC gap symmetry.
The temperature dependence of the gap energy was set to be
�(T ) = �(0)tanh{1.82[1.018(Tc/T − 1)]0.51} where �(0) is
the maximum SC gap at T → 0. The only fixed parameter
during the fitting process was Tc and this was fixed to be the
value determined by resistivity and susceptibility (5.3 K) [34].
The g(φ) describes the phase dependence of the gap and can
be replaced by several gap functions [5,47].

Figure 4 shows the temperature dependence of λ−2
ac fitted

by several g(φ). The λ−2
ac (T ) exhibits a rapid increase and

round shape below Tc down to approximately 2 K followed
by a moderate increase at lower temperatures. Black solid
lines are the best fitting results for gap structure described by
each tested g(φ). Insets visualized the gap structure along FS,
�(φ). The color difference represents the sign changing in the
SC phase, φ.

The initial attempt to describe the temperature depen-
dence of λ−2

ac was done using the d-wave symmetry, g(φ) =
|cos(2φ)|, shown in Fig. 3(a). The fitting result showed the
linear increase with lowering the temperature below ∼Tc/3.
However, λ−2

ac (T ) was not as steep as that described by the
d-wave symmetry as T → 0. This lets us conclude the d-wave
symmetry was unsuitable to describe the SC state of λ-Ga.

Instead, we tried to fit λ−2
ac (T ) using the s-wave symmetry

with g(φ) = 1. The result is shown in Fig. 3(b). The fitting
line saturates with a flat ending in its temperature dependence
below Tc/3. This saturating part did not describe λ−2

ac (T ) well
because it showed a slight increase as T → 0. This indicated
that neither the single s- nor d-wave symmetry reliably repro-
duced our μ+SR result and that the SC gap structure of λ-Ga
had an intermediate character [34,48].

Accordingly, we examined the intermediate gap structure
by using the two-component gap functions, s + d-wave. We
first replaced �i in Eq. (11) by a gap function ωs + (1 −
ωs)|cos(2φ)|. The obtained parameters were ωs = 0.54, �s =
0.78 meV, and �d = 1.4 meV. However, this fitting was not
statistically significant with very large P value [49] above 90%
related to unreasonably large standard error for each fitting
parameter. Therefore, we replaced λ−2

ac (T ), which explained a
multigap SC state [5,7,47], by

λ−2
ac (T ) = λ−2

ac (0)
[
ωs × λ−2

ac (T,�s )

+ (1 − ωs) × λ−2
ac (T,�d)

]
. (12)

Ideally, when using Eq. (12) one assumes two FS and, if
there is coexistence, each FS has s and d-wave component.
However, from previous test the ωs = 0.54 of the SC gap
amplitude indicated that the s- and d-wave components exist
with a comparable portion. In order to minimize the degree of
freedom in the fitting parameters, here, we assume ωs, �s and
�d are the weighting factor for the s-wave superconductivity,
the SC gaps of s- and d-wave SC symmetries, respectively.

224506-5



DITA PUSPITA SARI et al. PHYSICAL REVIEW B 104, 224506 (2021)

As shown in Fig. 3(c), this s + d-wave symmetry fitted
λ−2

ac (T ) well for the whole temperature range below Tc. The
obtained ωs was 0.71(1) with the �s = 0.80(8) meV and
2�s/kBTc = 3.5(2). The d-wave component was 0.29(1) with
the larger gap amplitude �d = 1.3(5) meV and 2�/kBTc =
5.9(1.2). We note that the ωs here did not relate directly to
the gap amplitude anymore. As we cannot distinguish whether
the weighting factor could be related to some portion of FS or
to the s-wave superconductivity, we will see next how good
the Eq. (12) had been. Focusing only on the obtained gap
amplitudes of �d and �s, if we add those two gap symmetries
the node point of �d was lifted up by �s resulting in the large
(red) and small (blue) SC gap components, shown in the upper
inset of Fig. 3(c).

Although this scheme could fit λ−2
ac (T ) well, considering

the upper limit error of the estimated σNM the test ob-
tained fitting parameter �s = 0.82(4), �d = 0.30(55), and
ωs(0) = 0.94(6). In this analysis �s > �d [10]. Therefore,
an anisotropic gap opens all along FS without nodes, related
to the minimum gap of 0.5 meV or 5.8 K, as shown in
the lower inset of Fig. 4(c). This resulting gap structure is
consistent with that using g(φ) = [1 + b(cos(4φ))], referred
to as anisotropic-s-wave. The b parameter decides how large
the minimum gap opens. Our test resulted in the data can be
described by �s 0.84 meV and b = 0.34, related to a mini-
mum gap of 6.45 K. However, the opening of the gap along
FS is very hard to explain the evidence of nodes from heat
capacity, 13C-NMR, and RPA calculation [23,29–31]. The
existence of nodes through the multigap s + d-wave model
turned out to be not robust, i.e., the s + d-wave model could
not be decisive, while the concept of single FS is the funda-
mental key for λ-Ga to unify experimental explanations such
as the Kadowaki-Woods ratio [50]. Thus, such a multibandlike
scheme [7] is unlikely for SC λ-Ga. For complete analysis
considering the upper and lower limit of the error bar of σNM,
see Supplemental Material Fig. S4, Fig. S5, Table S2, and
Table S3. [10].

In order to describe the intermediate SC state in λ-
Ga, Aizawa et al. theoretically suggested to use several
well-known SC single gap functions mediated by the spin
fluctuations between BETS molecules [23]. They proposed
the appearance of two types of nodal line with a large com-
ponent of a full-gap state. Node positions in single FS were in
the diagonal direction of BZ close to π/4, and the SC phase
has only the twofold symmetry due to the distorted FS.

Consequently, we promote the single component hyper-
bolic tangent function function, g(φ) = |tanh(a(2φ − φ0))|,
to analyze λ−2

ac (T ). We sectionalized the range of integration
in the SC gap equation. The phase shift φ0 was fixed to be π/2
for the first integration range, from 0 to π/2. The φ0 shifts
by π for every next integration range. Because a hyperbolic
function is used, we simply named this distorted nodal line
symmetry the “h-wave.” It has intersecting and constant parts
in relation to φ. The former and latter describe the nodal
line and flat part of the SC gap, respectively. Here a is the
factor describing the steepness of the nodal line compared
with that of the d-wave symmetry. In the case of a = 1, the
h-wave symmetry produces the same nodes width as of using
g(φ) = |cos(2φ)|. The h-wave fitting result excellently de-
scribed the λ−2

ac with the steepness factor a = 4.6(2.1), shown

in Fig. 4(d). For visualization, the broken line in the inset
of Fig. 4(d) plotted the case of a = 1 with gap amplitude
�h(0). It becomes clear that the h-wave node is steeper than
that of the d-wave node but having a flat part where the
gap is maximum. The steep nodal line and flat structure well
describe the moderate increase below 2 K and round shape
starting just below Tc, respectively, in the curve of λ−2

ac (T ).
Among others, the h-wave model obtained the best reduced
χ2, defined as χ2/(v − u) where v is the number of data
points and u is the fitting-parameter degree of freedom. The
reduced χ2 approaches unity as the model describes well the
data [49].

Furthermore, although the obtained fitting parameter of the
h-wave model, a = 4.6(2.1), has a relative error bar about
50%, and within two standard deviations it is compatible
with a = 1, from the fitting we also obtained the h-wave
SC gap amplitude �h(0) = 0.89(4) meV and λ−2

ac (0) =
3.16(5) μm−2. If we use a = 1 or a = 2.15 with �h(0) =
0.89(4) meV and λ−2

ac (0) = 3.16(5) μm−2, this gap struc-
ture accumulated in the λ−2

ac (T ) plotting completely missed
describing the experimental curve of λ−2

ac (T ). Figure 5(a)
shows the plotting of the h-wave model in the case of a = 1,
�h(0) = 0.89 meV, and λ−2

ac (0) = 3.16 μm−2. In another way,
Fig. 5(b) shows the fitting result of the h-wave model by fixing
the a = 1 and letting parameters �h(0) and λ−2

ac (0) be free.
The fitting worked almost the same as that of the d-wave
model obtaining the fitting parameter λ−2

ac (0) = 3.40(5) μm−2

and �h(0) = 1.36(5) meV, which overestimated the absolute
value of λ−2

ac (0). The unsuccessful gap structure is visualized
in the inset where the broken lines (h-wave) are overlapping
the solid line (d-wave). These show the beauty of the h-wave
SC gap function that can describe both the nodal line and
the flat gap structure at the same time by tuning a. This is
also the invention to test the robustness of either s- or d-wave
model for describing a λ−2

ac (T ) curve. Besides, this trial uses
the single component function to analyze the intermediate
Cooper pairing gap symmetry on single FS, and to introduce
the hyperbolic term to the SC phase within the application of
μ+SR for SC materials.

To confirm our concluded steeper nodal gap compared to
that of traditional d-wave symmetry we repeated the same
analysis procedure by using g(φ) = |cos(2φ)|n, which has the
periodicity from φ = 0 to π/4. This function could produce
the narrower nodal gap, although the flat and nodal part could
not be reproduced simultaneously even tuning n and had a
worse χ2 than the best-fit h-wave. We found the n = 0.33(10)
confirming the steep SC nodal line in λ-Ga. Therefore, we
succeed in revealing that the nodal line with a narrower width
than that of the d-wave and the flat part with the maximum gap
exists, i.e., we reveal the most reliable h symmetry to describe
the superconductivity in λ-Ga.

IV. DISCUSSION

Table I summarizes the fitting results using different gap
functions. All the resulting fitting parameters summarized
there were statistically significant with the P value<5% pro-
viding very strong evidence [49]. The distorted nodal line
h-wave gap function gives the best reduced χ2 among tested
ones yielding ρsc−2 = 3.16(5) μm−2, λac(0) = 560(5) nm,
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TABLE I. The fitting result of λ−2
ac (T ) in λ-(BETS)2GaCl4 using the different models shown in Fig. 3. The SC gap in meV, energy ratio in

kBTc, goodness of the fitting, reduced χ 2, are summarized for each tested gap function. In the s + d-wave symmetry, ωs is the weighting factor
of the s-wave. In the h-wave distorted nodal line symmetry, a is the factor to describe the steepness of the nodal line compared with that of the
traditional d-wave. The �d, �s, �h are SC gaps obtained from the fitting by using the s-, d-, and h-wave symmetry, respectively [51].

Model g(φ) Gap (meV) Factors 2�/(kBTc) λ−2
ac (0) (μm−2) Reduced χ 2

d-wave |cos(2φ)| �d(0) = 1.3(2) 5.6(9) 3.41(6) 5.62
s-wave 1 �s(0) = 0.82 3.6(1) 3.05(3) 1.63
s + d-wave ωs + (1 − ωs )|cos(2φ)| �s(0) = 0.80(8), ωs(0) = 0.71(1) 3.5(3) 3.15(6) 1.19

�d (0) = 1.3(5) 5.6(9)
h-wave |tanh(a(φ − φ0 ))| �h(0) = 0.89(4) a = 4.6(2.1) 3.9(2) 3.16(5) 1.08

a = 4.6(2.1), and 2�h/kBTc = 3.9(2). The obtained value of
λac(0) through the h-wave model is consistent with the one ob-
tained from the field dependence measurement σSC(H ). From
λac(0) we obtained SC carrier density, ns = λacm∗/(e2μ0).
Using m∗ = 3.6 me and 6.3 me [24], we obtained ns = 3.22 ×
1020 cm−3 and 5.63 × 1020 cm−3, respectively. These are
about 57.5% and 100% of the carrier density expected assum-

FIG. 5. (a) The plotting of the h-wave model in the case of a = 1
and �h(0) = 0.89 meV, λ−2

ac (0) = 3.16 μm−2, the same parameters
obtained in Fig. 4(d). (b) The fitting result of the h-wave model
in case we fixed a = 1 and let other parameters free. The obtained
parameters are simulated in the inset with broken magenta and cyan
lines working very similar to the one obtained by d-wave symmetry
plotted as solid lines filled with their red and blue area which is the
inset of Fig. 4(a). The solid green line shows the difference between
the fitting result of the black line and the data point.

ing one carrier per formula unit, respectively. This means the
superconductivity is not based exclusively on carriers forming
the q2D pocket FS. The unfolded FS, i.e., distorted single
cylindrical FS picture, is necessary to discuss the SC state.

In the thermodynamics study on λ-Ga, the gap energy was
set to be 2.15 kBTc which was able to describe only the four-
fold gap symmetry resulting in the d-wave symmetry [29].
Although the further angle-resolved-heat-capacity measure-
ment included the notion of twofold- and fourfold-like terms,
the result was insufficient to describe the detailed anisotropy
of the gap function due to comparably small signals from SC
components [30]. Here, the �h is corresponding to the gap
energy of h-wave symmetry and shows the intermediate value
between the traditional d-wave [52] and the s-wave energy in
the weak coupling limit.

It becomes intriguing that the traditional d-wave symmetry
in near half-filling of κ-type organic superconductor [53] and
hole-doped La-based cuprates [54] can be tested using h-wave
symmetry, since both systems have single FS but theories sug-
gest the existence of s-component [55] or other nonuniform
d-wave mechanism [56]. We expect the h-wave is intrinsic for
the λ-type organic family.

To understand the origin of h symmetry, the anisotropy of
the dimer lattice in λ-Ga is the plausible mediation of the
h-wave Cooper pairing. We see it as an alternation of two
sublattices in the a direction which are anisotropic triangular
with t ′/t = 0.8 and frustrated squared with t ′/t = 0.2, shown
in Fig. 1(a). The two different spin moments [10] fluctuating
in the metallic state recall the development of two kinds of
magnetic fluctuations evidenced by 13C-NMR [32] whereas
the small spin moment is reminiscent of a charge dispropor-
tionation evidenced by 77Se-NMR measurements [17,57]. The
resonance valence bond theory of the Hubbard-Heisenberg
model on a 1/2-filled anisotropic triangular lattice revealed
that at t ′ ∼ t spin fluctuations mediate the fully-gapped d +
id-wave SC state [58]. Nevertheless, a variational Monte
Carlo study of the 1/2-filled-band Hubbard model showed the
strength of t ′/t = 0.2 of a frustrated squared lattice stabilizes
the d-wave SC state with nodal line in the diagonal direction,
adjacent to Mott insulator and AFLRO states [59]. How-
ever, the Cooper pairing symmetry of λ-Ga is not a simple
summation of the d + id- and d-wave since we reveal that
the nodal line is steeper than that of traditional d-wave by
using h-wave SC gap function. The Cooper pairs mediated
by each type of spin fluctuation arrayed in the triangular
and squared sublattices on the conducting 2D plane seem
entangled through higher spatial dimension [60]. If this is
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the case the entanglement of two Cooper pairs is a minimum
requirement, unlike the entanglement of electrons forming a
Cooper pair mediated by one type of spin fluctuation arrayed
in one type of lattice. In analogy with studies in the Fermi
gas [25,26], anisotropic exchange interaction (or anisotropic
spin fluctuations [58,61]) in the λ-type crystal might then be
related to the anisotropic Fermi liquid character [62], and is
the first key example for organic superconductors to modify
SC gap structure by distorting FS unwrapping new features of
the SC nodal state beyond the traditional d-wave symmetry.

V. CONCLUSION

We have measured the temperature dependence of the in-
plane London penetration depth, λ−2

ac (T ), in λ-Ga by μ+SR
and found the SC gap structure exhibits a distorted nodal
line structure which contains four nodes on single FS with
a narrower width than that of the traditional d-wave by the
steepness factor of 4.6(2.1) on average alternating with a flat

gap with amplitude of 2�h/kBTc = 3.9(2). The decomposi-
tion of the obtained SC gap structure into each component
along the crystal axes may lead to more detailed information
of this unusual Cooper pair formation, likely the same as that
surviving under high magnetic field, mediated by anisotropic
spin fluctuations. It should be possible by complementary
measurements obtaining the temperature dependence of out-
of-plane penetration depth and anisotropy of Fermi liquid in
the metallic state using oriented crystals in the next stage.
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