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Distribution of the order parameter in strongly disordered superconductors: An analytic theory
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We developed an analytic theory of inhomogeneous superconducting pairing in strongly disordered materials,
which are moderately close to superconducting-insulator transition. Single-electron eigenstates are assumed to be
Anderson localized, with a large localization volume. Superconductivity develops due to coherent delocalization
of originally localized preformed Cooper pairs. The key assumption of the theory is that each such pair is
coupled to a large number Z � 1 of similar neighboring pairs. We derived integral equations for the probability
distribution P(�) of local superconducting order parameter �(r) and analyzed their solutions in the limit of
small dimensionless Cooper coupling constant λ � 1. The shape of the order-parameter distribution is found to
depend crucially upon the effective number of nearest neighbors Zeff = 2ν0�0Z , with ν0 being the single-particle
density of states at the Fermi level. The solution we provide is valid both at large and small Zeff; the latter case
is nontrivial as the function P(�) is heavily non-Gaussian. One of our key findings is the discovery of a broad
range of parameters where the distribution function P(�) is non-Gaussian but also noncritical (in the sense
of superconductor-insulator transition criticality). The analytic results are supplemented by numerical data and
good agreement between them is observed.
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I. INTRODUCTION

Strongly disordered superconductors are interesting both
from fundamental and practical perspectives. The funda-
mental problem of a quantum (zero-temperature) phase
transition between superconducting and insulating ground
states [superconductor-insulator transition (SIT)] has attracted
considerable attention since the mid-’80s [1–5] and got an
additional burst of research during the last decade. Prominent
examples include various structurally different realizations
of the SIT, such as granular arrays of Josephson junctions
or thick homogeneous films of amorphous indium oxide.
The whole variety of phenomena collectively labeled as SIT
demonstrate a great deal of diversity in the underlying physics
and thus cannot be possibly explained by a single mechanism
(see a recent review [6] for further details). In this paper, we
theoretically demonstrate several rather persistent properties
of 3D materials with homogeneous structure and strong mi-
croscopic disorder.

The practical side of interest in strongly disordered su-
perconductors stems from potential applications in quantum
computing technologies in the form of so-called superin-
ductors [7–11]. These are much wanted yet, so far, mostly
hypothetical inductive devices combine nearly absent dissi-
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pation at low energies (in GHz range) with high inductance
and small spatial size such that kinetic inductance per square
L� exceeds 10 nH. The principal opportunity to fabricate
such a device is provided by the platform of thick films of
strongly disordered superconductors. Indeed, the latter feature
low superfluid density ρs and the associated high kinetic in-
ductance per square L� ∼ 1/ρs, enabling one to implement
an superinductor within a compact geometry. Such extreme
values for these materials are a consequence of high normal
state resistance induced by disorder [12, Sec. 3.10][13][14,
Figs. 3(b) and 3(c) in particular]. On the other hand, the
necessity for the absence of low-energy dissipation requires
one to use materials with a well-resolved gap in the optical
excitation spectrum—a feature so natural for superconducting
materials.

However, it occurs that the two conditions mentioned
above (low ρs and absence of any low-energy excitations)
come into conflict. Superconductors which are too close to
SIT unavoidably contain some nonzero density of low-lying
collective modes even when single-electron density of states
(1-DoS) is fully gapped, as demonstrated by theoretical analy-
sis [15] and experimental observations [13]. Yet, the question
of low-energy modes in strongly disordered superconduc-
tors is by no means resolved qualitatively. The preliminary
analysis performed in Ref. [15] was based upon the approxi-
mation of constant superconducting order parameter �(r) =
�, which is far from being obviously correct. Instead, a self-
consistent theory of the system’s collective modes without
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the use of such a drastic approximation is needed. Moreover,
the spatial distribution of superconducting order parameter
can now be probed by means of modern low-temperature
scanning tunneling microscopy methods [16–20]. It is thus of
both fundamental and practical interest to develop a theory
that would be able to (1) describe realistic spatial distribu-
tions of the order parameter and (2) describe the behavior of
collective modes on top of the spatially inhomogeneous super-
conducting state. In the present paper, we deal with the first
of these problems only, leaving the second one for the near
future.

The local probability distribution function P(�) of the
superconducting order parameter has already been addressed
in several important limiting cases of disorder strength. The
limit of small disorder corresponds to usual dirty supercon-
ductors with diffusive transport in the normal state. For this
regime, the structure of statistical fluctuations of the order
parameter was analyzed in a seminal paper [21, see Sec.
3, in particular] by means of semiclassical theory of super-
conductivity, demonstrating a narrow purely Gaussian P(�).
In the opposite limit of small disorder, the single-electron
wave functions suffer Anderson localization transition, ren-
dering the conventional semiclassical approach inapplicable.
To describe this regime, Ref. [22] substantiated the model
on the Bethe lattice, while a subsequent paper [23] showed
that the resulting P(�) exhibits critical features, such as fat
tails extended to the region of large �, much larger than the
typical value �typ. However, realistic experiments usually deal
with superconducting samples, which fall within neither of
the two limiting cases described above; it is especially so
for superconductors which may serve as candidates for con-
struction of superinductors. On the one hand, superconducting
materials discussed in the work are much more disordered
than usual dirty superconductors, to the extent where neither
the standard semiclassical theory of Ref. [21] nor even the
mere Gaussian approximation for P(�) are applicable. As
suggested by numerical data [24,29] and experimental ob-
servations [17,20,25], this type of material features heavily
non-Gaussian profiles of the order parameter distribution. On
the other hand, the level of disorder, the resulting noncritical
distribution P(�), and the requirement for the absence of
low-energy excitations are all suggesting that the samples
of interest are somewhat away from the SIT, so the critical
theory of Ref. [23] is also inapplicable. The present paper
is devoted to the development of analytical methods able to
study the order parameter distribution in materials that be-
long to the region in between the two limiting cases. The
latter turns out to be parametrically broad, as we also show
below. While our approach is general and valid in principle
at all temperatures, in this paper we consider T = 0 limit
only.

This paper is organized as follows. We formulate our the-
oretical model in Sec. II. Within it, we review the relevant
phenomenology of disordered superconductors and formu-
late the Hamiltonian of the system. The corresponding static
self-consistency equations for the order parameter are then
introduced along with a brief discussion of applicability
and several known limits. The section is closed by a brief
discussion of the methods used in previous works to ana-
lyze problems similar to the one stated in the present work.

Section III then presents the body of our theoretical approach.
In Sec. III A, we start by deriving a general set of equations to
describe the statistics of solution to systems of local nonlinear
equations with disorder, such as the self-consistency equations
for the order parameter. Within the following Sec. III B,
those equations are substantially simplified in the physically
relevant limit of small order parameter ν0�0 � 1 and large
number of neighbors Z � 1 within the localization volume of
a given single-particle state. Such simplifications render the
presented equations amenable for both numerical and ana-
lytical analysis. In Sec. III C, the reader can find an explicit
analytical solution to the proposed equations on the distribu-
tion function of the order parameter and related quantities in
terms of certain special functions. The following Sec. III E
then briefly describes the numerical routines used to analyze
both the original self-consistency equations in a particular
realization of disorder in the system and the derived equa-
tions on the distributions of various physical quantities across
different disorder realizations. In Sec. III F, we demonstrate
the key outcomes of our theoretical analysis: The profile of
the distribution function as a function of the parameters of
the model and the asymptotic behavior of the distribution.
The subsection also contains some results for the distribution
of other local physical quantities. Section III G then intro-
duces and analyzes several important extensions of our model
that allow us to draw conclusions about the robustness of
our findings. Finally, Sec. IV summarizes the key theoretical
achievements and outlines several immediate developments.
This paper is accompanied by the Supplemental Material
(SM) [26] that contains additional technical information on
various steps of theoretical and numerical analysis employed
in this paper.

II. THE MODEL

A. Phenomenology of strongly disordered superconductors

The physics of SIT owes its rich phenomenology to the
underlying complexity of the Anderson localization transition
in the single-particle spectrum of the system. Reference [27]
conducts an extensive research of the topic, building upon a
seminal paper [28] and early numerical studies [24]; here we
employ a simplified description proposed and substantiated in
Refs. [22,23].

The single-particle electron states are described by spa-
tially localized wave functions ψi(r) with large localization
volume Vloc and complex spatial structure [27, Sec. 2]. The
single-particle eigenenergies ξi of these states can be approxi-
mated as randomly distributed independent variables, with the
typical width of the distribution ν(ξ ) being of order of the
Fermi energy EF . We assume that this distribution arranges a
finite DoS per spin projection ν0 = ν(ξ = 0) ∼ 1/EF at the
Fermi level.

Even prior to the emergence of the global supercon-
ducting coherence, the systems in question are known to
favor the formation of localized Cooper pairs [27, Sec.
3 and references therein]. This phenomenon can be de-
lineated by an additional energy EPG per each unpaired
electron in the system. For the systems of interest, the typical
scale of EPG is significantly larger than all superconducting
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energy scales [27, Sec. 4.3]. Consequently, single-particle
excitations barely contribute to low-energy physics. One is
thus able to describe the relevant physics by considering
only the states corresponding to presence or absence of a
local Cooper pair on a given single-particle state i, effec-
tively halving the Hilbert space, as described in Ref. [27,
Sec. 6].

The superconducting order in the system then corresponds
to coherent delocalization of preformed Cooper pairs, as
demonstrated experimentally in Ref. [17] and supported by
numerical data [29]. Such behavior results from attractive
Cooper-like pairwise interaction between the Cooper pairs.
This interaction is assumed to be local, so it only connects
single-particle states with a finite spatial overlap. As a result,
each single-particle state i is effectively interacting with other
states located within the localization volume of i. However,
the particular subset of those states is rather nontrivial due to
both the complex structure of the single-particle wave func-
tions ψi(r) and explicit dependence of the matrix element
of the interaction on energy difference ξi − ξ j between the
interacting states. To describe the emerging phenomenology,
we employ a simplistic model of the spatial structure of ma-
trix elements that assumes each single-particle state i to be
effectively connected to a constant number Z of states chosen
at random from within the localization volume of i. The value
of Z can be estimated as a small fraction of the total number
of states within the localization volume that has significant
spatial overlap with a given state i, so Z ∼ nVloc × η, where
n is the electron concentration and η is a small numerical
factor. Due to the proximity to the Anderson transition, the
localization volume Vloc is large [27, Sec. 2], thus also ren-
dering Z � 1, even despite the smallness provided by η. We
note, however, that for the analysis presented below it is
only important that Z itself is a large quantity. In particular,
the analysis of a model where each site has the value of Z
distributed according to Poisson distribution suggest that the
fluctuations of Z do not play a significant role in the observed
behavior.

In what follows, we will also retain the information about
the energy dependence D(ξi − ξ j ) of the matrix elements of
the interaction. This energy dependence is primarily char-
acterized by the large energy cutoff εD that is typically of
the order of the Debye energy of phonons. Due to this en-
ergy scale, the interaction between the states with energy
difference |ξi − ξ j | larger than εD is essentially absent. On
the other hand, we assume that the localization volume of
single-particle electron states is large enough to secure the
continuity of phonon spectrum, i.e., δloc � εD, with δloc being
the characteristic phonon level spacing in the localization
volume. It is worth mentioning that the actual profile of D
for dirty superconductors with pseudogap is known to ex-
hibit substantial dependence at small energies due to the
underlying phenomenology of Anderson insulator [27, Sec.
4]. This feature presents an additional complication which
does not seem to be universally relevant. We will thus
simplify the model below by assuming that D is smooth
in the vicinity of the zero energy difference and arranges
a small static coupling constant D(0). The latter is then
conventionally parametrized by small dimensionless Cooper
constant λ � 1 as D(0) = λ/(2ν0Z ), where the multiplier Z

in the denominator ensures proper normalization of the matrix
element.

An important issue is related to the spatial geometry of
the manifold spanned by the indices of eigenstates i, j, . . .,
etc. On the one hand, the eigenstates ψi(r) are supposed to
be localized in the physical 3D space (or in the effectively
2D space in case of very thin films), and the locations Ri

of the maxima in the absolute values |ψi(r)| constitute a set
of points in real 3D (or 2D) space. On the other hand, the
major role in the formation of the superconducting state is
played specifically by the eigenstates close to the Fermi level
and in addition also sufficiently strongly coupled to each
other. Since coupling amplitudes between eigenstates near
the mobility edge strongly vary in magnitude, only a small
fraction of all eigenstates ψ j (r) that can be found around
the selected one—ψi(r)—is coupled to ψi(r) considerably.
The resulting spatial structure of interacting eigenstates can
be considered, in some approximation, as a strongly diluted
random graph with some large but finite number of neigh-
bors Z per each participating site. The crucial feature of
this graph—as opposed to the usual Euclidean lattice—is its
loopless structure. More exactly, a random graph with coordi-
nation number Z that is much smaller than the total number
of sites N , does contain loops, but their typical size grows
with system size as ∼ ln N/ ln(Z − 1), while small loops are
nearly absent [30]. This, in turn, suppresses infrared fluctua-
tions of the order parameter, which are known to be crucial
for the adequate description of thermal phase transitions in
low-dimensional systems. On the other hand, in the present
problem we are interested in statistical properties of the order
parameter at lowest temperatures, where thermal fluctuations
are absent anyway. The most important effects to be studied
here are due to strong statistical fluctuations (of quenched
disorder), which can be considered within the loopless
approximation.

B. The model Hamiltonian

The presented phenomenological picture allows us to adopt
the following model Hamiltonian of a strongly disordered
superconductor on the verge of a localization transition and
with a well-developed pseudogap:

H =
∑

i

ξi(a
†
i↓ai↓ + a†

i↑ai↑ + a+
j↓a+

j↑ai↑ai↓)

−
∑
〈i j〉

Di j (a
†
i↓a†

i↑a j↑a j↓ + Herm. conj.), (1)

and Herm. conj. stands for hermitian conjugate on the first
part in the last term. Here, a†

iσ , aiσ are fermionic creation and
annihilation operators of single-particles states ψiσ obeying
standard commutation relations, with σ ∈ {↑,↓} denoting the
spin of the electron. The discussed preformation of Cooper
pairs reduces the Hilbert space to eigenstates of Cooper pair
occupation number

ni = 1
2 (a†

i↓ai↓ + a†
i↑ai↑) = {0, 1}, (2)

which is obviously conserved by the Hamiltonian. The first
term in Eq. (1) then reproduces the randomly distributed
independent single-particle energies ξi. The corresponding
distribution ν(ξ ) has a typical width of order of the Fermi
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energy EF . The particular profile of ν(ξ ) is of little impor-
tance for the low-energy physics as long as the single-particle
DoS ν0 = ν(ξ = 0) is finite, i.e., ν0 ∼ 1/EF . The second term
in Eq. (1) represents local Cooper-like interaction, with the
summation going over all pairs 〈i j〉 of effectively interacting
single-particle states. We assume that each state i is effec-
tively coupled to a large number Z � 1 of other localized
states. Importantly, the pairs of coupled states are chosen
completely at random, so the resulting structure bears no
information about the original 3D nature of the system (as
opposed to similar models that are formulated on a lattice, see,
e.g., the 2D-CMF model of Ref. [25]), while also preserving
some notion of the translation symmetry (in contrast to the
models on a portion of the Bethe lattice, as, e.g., the one
of Ref. [23]). The matrix element Di j of the interaction is
determined by the energy dependence of the interaction and is
modeled by a smooth function with the following asymptotic
properties:

Di j = D(ξi − ξ j ) ≈
{ λ

2ν0Z , |ξi − ξ j | � εD

0, |ξi − ξ j | � εD,
(3)

where λ � 1 is the dimensionless Cooper constant and εD �
W is the characteristic scale of energy dependence of the
Cooper interaction.

C. The self-consistency equation

The superconducting transition for the Hamiltonian Eq. (1)
is captured by the saddle-point (Bogolyubov) approach. Ac-
cording to it, one approximates the Cooper interaction with
coupling to the field of the complex order parameter �. The
latter is then found as a minimum of the self-consistent free
energy. In the absence of time-reversal symmetry-breaking
factors, such as magnetic field or external current, the field of
the order parameter �i can be chosen to be real and positive.
One then determines the zero-temperature configuration of
the order parameter as a positive solution to the following
self-consistency equation [27, Secs. 4.3 and 6.1]:

�i =
∑
j∈∂i

D(ξi − ξ j )
� j√

�2
j + ξ 2

j

, (4)

where the summation in the right-hand side goes over Z states
labeled with index j that interact with a given state i. The
reader can find the derivation of this equation for the original
Hamiltonian Eq. (1) in Sec. A of the SM [26]. One then has to
solve Eq. (4) for a given realization of random energies ξi and
subsequently analyze the statistical properties of the resulting
ensemble of �i, such as the local probability distribution and
the structure of spatial correlations.

However, the conventional self-consistent approach fails to
describe the SIT itself, namely, Eq. (4) posses nontrivial so-
lutions for arbitrary weak Cooper coupling strength, while in
reality one observes destruction of the global superconducting
order at a certain value of the coupling constant [23]. The
correct description of the SIT requires careful treatment of the
self-action of the order parameter in a form of the so-called
Onsager reaction term. References [22,23] provide a consis-
tent account for this effect by means of the cavity method
[31,32] and demonstrate the emergence of broad probability

distributions of the order parameter with slow power-law de-
cay at large values, thus revealing the defining role of extreme
values in the corresponding quantum phase transition. How-
ever, Ref. [23] also demonstrates that the effects of self-action
are only relevant for Z � Z1, where

Z1 = λ exp

{
1

2λ

}
, (5)

with λ � 1 being the dimensionless Cooper coupling con-
stant. Away from this region, the reaction term constitutes
only a small correction, rendering the self-consistency Eq. (4)
applicable. We will thus limit our analysis to the case Z �
Z1, although our technique could be extended to include the
Onsager reaction term. Despite the introduced limitation, we
report a broad region of Z values for which the distribution of
the order parameter still assumes a substantially non-Gaussian
profile indicative of the competition between strong fluctua-
tions and global superconducting order.

D. Mean-field solution

The typical scale of the order parameter in Eq. (4) can
be established by a simple mean-field approach, namely, one
seeks a spatially uniform solution �i = �0 = const, approx-
imating the right-hand side of the self-consistency Eq. (4) by
its statistical average. This substitution is justified a priori for
sufficiently large values of Z by virtue of the central limit
theorem. As suggested by a seminal paper [28], a physical
estimate for the relevant range of Z could be obtained by
demanding that each single-particle state has at least one other
resonant state within the energy interval of size �0. This
results in the following criteria:

Z � Z2 = 1

2ν0�0
∼ 2ν0εDe1/λ. (6)

In this case, one can neglect the fluctuations of the right-hand
side of Eq. (4) around its mean value and obtain

�0(ξ0) = Z

〈
�0(ξ )√

�2
0(ξ ) + ξ 2

D(ξ − ξ0)

〉
ξ

, (7)

where 〈•〉ξ denotes the statistical distribution with respect to
the distribution of ξ . The equation still contains the value ξ0

of the disorder field at a given site, reflecting the fact that the
order parameter is itself a function of on-site energy ξ0.

The value of �0 is found self-consistently by solving the
resulting integral equation. The smallness of the coupling
D(ξ ) ∼ λ/(2ν0Z ) at small energies |ξ | � εD enables one to
provide an analytical solution for the order parameter close to
the Fermi surface in a form of the celebrated BCS expression,

�0(ξ0 = 0) = 2E0 exp

{
−1

λ

}
, (8)

where the value of E0 ∼ εD is expressed via the single-particle
DoS ν(ξ ) and the exact profile of the D function. The explicit
form for E0 is presented in Sec. A of the SM [26].

As this point, it is worth introducing one more microscopic
parameter that turns out to play the defining role for the
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distribution of the order parameter:

κ = λ

Z/Z2
≡ D(0)

�0
. (9)

Qualitatively, this parameter combines the information about
the criteria Eq. (6) and the strength of the attractive interac-
tion in the form of the dimensionless coupling constant λ.
Otherwise, the value of κ bears the meaning of a properly
rescaled matrix element of bare attractive interaction. A par-
ticularly important aspect of this parameter is that it quantifies
the competition between the superconducting pairing and the
disorder. The former enters the expression via the value of
the bare matrix element of the attraction and the latter is
represented by the mean field of the order parameter which is
defined by the distribution of the on-site disorder according to
Eq. (7).

While our analysis shows that the mean-field result Eq. (8)
is only justified for Z � Z2, the exponential smallness of the
actual order parameter rests solely on the smallness of the cou-
pling constant λ. This makes �0 a valid scale to describe the
typical magnitude of the true solution to the self-consistency
Eq. (4) in the whole range Z � Z1 we are interested in. Be-
low we find distribution function P(�) and show that it can
be strongly non-Gaussian in general, while narrow Gaussian
shape is realized if the inequality Eq. (6) is satisfied.

E. Relation to previous studies

Our analytical approach presented below in Sec. III bor-
rows certain features from the methods that are widely used
to analyze statistical physics of disordered systems on the
Bethe lattice. The latter is defined as an infinite tree with all
but one vertice having Z − 1 descendants and one ancestor,
while the root site has Z descendants and no ancestor, so
each vertex has exactly Z neighbors in total. One of the key
properties of the Bethe lattice is the absence of loops, which
enables one to derive recursive relations for both a given local
quantity itself and distribution function of this quantity across
various disorder realizations. Qualitatively, such a possibility
can be perceived as a consequence of the fact that in a system
with no loops, any two nonoverlapping subsystems are con-
nected by a single chain of sites that arranges the exchange
of statistical information and thus induces statistical correla-
tions. This allows one to analyze the statistical properties of
the system by considering the state of just a single site. A
prominent exploitation of this feature was provided by Mézard
and Parisi within their analysis of spin-glass problems on the
Bethe lattice [31,32] by means of the cavity method. A similar
approach was used in Ref. [23] for a model of a strongly
disordered superconductor that is structurally similar to the
one used in the present paper.

However, one should be careful when using a finite portion
of the Bethe lattice as a model for any physical system. The
issue is that truncating the Bethe lattice explicitly breaks the
equivalence between different vertices in the system and thus
induces a certain preferred direction in the system. Precisely
for this reason, we use the ensemble of random regular graphs
(RRGs) and its generalizations as a finite size approximation
to the Bethe lattice. The important difference between the
two structures is that a typical RRG inevitably contains large

loops with lengths of the order of the graph’s diameter D ∼
ln N/ ln(Z − 1) that serve to restore the translation symmetry
in the system [30]. Remarkably, our theoretical and numerical
analysis shows that as long as the number of neighbors Z of
each site is large enough and the disorder is not critically
strong (in the sense of the vicinity of the SIT), neither the
presence of even short loops nor even the irregularity of the
base graph (in the sense that each site might have different
number of neighbors) have any noticeable influence on the
distribution of the order parameter.

It is worth discussing two more subtle differences between
our present approach and the one used previously in Ref. [23].
The cavity method [31,32] was developed originally for Ising-
type problems. Relying on the exact recursive relation for
the conditional partition function, it derives its power from
the possibility to parametrize the latter in terms a local field
hi defined for each site of the problem. This is possible for
the classical Ising problem where only two classical states
per site are present. Upon taking into account the normal-
ization condition, we are left with only one real number hi

that parametrizes the conditional partition function. Our su-
perconducting problem is different in two aspects. One of
them is due to the quantum nature of local degrees of freedom,
as already discussed in Ref. [23], namely, the Hamiltonian
Eq. (1) can be exactly mapped on the spin-1/2 XY model
in transverse field, with the corresponding spin degrees of
freedom termed pseudospins [28]. Reference [23] then uses
the static approximation that neglects dynamic correlations
between pseudospins. The second feature (left unnoticed in
Ref. [23]) is that, even with quantum effects neglected, the
conditional partition function for a spin-1/2 degree of free-
dom with XY symmetry cannot be parametrized, in general,
by a single complex field �i.

A generalization of the cavity method is certainly possi-
ble for this type of order parameter as well, but it is more
involved. The difference between the cavity mapping used in
Ref. [23] and the exact one becomes important once the terms
nonlinear in the magnitude of the order parameter become
essential for physics. We expect that the recursive equations
derived and analyzed in Ref. [23] are exact (leaving aside the
additional problem with the accuracy of the static approxi-
mation) as long as the amplitude of the order parameter is
small in some appropriate sense. For example, the linearized
form of these equations is perfectly suitable, e.g., for the
analysis of the temperature-driven transition. It is also correct
to use the recursive equations of Ref. [23] for the analysis
of the long tail of the order parameter distribution, as the
effects of nonlinearity are also weak in this case. In the
present paper, we are interested in the shape of the complete
distribution function P(�) at T = 0, where the effects of
nonlinearity are strong. Thus, here we prefer to employ a
classical form of the self-consistency Eq. (4); as explained in
the previous subsection, the related inaccuracy (as long as we
do not include Onsager reaction term) is small as the ratio
Z1/Z � 1.

III. DISTRIBUTION OF THE ORDER PARAMETER

In this section, we present both analytical and numerical
results for the on-site joint probability distribution of fields ξ
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FIG. 1. A schematic illustration of the neighborhood of radius
d = 3 of a particular vertex i of a random regular graph (RRG) of
degree Z = 3, i.e., with each vertex having exactly three neighbors.
Large RRGs are known to exhibit vanishing concentration of short
loops [33], so up to some large distance d the neighborhood of i
represents a loop-free structure, i.e., a tree. In particular, each neigh-
boring vertex j is a root of the corresponding branch T i

j consisting of
all vertices that can be reached from i by a path containing at most d
edges. Because the whole neighborhood is a tree, such path is unique.
Similarly, each nearest neighbor of j except i itself is also a root of a
tree T j

k nested in T i
j . Such a nested structure is convenient for various

recursive considerations.

and � on a given site. The latter is defined as

Pi(ξ,�) = 〈δ(ξ − ξi )δ(� − �i({ξ}))〉, (10)

where δ(x) is the Dirac δ function, �i({ξ}) is the exact solu-
tion of the self-consistency Eq. (4) for a given realization of
the disorder field ξ , and the average 〈•〉 is performed over all
configurations of the ξ field. The distribution is normalized by
definition ∫ ∞

0
d�′ P(ξ,�′) = ν(ξ ), (11)

where ν(ξ ) is the distribution of the original on-site disorder
field ξ .

A. Equation on the distribution in a locally treelike system

Within our model, each single-particle state i is effectively
interacting with Z other single-particle states selected at ran-
dom. The corresponding structure of the matrix elements can
be represented by an instance of so-called RRGs. The latter
are known to exhibit vanishing concentration of finite loops
in the thermodynamical limit [33]. In other words, the sites at
distances up to some large distance d from any chosen site i
form a regular loop-free structure rooted at i with probability
approaching unity as the total number of sites N tends to
infinity. A fragment of the corresponding structure termed
locally treelike is illustrated in Fig. 1.

For the physical system in question, one expects that the
spatial distribution of the order parameter exhibits a finite
correlation radius, at least away from the SIT. This implies
that the value of the order parameter at a given site is only

sensitive to the characteristics of neighboring sites up to some
finite correlation distance d0 away from the chosen site. In
conjunction with the locally treelike structure, this property
suggests that for each site i the neighboring sites j ∈ ∂i are
only correlated via site i itself. Indeed, the underlying graph
only contains large loops that are much longer than the corre-
lation length d0, and thus cannot influence distributions of any
local quantities.

To make use of the described properties, we consider the
system where the values of both ξ and � at a given site i
are fixed externally, i.e., �i0 = �0 and ξi0 = ξ0, as opposed to
finding �i from the self-consistency Eq. (4) for site i. Now,
consider a nearest neighbor j ∈ ∂i of the quenched site i.
Due to the aforementioned structure of spatial correlations,
the exact solution �i

j ({ξ}|ξ0,�0) to the modified version of
the self-consistency Eq. (4) depends considerably only on
the values of the disorder field ξ within some finite region
T i

j rooted at j, see Fig. 1. Crucially, the described locally
treelike structure implies that for different j the corresponding
essential regions T 0

j are nonoverlapping. This translates to the
fact that the pairs (ξ j,� j ) for various j ∈ ∂i are rendered
uncorrelated in the modified problem, as they are determined
by nonoverlapping regions.

Similarly to the initial problem, we are interested in the
joint distribution of � and ξ for site j in the nearest neigh-
borhood of i for the case when both � and ξ at site i itself
are fixed externally. The corresponding distribution function
is defined as

Pi
j (ξ1,�1|ξ0,�0) = 〈

δ(ξ1 − ξ j )δ
(
�1 − �i

j ({ξ}|ξ0,�0)
)〉
,

(12)

where �i
j ({ξ}|ξ0,�0) is the exact solution of the self-

consistency Eq. (4) for a given realization of the disorder field
ξ and a fixed value �0 of the order parameter at site i. The
average 〈•〉 is now performed over the values of ξ at all sites
except i, where the disorder field assumes the value of ξ0. The
new distribution function is properly normalized, i.e.,∫ ∞

0
d�′

1 Pi
j (ξ1,�

′
1|ξ0,�0) = ν(ξ1), (13)

valid for any ξ0,�0, ξ1. The aforementioned partition of the
neighborhood of i into nonoverlapping treelike structures T j

i
then translates to the fact that the averaging in Eq. (12) only
reflects the statistical fluctuations of ξ in the corresponding
region T j

i originating from the site j of interest.
The local structure of the problem along with the above

outlined statistical independence of different neighbors j ∈ ∂i
in the modified problem allows one to connect the on-site
distribution Pi(ξ0,�0) at site i with the distributions Pi

j in the
modified problem. To this end, one uses the self-consistency
Eq. (4) for site i. On the one hand, it is trivially satisfied
by the exact solution �i({ξ}) to the original problem. On
the other hand, the values of � j are given by the solu-
tions �i

j ({ξ}|ξ0,�0) to the modified problem for a consistent
choice of the values ξ0,�0. In other words, letting � j =
�i

j ({ξ}|ξ0,�0) with ξ0 = ξi, �0 = �i produces an equation
on the value of �i itself. These two observations valid for
any disorder realization can be translated to the following

224505-6



DISTRIBUTION OF THE ORDER PARAMETER IN … PHYSICAL REVIEW B 104, 224505 (2021)

relation between the two problems:

Pi(ξ,�) = Pi(ξ )
∫ ∞

−∞

dτ

2π
× ∂

∂�

{(∫ �

E
d�′e−iτ�′

)∏
j∈∂i

(∫
dξ jd� j × Pi

j (ξ j,� j |ξ,�)eiτ f (ξ j ,� j |ξ )

)}
. (14)

Here, Pi(ξ ) is the distribution of the on-site disorder;
f (ξ j,� j |ξ ) represents a shorthand for the right-hand side of
the self-consistency Eq. (4):

f (ξ j,� j |ξ ) = � j√
�2

j + ξ 2
j

D(ξ j − ξ ). (15)

The lower integration limit E in the integral over �′ can be
set to an arbitrary positive constant. While the value of the
whole expression does not depend on E due to normalization
of the probability distribution Pi

j , one can use various values
of E to simplify the calculations. The specific structure of the
equation is due to the fact that computing a distribution of

solutions to a given equation with disorder requires taking into
account the Jacobian resulting from replacing the δ function of
the solution with a δ function of the corresponding equation.
The detailed derivation of Eq. (14) is presented in Sec. B of
the SM [26].

In a similar fashion, one can formally consider quenching
site j as well and determining the resulting on-site distribution
P j

k (ξ2,�2|ξ1,�1) for some k ∈ ∂ j\{i}, i.e., next-to-nearest
neighbor of the initial site i. It is important that due to the
treelike structure, the distribution P j

k receives no information
about the values of field ξ and � at the initial site i. The same
considerations as the one that lead to Eq. (14) then allow one
to connect the on-site distribution Pi

j of site j with those on all
nearest neighbors of j except i itself:

Pi
j (ξ1,�1|ξ0,�0) = ν(ξ1)

∫ ∞

−∞

dτ

2π
× ∂

∂�1

{(∫ �1

E
d�′

1e−iτ�′
1+iτ f (ξ0,�0|ξ1 )

)

×
∏

k∈∂ j\{i}

(∫
dξkd�k × P j

k (ξk,�k|ξ1,�1)eiτ f (ξk ,�k |ξ j )

)⎫⎬
⎭. (16)

The final step of the derivation is to exploit translational and rotational symmetries of the underlying graph, as the latter are
restored after averaging over disorder. In other words, the choice of i and j ∈ ∂i is arbitrary, so translational invariance implies
independence of both the original Pi and the modified Pi

j distributions on the choice of i, while rotational invariance suggests
that Pi

j is the same for all j ∈ ∂i. This allows one to replace all Pi
j with just a single function P1, arriving at the central results of

this section:

P(ξ,�) = ν(ξ )
∫ ∞

−∞

dτ

2π

∂

∂�

{(∫ �

E
d�′ e−iτ�′

)(∫
dξ1d�1 × P1(ξ1,�1|ξ,�)eiτ f (ξ1,�1|ξ )

)Z}
, (17)

P1(ξ1,�1|ξ0,�0) = ν(ξ0)
∫ ∞

−∞

dτ

2π

∂

∂�1

{∫ �1

E
d�′

1 exp {−iτ�′
1 + iτ f (ξ0,�0|ξ1)}

×
(∫

dξ2d�2 × P1(ξ2,�2|ξ1,�1)eiτ f (ξ2,�2|ξ1 )

)Z−1}
. (18)

Both expressions Eqs. (17) and (18) preserve the nor-
malization of the distributions, as can be checked by direct
computation.

The accuracy of Eqs. (17) and (18) is governed by the
presence of small loops in the system. However, the relative
magnitude of the corresponding corrections is estimated as
∼Z−l . This estimation originates from the fact that correla-
tions in the distribution of � can be shown to decay as Z−d .
Because of the aforementioned loopless structure of large
regular graphs, Eqs. (17) and (18) become exact in the ther-
modynamical limit. In reality, however, finite loops are present
in the system, but their concentration is typically small [33],

rendering their physical effect insignificant. Our additional
numerical experiments show that for sufficiently large Z even
the shortest loops of length three do not cause any noticeable
deformation of the on-site distribution functions, namely, the
empirical distribution of the order parameter on those sites
that are members of any cycle of length three in the graph is
statistically indistinguishable from the probability distribution
for the remaining fraction of sites.

We also note that our approach allows a systematic compu-
tation of any other joint probability distribution functions for
any group of sites of finite spatial size. In particular, a joint
probability distribution Pi j (ξi,�i; ξ j,� j ) for any two sites at
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some finite distance d is expressible in terms of certain inte-
grodifferential transform of the product of two P1 functions.
It is worth noting at this point that both the direct inspection
of our approach and the answer for the joint probability distri-
bution for the two neighboring sites i and j ∈ ∂i suggest that
P1 does not coincide with a conditional distribution function
of the form Pi j (ξi,�i; ξ j,� j )/Pi(ξi,�i ). Although the two
objects share some qualitative properties, they are in fact quite
different quantitatively. The difference can be traced down
to the aforementioned Jacobian originating from representing
the δ function of the solution in terms of the δ function of the
original equations.

We conclude this subsection by noting that the developed
formalism allows numerous extensions of the form of the
f function. As long as the underlying physical assumptions
of conditional statistical decoupling (i.e., the locality of
correlations) hold true, the exact form of the right-hand
side of the analyzed Eq. (4) is of little importance. Possible
generalizations include the effects of finite temperature and
other types of uncorrelated disorder. In particular, Sec. G
of the SM [26] presents analysis of a more general model
that reflects mesoscopic fluctuation in the values of the
matrix elements between localized electron states. The key
qualitative changes to our results due to such fluctuations are
summarized in Sec. III G.

B. The limit of small � and large Z

Having Eqs. (17) and (18) at hand, it is now our aim to
simplify the equations to reflect the fact that the typical scale
of the order parameter is the only relevant energy scale in the
problem. In other words, we want to exploit the hierarchy of
scales of the form � � εD, EF that is naturally present in the
problem. By carefully expanding Eqs. (17) and (18) according
to this relation of scales, we will eventually be able to solve
Eq. (18) for P1 and calculate the resulting distribution P(ξ,�)
by means of Eq. (17).

We start by introducing the following dimensionless quan-
tities:

xi = ξi

�0
, yi = �i

�0
, (19)

where �0 is the mean field value of the order parameter
defined in Sec. II D. Similarly to the conventional theory
of superconductivity, we then expect that the high-energy
physics playing out at scales εD, EF does not find its way
in the low-energy physics, as the sole role of higher en-
ergies is to dictate the overall scale of superconducting
correlations.

Equation (18) suggests the following quantity as a proper
object in the limit of small �:

m(S|x, y) := ln

{[∫
dξ1d�1 × P1(ξ1,�1|ξ,�) exp {iS f (ξ1,�1|ξ )/�0}

]Z−1}
, ξ = �0x, � = �0y. (20)

It represents a dimensionless form of the cumulant gener-
ating function for the right-hand side of the self-consistency
Eq. (4) for site j in the modified version of the problem;
see the detailed description in the preceding Sec. III A. In
particular, the normalization condition Eq. (13) translates to
the following trivial identity:

m(0|x, y) = 0, (21)

valid for any x, y.
The integrodifferential Eq. (18) can be reformulated in

terms of m function in a straightforward fashion. The proper
low-energy limit of this equation consists of formally retain-
ing only the leading orders in powers of small parameters
ν0�0, 1/Z � 1 while treating their product as a finite con-
stant Zeff = 2ν0�0(Z − 1) that may attain any numerical
value, either large or small. The physical meaning of Zeff is
the effective number of interacting neighbors, that is, pairs
with local energies within the energy stripe of width ∼�.
Evidently, local fluctuations of the order parameter will be
small if Zeff � 1. A proper reduction of Eq. (18) to the low-
energy sector of the theory should be implemented with care
due to logarithmic divergency at high energies, with the latter
being typical for any kind of BCS-like theory. Working out
a proper cutoff for this divergence requires certain technical
effort. The corresponding technical details are described in

Sec. C of the SM [26] for a simple case of trivial energy
dependence of the matrix element, i.e., D(ξ ) = D(0) = const.
Although not exactly physical, the latter case showcases all
insights necessary to obtain a controlled limit of small �0.
Section F of the SM [26] then describes the generalization
of the approach to the case of smooth D(ξ ) with some finite
energy scale of the order of the Debye energy εD. Below we
formulate the outcome of this procedure.

The m(S|x, y) function possesses the following
parametrization that is natural to describe the effects resulting
from carefully processing the aforementioned logarithmic
behavior in the theory,

m(S|x, y) = iSm1(w) + m2(S|w), (22)

w = ω(z = x/y) = 1√
1 + z2

, (23)

valid for |x| � xmax, where xmax ∼ εD/�0 � 1 by assump-
tion. The function m2 is constructed in such a way that its
expansion in powers of small S starts from the second or-
der, i.e., m2(S|w, x) = O(S2) for S � 1. For both m1, m2,
the w arguments assumes values in [0, 1]. The functions
m1, m2 then satisfy the following pair of integrodifferential
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equations:

m1(w) = m1(0) + κwα + λ

∫ 1

0
dw1

√
1 − w2

1

m1(w1) − m1(0)

w1

+ λ

∫ ∞

0
dy1y1 ln

1

y1

∫
R−i0

ds

2π
exp {isκw} exp {m(s|0) − isy1}, (24)

m2(S|w) = λ

∫ 1

0
dw1

exp {iSκw1} − 1 − iSκw1

w2
1

√
1 − w2

1

[
1 − w1

(
1 − w2

1

) ∂

∂w1

][
κw + m1(w1)

κ

]
. (25)

These equations constitute a proper low-energy limit of
Eq. (18). The result contains three controlling parameters
λ, κ, α that define the form of the solution and are themselves
defined by high-energy physics. By definition, λ = 2ν0ZD(0)
is the dimensionless Cooper attraction constant, the parameter
κ is defined as

κ = λ

2ν0�0(Z − 1)
= λ

Zeff
, (26)

and the value of α is given by the following expression:

α = 1 + λ

∫
R

dξν(ξ )

2ν0
× D(ξ )

D(0)
× D(ξ ) − D(ξ )

D(0)|ξ | , (27)

where the D function is the solution to the following integral
equation:

D(ξ0) = D(ξ0)

+ λ

∫
dξν(ξ )

2ν0

D(0)D(ξ − ξ0) − D(ξ0)D(ξ )

D2(0)|ξ | D(ξ ).

(28)

The physical sense of D is to reflect the mean-field energy
dependence of the order parameter at scales ξ ∼ εD, namely,
it describes the behavior of the solution �(ξ ) = �0D(ξ ) to

the mean-field Eq. (7), see Sec. A of the SM [26] for details.
As already mentioned above, the derivation of these results is
presented in Sec. C of the SM [26] for the simple case with
D(ξ ) = D(0) = const and in Sec. F of the SM [26] for the
case of smooth D. The resulting expressions are applicable
as long as the actual value of the order parameter � ∼ �0 is
much smaller than any other typical scale in the problem.

The solution to Eqs. (27) and (28) renders the value of α

that is close to unity as long as the coupling constant λ is small
enough:

α ≈ 1 + λ2c, c ∼ 1. (29)

Furthermore, the exact values of both α and λ provide only a
certain quantitative effect, while the only essential role in the
statistics of the order parameter belongs to the parameter κ .
In particular, in the following Sec. III D it is shown that large
values of κ correspond to heavily non-Gaussian regime of the
distribution, while the region κ � 1 reproduces the Gaussian
statistics as it corresponds to the region defined by Eq. (6).

Once the solution to Eqs. (24) and (25) is obtained, one
uses the expression Eq. (17) to calculate the joint probability
distribution P(x, y) of the fields x = ξ/�0 and y = �/�0,

P(x, y) = P(x)
∫
R

ds

2π
× ∂

∂y

{[∫ y

0
dy′ exp {−isy′}

]
× exp {m(s|ω(x/y))}

}
, ω(z = x/y) = 1√

1 + z2
, (30)

where all probability distributions are understood in their
dimensionless form, so the probability measure is defined
as P(x)dx, P(x, y)dxdy, etc. In particular, the value of P(x)
is given by P(x) = �0ν(ξ = �0x). The expression is valid
for |x| � εD/�0, while the remaining region is covered in
Sec. F of SM [26]. At this point, a comment is in order
regarding the qualitative behavior of P(x, y) with respect to
the first argument x = ξ/�0. From general physics reasoning,
one expects that there are two important regions: |x| ∼ 1 and
|x| � εD/�0 � 1. In the former, the joint distribution is ex-
pected to exhibit nontrivial behavior that is the central topic
of this paper. On the contrary, the region of large |x| describes
the situation when the Cooper attraction is not effective any-
more because the corresponding single-particle state is two
far away from the Fermi surface and thus does not contribute
to the global superconducting order. As a result, one expects
that for |x| � εD/�0 the joint probability distribution is con-
centrated around y = 0 and thus bears no physical meaning
whatsoever.

The distribution P(y) of the order parameter is then ob-
tained by integrating the joint distribution P(x, y) over x.
According to the discussion above, the upper limit of this
integration is xmax ∼ εD/�0, which corresponds to local site
energies close to Fermi level, i.e., |ξ | � εD. The result has the
following simple form

P0(y) =
∫
R

ds

2π
exp {m(s|0) − isy}. (31)

It is now evident that the quantity m(s|0) represents the cumu-
lant generating function of the order parameter, that is,

m(s|0) = ln

[〈
exp

{
is

�

�0

}〉]
, (32)

where the average 〈•〉 is taken over the distribution P0, i.e.,
only takes into account physically relevant states close to the
Fermi surface.

The theoretical approach developed thus far can be sum-
marized as follows. Given the values of the parameters κ, λ, α
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defined by high-energy physics according to Eqs. (26)–(28),
one solves the system of Eqs. (24) and (25) for the m function.
This function alone contains complete information about the
statistical properties of the self-consistency Eq. (4). In particu-
lar, the very definition Eqs. (20) of the m function implies that
the modified distribution P1(x1, y1|x, y) is directly restored
from m(S|x, y) by computing the right-hand side of Eq. (18),
with the latter being expressible in terms of m alone. One then
uses expression Eq. (31) to calculate the on-site probability
distribution of the order parameter close to the Fermi surface
or a similar expression for joint probability distributions of
interest. The latter can be systematically expressed in terms
of the P1(x1, y1|x, y) distribution according to the procedure
delineated in Sec. III A.

C. Weak coupling approximation λ � 1

It turns out that Eqs. (24) and (25) admit a complete an-
alytical solution for the case of small coupling λ. While we
have already used the smallness of the coupling constant in
the form of the corresponding exponential smallness of the
order parameter to derive Eqs. (24) and (25) themselves, the
value of λ in the resulting low-energy theory is not restricted
to small values and can itself assume values of the order of
unity. For the case of small values of λ, however, we now
present a consistent expansion of the m function in powers of
small λ that constitutes a full solution to the system Eqs. (24)
and (25). A detailed procedure is presented in Sec. E of the
SM [26], while this subsection demonstrates the final results.

The leading term of the m2 function reads

m2(S|w) = λ[(w + w0)�0(κS) + �1(κS)], (33)

where �0 and �1 are special functions with the following
integral representations:

�0(σ ) =
∫ 1

0

dw1

w2
1

√
1 − w2

1

{eiσw1 − 1 − iσw1}, (34)

�1(σ ) =
∫ 1

0

w1dw1√
1 − w2

1

{eiσw1 − 1 − iσw1}, (35)

and w0 is a constant that is determined below in a self-
consistent fashion. The special functions can be expressed in
terms of a generalized hypergeometric series, see Sec. E of the
SM [26]. One then substitutes this form of the m2 function in
Eq. (24) for the remaining m1 term. Restoring the functional
form of the w dependence up to the same precision as the
expression Eq. (33) for m2 then renders

m1(w) = κ (w + w0)

+ λ

[
(w0 + w) ln

1

w0 + w
− w0 ln

1

w0

]
. (36)

Finally, Eq. (24) also produces a self-consistency equation for
m1(0), which allows one to determine the value of w0:

w0 = w
(0)
0 + λw

(1)
0 , (37)

w
(0)
0 = π/4

W (πκ/4)
, w

(1)
0 =

π
4 ln 1

κ
+ F

(
w

(0)
0

)
ln κw

(0)
0 + 1

. (38)

where W (z) is the principal branch of the Lambert’s W func-
tion, and F (w) is a special function with the following integral
representation:

F (w) =
∫ 1

0
dw1

w2
1 + (

1 − w2
1

)
ln 1

w√
1 − w2

1

+
∫ 1

0
dw1

(w + w1)2 ln w
w+w1

+ ww1

w2
1

√
1 − w2

1

. (39)

Section E of the SM [26] contains an explicit expression for
the F function in terms of polylogarithm function Li2(z).
Equations (33)–(39) thus constitute a complete solution for
the m function that is restored from m1 and m2 contributions
according to Eq. (22). The obtained expressions are then to
be used to compute the value of the distribution function
P0(y) by means of Eq. (31). Figure 2 features the resulting
theoretical curves along with the ones obtained with the use
the exact solution to Eqs. (24) and (25) and with a histogram
of direct numerical solution to the original self-consistency
Eq. (4).

The applicability of the presented expansion is limited by
the subleading terms in λ. The corresponding control parame-
ter is given by

λ

w
(0)
0

= λ
4

π
W
(πκ

4

)
� 1, (40)

which, in turn, limits the value of the microscopic parameter
Z of our model as

Z � Z∗ = π

4
× λ

2ν0 × 2εD
exp

{
1

λ

(
1 − π

4

)}
. (41)

Remarkably, the resulting scale of Z is exponentially smaller
than the value of Z1 = λ exp{1/2λ}, which limits the applica-
bility of the original self-consistency Eq. (4) due to the neglect
of the Onsager reaction terms, as explained in the discussion
after Eq. (5).

We have thus obtained a set of expressions that fully
describe the statistics of the order parameter in the entire
region of applicability of the original self-consistency Eq. (4),
namely, expressions Eqs. (33)–(39) explicitly describe the m
function, which, in turn, contains full information about the
joint statistics of the order parameter � and the disorder field
ξ , as explained in Sec. III A.

D. Extreme value statistics

The exact Eqs. (24) and (25) presented earlier admit
asymptotic analysis that allows one to extract the behavior
of the probability density function P0(y) of the dimension-
less order parameter y in several important limiting cases.
These include the limit of the Gaussian distribution of the
order parameter that connects our model to the conven-
tional weak disorder limit as well as the extreme value
statistics in the regime of non-Gaussian distribution of the
order parameter corresponding to moderate and large values
of κ .
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FIG. 2. A series of plots for the probability density function
(PDF) of the dimensionless order parameter P(�/�0) for various
values of the parameter κ . The filled blue line is the histogram ob-
tained from direct numerical solution of the self-consistency Eq. (4)
on a random regular graph of size N = 222 ≈ 4.2 × 106. The orange
line is obtained by solving Eqs. (24) and (25) for the function
m(S|w) and subsequently evaluating the integral Eq. (31) for the
distribution function. The green line uses the analytical expressions
Eqs. (33)–(39) of Sec. III C to approximate the value of the m
function used to compute the integral Eq. (31) for the PDF. For
simplicity, the model with D(ξ ) = const is used. Values of κ =
{0.3, 0.5, 1.0, 3.0, 10} are realized in the system with Z = 51 and
λ ≈ {0.199, 0.177, 0.154, 0.129, 0.110}, respectively, and κ = 0.1
corresponds to Z = 101 and λ ≈ 0.222. The last pair of values for
Z, λ is motivated by the fact that larger values of λ render large
values of �, while our theory corresponds to the limit ν0� � 1,
with the leading correction being of order 2ν0�0/λ ≈ (κZ )−1. That
is why to obtain small κ one has to use larger Z so as to keep the
value of λ small enough. The aforementioned corrections to small
�0 limit are also responsible for the mismatch between the theory
and numerical data that is pronounced for κ = 0.1, 0.3 and is also
somewhat observable for larger values of κ with an apparent de-
creasing trend (the theoretical curves have no fitting parameters). The
mismatch between the two instances of the theoretical descriptions
originates from corrections of order ∼λ2 neglected in the approxi-
mate analytical solution (green line), see Sec. III C for details. One
can observe the defining role of κ for the profile of he distribution:
small κ produce Gaussian regime, while large κ render nontrivial
distribution function, whose asymptotic behavior is discussed in
Sec. III D.

1. Gaussian regime of weak disorder κ � λ

We start by formally considering the limit of large num-
ber of neighbors that corresponds to the regime of weak
fluctuations. Within our theory, this regime is realized at
κ � λ, in consistence with the physical criteria articulated in
Sec. II D. For small values of κ , the integral over s in Eq. (31)
for the probability distribution P0(y) gains its value near the

trivial saddle point s = 0, as the m function depends on s only
via a combination κs. This, in turn, implies that only the two
leading terms in the expansion of the m function in powers of
small s are important for the value of the integral Eq. (31). As
it is shown in Subsec. C4 of the SM [26], these leading terms
are straightforwardly extracted from the system Eqs. (24) and
(25) and read

m(S � κ−1|w) =
{

1 +
(π

4
+ w

)
(1 − λ)κ

}
(iS),

+ 1

2
λκ

{
π

2
+
[
π2

8
+ 2

3

]
(1 − λ)κ + π

2
κw

}
(iS)2. (42)

The higher order corrections are negligible for κS � 1. With
this expression at hand, one obtains the following approximate
expressions for the probability density function of the order
parameter:

P0(y) ≈ 1√
2πσ 2

exp

{
− (y − 〈y〉)2

2σ 2

}
, (43)

〈y〉 = 1 + π

4
(1 − λ)κ, (44)

σ 2 = π

2
λκ

{
1 +

[
π

4
+ 4

3π

]
(1 − λ)κ

}
. (45)

As already mentioned, the discussed approximation is valid
for κ � λ, as follows from analysis of higher order corrections
to the expansion Eqs. (42), see Subsec. C4 of the SM [26] for
details. The presented results Eqs. (43)–(45) are otherwise ac-
cessible by a direct averaging of the original self-consistency
Eq. (4). Indeed, upon applying the central limit theorem to
the right-hand side of Eq. (4), one concludes that the order
parameter in the left-hand side obeys a Gaussian distribution
Eq. (43) with the parameters given by Eqs. (44) and (45). The
region κ � λ is thus consistent with the basic expectations in
the regime of weak disorder.

2. Strong disorder κ � λ, small-y tail

In case κ � λ, the full shape of the distribution function
P0(y) cannot be computed analytically in the general case.
However, its behavior at both large and small values of y is
reproduced by the saddle-point analysis of the corresponding
integral Eq. (31). The latter, in turn, requires asymptotic anal-
ysis for the m function at large purely imaginary arguments.
This asymptotic behavior can be extracted from Eq. (25). A
detailed exposition of the procedure is presented in Sec. D of
SM [26], while here we only quote the results.

For small values of y, one finds the following asymptotic
expression for the probability:

P0(y � 1) ≈
√

ζ (y)

2π [λ〈y〉]2 × exp {−ζ (y)}, (46)

with the exponent ζ (y) given by

ζ (y) = λ〈y〉
2κ

exp

{
1

λ

(
1 − y

〈y〉
)

− 〈y ln y〉
〈y〉 − γ

}
, (47)

where 〈•〉 denotes the mean value with respect to the
full distribution P0(y) itself, and γ = 0.577... is the Euler-
Mascheroni constant. The expressions Eqs. (46) and (47) are
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valid as long as the value of ζ is sufficiently large, viz.

ζ (y) � max

{
λ〈y〉
κ

, 1

}
. (48)

For the case κ � λ � 1 considered, the condition above re-
duces to ζ � 1. We choose to retain the more general form
for the discussion relevant to the case κ � λ below.

3. Strong disorder κ � 1, large-y tail

In the limit of large values of y, the following asymptotic
expression takes place:

ln Plead
0 (y) ∼ −y − 〈y〉

κ

[
ln ψ + 1

2
ln ln ψ − 1

]

+ ln

[
1√

2πκ (y − 〈y〉)

]
, (49)

where ψ is a rescaled distance to the mean value,

ψ = y − 〈y〉
λm1(1)

√
π
2

, (50)

with m1(1) being the exact value of the m1 function at w = 1
given by

m1(1) = 〈y〉 + κ + λ

〈
(y + κ ) ln

1

y + κ
− y ln

1

y

〉
. (51)

The similarity sign ∼ in Eq. (49) expresses the fact that the
logarithm of the distribution function ln P0(y) can be evaluated
explicitly only up to subleading corrections of the order (y −
〈y〉)/ ln(y − 〈y〉). The latter are themselves growing functions
of y, which prevents us from evaluating a proper asymptotic
form of the P0 function. A correct expression can only be
formulated in terms of the saddle-point approximation that
uses the exact form of the m function to estimate the value
of the integral Eq. (31). The applicability of the asymptotic
form Eq. (49) is controlled by the following condition:

y − 〈y〉 � κ. (52)

We note that while the asymptotic expressions Eqs. (46)
and (49) can be used for any value of κ , the corresponding
behavior is essentially unobservable for κ � 1. Indeed, in
the latter case, the criteria of applicability for the limiting
expressions presented above correspond to Eq. (52) for large
y and to

1 − y

〈y〉 � λ ×
[

ln 2 + γ −
〈
y ln 1

y

〉
〈y〉

]
∼ λ (53)

for small y. On the other hand, the Gaussian probability dis-
tribution Eq. (43) assumes exponentially small values for

|y − 〈y〉| � σ ∼ λκ. (54)

This implies that for the Gaussian regime κ � λ the asymp-
totic expressions Eqs. (46) and (49) only become applicable
in the region where the absolute value of the probability is
already exponentially small.

4. Strong disorder κ � λ, oscillatory behavior at large y

The asymptotic expression Eq. (49) does not account for
the subleading saddle points in the integral Eq. (31) over s

that are present for the case y > 〈y〉a(as discussed in detail in
Subsec. D2 of the SM [26]). The total probability is given by
a sum over contributions from all saddle points:

P0(y) = Plead
0 (y) +

∞∑
n=−∞

P(n)
0 (y), (55)

where Plead
0 (y) is the leading contribution described by

Eq. (49), and P(n)
0 (y) is the subleading term produced by a pair

of complex secondary saddle points z−n = zn enumerated by
n ∈ Z. Similarly to the quality of estimation Eq. (49), a proper
asymptotic expression for each subleading contribution re-
quires the exact form of the m function. One can provide only
the leading log-accurate expression for each of the subleading
contributions,

ln
P(n)

0 (y)

Plead
0 (y)

∼ −y − 〈y〉
κ

× 2π in

(
1 + 1

2 ln ψ

)
, (56)

with ψ defined in Eq. (50). While we are not able to provide
an asymptotic expression for the result of the summation
due to the poor accuracy of the estimation of the summation
terms, even at the level of Eq. (56) one can observe that the
resulting probability distribution exhibits oscillations. Indeed,
the estimation Eq. (56) indicates that each secondary contri-
bution is close to a periodic function with period �y = κ . The
sum Eq. (55) thus features constructive interference from all
contributions at values of y described by

y(n+1) − y(n) ≈ κ, y(0) = 〈y〉, (57)

where n ∈ N enumerates the secondary peak that emerges
from the such an interference.

E. Numerical analysis of the problem

In this section, we briefly describe the numerical routines
used to analyze both the original self-consistency Eq. (4) and
the integral Eqs. (24) and (25) that constitute the core outcome
of the theoretical analysis.

One immediate way to gather the statistics of the solution
of the self-consistency Eq. (4) is to solve it directly for the
values of �i in a number of sufficiently large realizations of
the system. To this end, we generate an instance of RRG along
with a random set of values ξi for each site and then solve the
system Eq. (4) by a suitable iterative procedure. The size of
the base graph reaches N = 223 ≈ 8.4 × 106, which allowed
us to ensure that the thermodynamic limit in all quantities of
interest was achieved. The distribution of on-site disorder field
ν(ξ ) only determines the overall superconducting scale and
otherwise has little to no effect on any of properly rescaled
distributions of the order parameter, in full agreement with
the general physics as well as our theory. For this reason,
all numerical data quoted below uses the box distribution
of the form ν(ξ ) = θ (|ξ | − 1)/2 with ν0 = 1/2, although
other distributions have also been considered and observed
to produce identical results in accord with our theoretical
expectations. The Fermi energy EF , being the characteristic
scale of the distribution, is always used as the energy unit,
so all dimensionfull quantities such as D(ξ ) are measured
in units of EF . The numerical routine uses the version of
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the model with a trivial energy dependence of the interac-
tion matrix element D(ξ ) = D(0) = const, and other models
are immediately available. However, both the general physics
reasoning and our theoretical analysis (see Sec. F of the SM
[26] for details) indicate that there is no practical difference
between various profiles of D(ξ ) as long as they are smooth
on superconducting energy scales, i.e., D(ξ ∼ �) ≈ D(0).

The key focus of this paper, however, is to use the derived
equations to describe the statistics of the order parameter ana-
lytically. The remaining technical challenge at this point is to
solve the pair of integrodifferential Eqs. (24) and (25) for the
m function. While Sec. III C provides an approximate analyt-
ical solution in terms of special functions, it is still important
to verify the numerical accuracy of this approximation. We
designed a certain numerical procedure that iteratively con-
structs the solution to the integrodifferential Eqs. (24) and
(25). The implementation can be found in Ref. [34]; it al-
lows one to obtain the solution in several minutes on a usual
laptop. Once the solution is determined either numerically or
analytically by means of Eqs. (33) and (39), our routine then
provides an efficient way to perform the numerical integration
of Eq. (31) to calculate the probability distribution P(y) and
other objects of interest, such as the joint probability distri-
bution P(x, y) given by Eq. (30). Various averages over the
resulting distribution are then available via either yet another
numerical integration or by exploiting the fact that the func-
tion m(S|0) represents the cumulant generating function of the
P(y) distribution, with both methods being optimized within
the routine.

We emphasize that the primary outcomes of our analysis
are analytical, while the developed numerical routines are
mainly used to confirm the analytical results.

F. Overview of the main results

1. The shape of the distribution at various values of disorder

Figure 2 showcases the results of both procedures for
various values of microscopic parameters of the model corre-
sponding to qualitatively different profiles of the distribution
function P0(y). As is evident from both the numerical studies
and the analytical solution presented below, the parameter κ

plays the defining role in the qualitative form of the solution.
Indeed, small values of κ � 1 correspond to the regime of
small disorder with a Gaussian distribution of the order pa-
rameter, while the opposite case of κ � 1 implies a rather
involved non-Gaussian profile of the distribution. The exact
form and asymptotic behavior of this strong-disorder profile
is described in Sec. III D. In particular, a proper discussion
of the apparent secondary maximum in the distribution P0(y)
observed for κ � 1 is provided.

The physical reason behind the existence of diverse profiles
of the distribution function P0(y) is related to the smallness of
the Cooper coupling constant λ. As was explained in Sec. II C,
the bare number of neighbors Z in our model must be above
Z1 = λe1/2λ to substantiate our disregard for the Onsager re-
action terms in the original self-consistency Eq. (4). On the
other hand, it is only at Z � Z2 ∼ e1/λ when one observes
suppression of local fluctuations of the order parameter due
to statistical self-averaging, see Eq. (6) and the associated
discussion. The smallness of λ then renders an exponentially

FIG. 3. A log-scale plot reflecting the asymptotic behavior of
the probability density function (PDF) of the dimensionless order
parameter y = �/�0. The filled blue curve represents the value
of the integral Eq. (31) obtained by direct numerical integration.
The orange line corresponds to saddle-point approximation of the
integral Eq. (31) with all saddle points taken into account for y > 〈y〉.
The green line reflects contribution of the leading purely imaginary
saddle point only. When required, the m function is determined from
the numerical solution of Eqs. (24) and (25), see Sec. III E for details
on the numerical routine. Finally, the dashed red line corresponds
to approximate analytic expressions presented in the main Ttext:
Eq. (49) for large values of y > 〈y〉 and Eqs. (46) and (47) for
y < 〈y〉. The microscopic parameters of the model are D(ξ ) = const,
λ ≈ 0.120, Z = 51 and κ = 5.0. All saddle-point-type approxima-
tions naturally fail in the region y ∼ 〈y〉 due to vanishing second
derivative at the saddle point. On the other hand, all of them show
reasonable agreement with the exact value for both large and small
values of y. The discussion of the secondary peaks at large values of
y in given in the main text.

large region Z1 � Z � Z2 where the distribution of the order
parameter assumes a complicated profile presented. Taking
for the sake of example λ = 0.2, we find that Z1 ≈ 2.5 and
Z2 ≈ 30; in terms of the κ parameter defined in Eq. (9), the
accessible values range from arbitrarily small κ up to κ � 10.

2. Asymptotic behavior of the distribution

Figure 3 provides a demonstration of the approximate
behavior described by the asymptotic Eqs. (46) and (49) su-
perimposed on the distribution obtained by exact numerical
solution of Eqs. (24) and (25) with respect to m1(w), m1(S|w)
functions (the numerical procedure is explained in Sec. III E).
In addition to that, this figure also features the estimations
obtained from using the exact form of the m function to
determine the position of the saddle points and evaluate the
resulting approximation of the integral Eq. (31) for the proba-
bility density.

We note that the asymptotic form given by Eqs. (46) and
(47) for y < 1 demonstrates excellent agreement with the
exact result. However, the situation is more involved in the
opposite limit of large y. The provided approximation Eq. (49)
for y � 1 does describe the asymptotic behavior of the dis-
tribution function P0(y) up to a constant of order unity, in
accordance with the quoted accuracy of the corresponding
calculation, see the discussion under Eq. (49). On top of that,
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FIG. 4. A color map of the joint probability density function P(x, y) of the on-site values of dimensionless disorder field x = ξ/�0 and
dimensionless order parameter y = �/�0 in the vicinity of the Fermi surface corresponding to ξ = 0. The color encodes the value of the
probability density according to the legend to the right. The left color map corresponds to (smoothened) histogram obtained from direct
numerical solution of the original self-consistency Eq. (4), and the right color map reflects the result of the theoretical calculation performed
according to expression Eq. (30) with the m function determined from the numerical solution of Eqs. (24) and (25). For simplicity, the
model with D(ξ ) = const is used. The parameters of the model in both cases are λ ≈ 0.120 and Z = 51, which corresponds to κ = 5.0. The
observed jitter in the results of the direct numerical solution (left plot) is due to the finite size of the corresponding sample: even despite
the fact that a system with N = 222 ≈ 4.2 × 106 sites is used, only ∼N × (2ν0�0) ∼ 6 × 104 of them contribute to the presented histogram,
resulting in an average of just ∼250 points contributing to each bin of the histogram for the chosen bin size �x = �y ≈ 0.71. The two color
maps demonstrate reasonable agreement, simultaneously reproducing several important qualitative features of the joint PDF. In particular, one
observes a considerable deformation of the conditional distribution Pc(�) := P(ξ,�)/P(ξ ) as |ξ | decreases. See the main text for a detailed
discussion.

the oscillations with period �y = κ proposed by estimations
Eqs. (55) and (56) are also observed.

The observed double-exponential behavior of the probabil-
ity at y � 〈y〉 is secured by a certain type of local disorder
configurations. Indeed, one can observe directly from the self-
consistency Eq. (4) that the only feasible way to produce an
anomalously low value of the order parameter on a given site
is to have the values of the disorder fields ξ j on all nearest
neighbors larger (in absolute value) than a certain threshold
ξmin � �. The value of the threshold can be estimated from
the mean-field-like treatment of the self-consistency equation
and renders ξmin ∼ 〈�〉

2 exp{ 1
λ

(1 − �
〈�〉 )}, and the probability

of the such an event to occur in the statistics of ξ is es-
timated as P(min |ξ | > ξmin) ≈ exp{−2ν0Zξmin} for Z � 1
and ξmin � EF . Combining these two estimations correctly
reproduces the exponential part of Eqs. (46) and (47). A more
detailed version of this reasoning is given in Subsec. D1 of the
SM [26].

The secondary maxima in the probability distribution P0(y)
also admit a decent physical interpretation in each particular
realization of the disorder fields ξ , mamely, the nth secondary
maximum of the distribution corresponds to the sites with
exactly n neighbors with small value of on-site disorder |ξi| ∼
�0. The apparent sharpness of the peaks can be perceived as
a consequence of Van Hove-type singularity in the probability
distribution of the terms on the right-hand side of the self-
consistency Eq. (4). The latter exhibit a quadratic maximum
at ξ = 0, and thus possess the probability density that features
a square-root singularity as ξ → 0, viz.

P

⎛
⎝ε = �0√

�2
0 + ξ 2

⎞
⎠ ≈ �0√

2(1 − ε)
, ε → 1. (58)

Subsection D3 of the SM [26] describes several quantitative
tests to verify this hypothesis at the level of an individual
disorder realization. The results are of unequivocal support to
the proposed interpretation.

This explanation also suggests that the observed features of
the distribution originate from an unphysical assumption that
the matrix element of interaction is constant, so the described
singularity of Van Hove type is well pronounced. On the other
hand, in the real system one naturally expects fluctuations
in the coupling matrix element. In the following Sec. III G,
we analyze an extension of our model that includes these
fluctuations. Our conclusions clearly reflect that the described
secondary maxima in the distribution of the order parameter
are smeared by fluctuations of the coupling constant.

3. Joint probability distribution

We also present the results for the joint probability dis-
tribution P(x, y) of the dimensionless order parameter y =
�/�0 and the corresponding on-site local field x = ξ/�0.
Figure 4 shows the color maps of the distribution as found
from the theoretical approach presented above along with the
data obtained from the exact numerical solution of the original
self-consistency Eq. (4), as explained earlier. The two pictures
indicate a clear agreement up to statistical noise present in the
numerical data due to finite sample size.

While the distribution quickly approaches the profile corre-
sponding to the factorized distribution of the form P0(y)P(x)
at sufficiently large values of ξ , there is a noticeable de-
formation in the region ξ/�0 � 5 indicative of the strong
correlation between the on-site values of ξ and �. As can
be seen from the original self-consistency Eq. (4), such be-
havior is a secondary consequence of the fact that a low
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FIG. 5. The plot of the conditional average of the dimension-
less order parameter �av(ξ )/�0 = ∫

d� × �/�0P(�, ξ )/P(ξ ) as
a function of on-site value of the dimensionless disorder field x =
ξ/�0. The blue points correspond to the result calculated from the
direct numerical solution of the self-consistency Eq. (4). The solid
green line corresponds to the conditional average computed by direct
integration from the theoretical joint probability distribution given
by Eq. (30), with the m function determined from the numerical
solution of Eqs. (24) and (25). The red dashed line corresponds to
physically relevant solution of the approximate Eqs. (59) and (60).
Finally, the black dashed line denotes the value of the total average
〈�〉/�0 of the dimensionless order parameter as found from both
the numerical data and analytic theory. The microscopic parameters
of the model are D(ξ ) = const, λ ≈ 0.120, Z = 51, and κ = 5.0, so
a direct comparison with Fig. 4 is appropriate.

value of ξ at a given site i results in an increase of the
order parameter at all neighboring sites j ∈ ∂i by a contri-
bution of the order D(ξ j )/Z ∼ �0κ . This, in turn, leads to
the enhancement of the value of the order parameter on the
chosen site i. These qualitative considerations allow one to
estimate the position of the conditional distribution average
�av(ξ ) = ∫

d� × �P(�, ξ )/P(ξ ) as an appropriate solution
to the following system of equations:

�av ≈ �neighb

(
1 + λ ln

〈�〉
�neighb

)
, (59)

�neighb ≈ 〈�〉 + κ�0
�av√

�2
av + ξ 2

. (60)

At large values of ξ the solution �av approaches the total
expectation 〈�〉, while at ξ → 0 the result behaves as �av ≈
〈�〉 + κ�0, in full agreement to what is observed on Fig. 4.
A plot of the full dependence �av(ξ ) is presented on Fig. 5
and shows a reasonable agreement with both data obtained
from the direct numerical solutions of the self-consistency
equations and the curve calculated by appropriate numerical
integration of the theoretical expression Eq. (30).

We would like to emphasize, however, that this behavior is
subject to revision upon introduction of the Onsager reaction
term discussed in Sec. II C. While we expect that for Z � Z1

this term is of little importance for the distribution function
of the order parameter, the profile of the on-site joint distri-
bution function P(�, ξ ) at |ξ | ∼ � can potentially experience
noticeable deformations from the described behavior. Indeed,
the physical interpretation of the reaction term is to mediate

the self-action of the order parameter, that is, the indirect
response of a given quantity to its own change through the
corresponding responses of the neighboring fields. The latter
mechanism is precisely what leads to the described profile
of the joint probability function at small values of |ξ |. That
is why even for sufficiently large values of Z the Onsager
reaction term might have a significant effect on the shape of
the on-site joint distribution function P(�, ξ ) for |ξ | ∼ �.

It is also worth mentioning that the joint probability
distribution P(�, ξ ) is of more physical significance than
the distribution P(�) of the order parameter alone. Indeed,
computation of various physical observables for the given
configuration of the order parameter involves values both ξ

and � for states close to Fermi level, i.e., with |ξ | ∼ �.
As Figs. 4 and 5 suggest, treating fields ξ and � as inde-
pendent would thus result in qualitatively incorrect results.
One particular example of this is the spectrum of collective
low-energy excitations discussed in Ref. [15]: The inverse
Green’s function of those modes is sensitive to on-site values
of ξ and � in equal measures, so computing the average
Green’s function actually demands the aforementioned joint
distribution close to the Fermi surface. Another important
question yet to be analyzed is the connection between the field
of the order parameter � discussed in this paper and experi-
mentally measurable quantities. While the order parameter in
weakly disorder superconductors can be probed, e.g., via the
single-particle DoS [21], no theory exists to our knowledge
of a similar connection in the case of strong disorder with a
pseudogap. We believe such a theory will inevitably require
the knowledge of joint distribution functions of both ξ and �.

G. The effect of weak fluctuations of the coupling amplitudes

In this subsection, we analyze a generalization of our
model that allows for the fluctuations of the interaction matrix
element between each pair of interacting single-particle states.
We model these fluctuations by assigning a random magnitude
to the bare matrix element Di j of the interaction between each
pair of interacting states on top of its smooth dependence on
the energy difference ξi − ξ j of the two states. This corre-
sponds to the following generalization of the self-consistency
Eq. (4),

�i =
∑
j∈∂i

ci jD(ξi − ξ j )
� j√

�2
j + ξ 2

j

, (61)

where D(ξ ) is the energy dependence of the interaction de-
scribed previously, and ci j are independent random variables
distributed according to some distribution P(c). In particular,
letting P(c) = δ(c − 1) leads one back to the self-consistency
Eq. (4) analyzed earlier. The new Eq. (61) now includes two
sources of disorder: the randomness of the single-particle
energies ξi and the one from the distribution of the coupling
matrix elements Di j = ci jDD(ξi − ξ j ).

One can conduct the mean-field analysis of Eq. (61) similar
to that of Sec. II D. The latter is still valid for sufficiently large
number of neighbors, i.e., 〈c〉Z × 2ν0� � 1. One can then
assert a spatially uniform order parameter for energies close
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to the to Fermi surface and obtain

�R = 2E0 exp

{
− 1

λR

}
, λR = 〈c〉2ν0D(0)Z, (62)

where λR is the new dimensionless Cooper attraction constant,
and the value of E0 ∼ εD is still determined by higher energy
scales, but with the new value of the mean matrix element.

Our theoretical approach can be generalized to describe
the model above, as explained in detail in Sec. G of the
SM [26]. In particular, the m function retains its role of
the central object in the theory. Here, we only present
the proper counterpart of Eqs. (24) and (25) valid for
x � εD/�0:

m1(w) = m1(0) + 〈c2〉 κwα + 〈c〉 λ

∫ 1

0
dw1

√
1 − w2

1

m1(w1, 0) − m1(0, 0)

w1

+ λ

∫ ∞

0
dy1 × y1 ln

1

y1

∫
R−i0

ds

2π

∫
dcP(c) × c exp {i c sκw} × exp {m(s|0, 0) − isy1}, (63)

m2(S|w) = λ

∫
dcP(c)

∫ 1

0
dw1

exp {iSκ c w1} − 1 − iSκ c w1

w2
1

√
1 − w2

1

[
1 − w1

(
1 − w2

1

) ∂

∂w1

]
×
[

c κw + m1(w1)

κ

]
. (64)

In these equations, the boxes highlight the difference
brought in by the fluctuations of the matrix element in
comparison with Eqs. (24) and (25). Once the solution to
these equations is found, expressions Eqs. (30) and (31) for
the probability density of the dimensionless order parame-
ter P0(y) and the joint probability density P(x, y) of on-site
values of x = ξi/�0 and y = �i/�0 are applicable without
modifications.

1. Generalization to fluctuating number of neighbors Z

We first note that these equations allow one to effortlessly
analyze the effect of the fluctuating number of neighbors
Z . To this end, one lets P(c) = pδ(1 − c) + (1 − p)δ(c), so
each edge is either turned on with probability p ∈ [0, 1], or
turned off with probability 1 − p. As a result, each site has
a fluctuating number of neighbors with Poisson distribution
characterized by mean value 〈Z〉 = pZ . With such choice of
the distribution function P(c), one can explicitly perform all
the averages in Eqs. (63) and (64). Remarkably, the outcome is
identical to the Eqs. (24) and (25) for the case without fluctua-
tions of the number of neighbors upon proper renormalization
of the microscopical constants λ, α, Z,�0, κ , namely, one
simply has to replace

λ �→ λR = pλ, α �→ αR = pα (65)

and calculate all other low-energy quantities in the theory
using these modified values. One particular example of this is
the mean-field value of the order parameter Eqs. (62) that now
contains precisely λR in both the exponent and the prefactor
E0 defined by higher energies. Consequently, the remaining
microscopical constants are renormalized as

ZR = pZ, κR = λR

�RZR
. (66)

The derivation of these results is presented in Subsec. G5 of
the SM [26]. We once again underscore that such a picture im-
plies absence of any practical significance of the fluctuations
of the number of neighbors in our model.

2. Weak fluctuations of the coupling constant λ

A more complicated situation arises, however, if one intro-
duces disorder in the value of c itself. For this calculation, we
choose c to be distributed according to a narrow distribution
with mean value 〈c〉 = 1, variance 〈(c − 1)2〉 = δ2 and expo-
nentially decaying tails. One can then repeat the asymptotic
analysis of Sec. III D to extract the influence of the introduced
fluctuations of the coupling matrix elements on the extreme
value statistics. A detailed exposition is presented in Sec. G
of the SM [26], while here we summarize the key results and
qualitative conclusions.

In the region of small value of y, that corresponds to a
unique saddle point of the form S = +it, t � 1, one can
expand the Eq. (63) with respect to small deviations of c from
its mean value. Upon estimating the probability Eq. (31) with
the help of the resulting asymptotic expression, the double-
exponential asymptotic behavior described by Eqs. (46) and
(47) remains valid with only a slight modification of the form

ζ (y) �→ ζ (y) exp{δ2/2}. (67)

However, with finite δ this regime now extends only to a finite
lower value of the probability density:

P0(y) � 1√
2πλ〈y〉κδ2

exp

{
−λ〈y〉

κδ2

}
. (68)

This also implies that the double-exponential regime is only
present while

δ �
√

λ/κ =
√

Zeff. (69)

The value of P0(y) for larger values of δ is described by a
different asymptotic behavior with much slower decay in the
region of small y/〈y〉. It can be interpreted as a change in the
type of the dominating optimal fluctuation that delivers the
body of the distribution for low values of the order parameter.
Indeed, for the case with δ = 0 the only way to render a
small value of the order parameter was to have all neighbor-
ing values of |ξ | large enough, as explained in Sec. III D.
However, sufficiently strong fluctuations of the coupling
constant provide a finite probability of a region with a
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diminished value of the coupling constant to neighboring sites
with relatively small values of ξ . The behavior of the distribu-
tion would thus reflect the competition between these two sets
of configurations. As a consequence, one expects that in this
case the answer will be sensitive to the particular form of the
distribution P(c) as well as any local correlations present in
the joint distribution of the coupling matrix elements ci j and
the on-site energies ξi.

The asymptotic behavior of the distribution for large val-
ues of the order parameter can also be analyzed within the
perturbative expansion of Eq. (63) with respect to the small
deviation of c from its mean value. One obtains that each of
the multiple saddles point of the integral Eq. (31) for the prob-
ability acquire an additional multiplier that can be estimated
as

P(n)
0 (y) ∼ P(n)

0 (y, δ = 0) × exp

{
(znδ)2

2

y − 〈y〉
κ

}
, (70)

where zn = iSnκ describes the position of the corresponding
saddle point and Pn(y, δ = 0) stands for the magnitude of the
contribution without fluctuations of the matrix element. This
result implies that the asymptotic expression Eq. (49) deliv-
ered by the main saddle point with n = 0 remains qualitatively
intact up to δ ∼ 1, at which point the perturbative expansion
with respect to small δ ceases to be applicable. Furthermore,
each secondary saddle point acquires an extra multiplier of the
form exp{− (2πnδ)2

2
y−〈y〉

κ
} due to the imaginary part zn which is

close to 2πn. As a result, the oscillations produced by these
secondary saddle points are suppressed at 2πδ ∼ 1.

Figure 6 below presents the demonstration of the qualita-
tive picture presented above in the form of both theoretical
curves and histograms obtained from direct numerical so-
lution of the modified self-consistency Eq. (61) for several
realizations of the disorder. In particular, it clearly illus-
trates the persistence of both asymptotic trends observed in
Sec. III D, while also demonstrating how the secondary max-
ima are smeared as the value of δ is growing.

IV. DISCUSSION AND CONCLUSIONS

In the present paper, we developed a systematic theory able
to describe statistics of superconducting order parameter in
strongly disordered pseudogapped superconductors. We have
discovered the existence of a wide region of parameters where
the usual semiclassical approach to dirty superconductors is
not valid but, at the same time, the universal behavior typical
for the close proximity to SIT [23] does not take place either.
In this wide range of parameters, the shape of the distribution
function P(�) is controlled by the single parameter κ defined
in Eq. (9). Small κ corresponds to the limit of weak disorder
that is typical for usual dirty superconductors. This limit is
characterized by narrow Gaussian distribution of the order pa-
rameter is observed, see Eq. (43). On the other hand, at κ � λ,
with λ being the dimensionless Cooper constant, the distri-
bution becomes highly nontrivial. We are able to calculate its
explicit form for all values of �/�0 in terms of certain special
functions, as presented in Sec. III C. The asymptotic behavior
of the distribution density P(�) is given by Eqs. (46), (47),
and (49) for small and large values of �/�0, respectively.
These functions do depend on the value of κ; in principle, it

FIG. 6. A log-scale plot for the PDF of the dimensionless order
parameter P(�/�0) for various strengths of the fluctuations of the
interaction matrix element Di j = ci jD(ξi − ξ j ). The distribution of c
is log normal with parameters that ensure 〈c〉 = 1, 〈(c − 1)2〉 = δ2.
The solid lines represent the smoothened histogram obtained from
direct numerical solution of the self-consistency Eq. (61) on three
instances of random regular graph of size N = 217 ≈ 1.3 × 105. The
dashed lines use the proper generalization of the weak coupling ap-
proximations of Sec. III C to approximate the value of the m function
used to compute the integral Eq. (31) for the PDF. Finally, the dashed
red line corresponds to approximate analytic expressions for the case
without fluctuations of coupling matrix element: Eq. (49) for large
values of y > 〈y〉 and Eqs. (46) and (47) for y < 〈y〉. The microscopic
parameters of the model are D(ξ ) = const, λ ≈ 0.120, Z = 51, and
κ = 5.0. The mismatch between the theoretical description and the
numerical histogram originates from subleading corrections of order
O(�0/λ) and O(λ2), see also notes on this under Fig. 2.

opens the possibility to extract the value of κ for specific dis-
ordered superconductor via measuring the local distribution
P(�) by means of scanning tunneling methods. Our model,
however, breaks down in a small vicinity of the SIT described
by exponentially large values of κ � exp{ 1

2λ
} � 1. The phase

diagram following from our findings is sketched in Fig. 7.
We emphasize that the very existence of a separate region

with a broad range of disorder strengths featuring a nontrivial
profile of the distribution function P(�) is related to the
smallness of Cooper attraction constant λ � 1. Until recently,
the small λ region was not attainable for direct numerical
simulations of real 2D and 3D systems due to size restrictions.
Advances in this field [35–37] seem to make such a study
possible.

The shape of distribution function P(�) was found to
differ considerably from the fat-tail distributions obtained
previously in Refs. [23,25] by different analytic and numer-
ical methods. Concerning available experimental data, we
note, first, that the interpretation of the tunneling conductance
dI/dV in terms of the theoretical order parameter is not
straightforward in the case of large spatial fluctuations �(r).
Indeed, in such a case the half width of the gap defined as
the energy distance between the peaks in dI/dV is not just
given by the order parameter � itself, as is the case in the
classical superconductor with constant �. In fact, the shape
of dI/dV is controlled by the local DoS ν(E ) which should
be obtained, in principle, via the solution of the generalized
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FIG. 7. Qualitative phase diagram describing the behavior of the distribution of the order parameter P(�) in strongly disordered supercon-
ductors. The horizontal axis schematically describes the strength of disorder measured by the parameter κ defined in Eq. (9). Various colors
indicate the perceived level of inhomogeneity of the superconducting state: the green color corresponds to a well-pronounced superconducting
state with nearly uniform value of the order parameter, light-green and white colors represent a manifestly nonuniform superconducting state
with strongly non-Gaussian or even critical distributions of the order parameter, and the red color stands for the insulating state of the system
with no superconducting order parameter. The blue dashed line highlights the range of parameters available to our theoretical description.

Usadel equation for the local electron Green’s function in the
background of spatially fluctuating order parameter �(r) as
well as in presence of a pseudogap. Such a program had never
been implemented yet, to our knowledge.

Qualitatively, it seems evident that more direct access to
the local values of �(r) is provided by the heights R of the
coherence peaks in local tunneling conductance dI/dV (r).
Early experimental data [17] demonstrates substantial change
in the distribution of peak heights P (R) with the increase of
disorder, similarly to the effect of increasing our theoretical
parameter κ upon the shape of P0(�), see Fig. 2. Another
type of theoretical analysis provided in Ref. [25] predicts an
extremely broad distribution of the Tracy-Widom universal
shape in terms of the logarithmic variable Rs = ln R/〈R〉;
however, their experimental data in Fig. 6 of that paper leaves
space for different interpretations as well. A recent study
[36] of a strongly disordered 3D superconductor by means of
the numerical solution of Bogolyubov-De Gennes equations
provides a number of various distribution functions for P(�),
which could be analyzed in terms of our theory; for now, we
can say that the generic feature—an increase of normalized
width of the distribution with disorder—is reproduced there
as well.

The model we have studied here is limited in several
regards. First, our initial model approximates the matrix el-
ement of the Cooper attraction by a constant value that is
further endowed with a weak dependence energy difference.
However, the actual amplitude of the interaction in each
disorder realization is proportional with the overlap of the cor-
responding wave functions

∫
ψ2

i (r)ψ2
j (r)dr and thus exhibits

direct statistical fluctuations at least of the order of its mean
value. In Sec. III G, we have briefly analyzed an extended
model that incorporates this effect in the simplest fashion
possible. Our analysis indicates that these direct statistical
fluctuations do not alter our conclusions about the large-value
asymptotic behavior of the distribution of the order param-
eter, while only removing several unphysical features such
as secondary maxima. However, it also follows from our re-
sults that even relatively small fluctuations of the interaction

matrix element can distort the low-value asymptotic behavior
of the distribution of the order parameter. The character of
this distortion is generally sensitive to the local structure of
the distribution of the matrix elements and requires further
analysis.

Second, the energy dependence of the matrix element
D(ω = |ξi − ξ j |) is assumed to be smooth at the relevant
energy scale of Debye energy εD. It is not necessarily the
case for strongly disordered superconductors with the Fermi
energy located inside the localized band; the point is that
the relevant matrix elements between localized eigenstates
contain [27, Sec. 2.2.5] the Mott resonances leading to a
singular behavior D(ω) ∝ | ln ω/δL|d−1. This feature can be
incorporated in our approach as long as the overall separation
of scales � � εD, EF is maintained.

Third, we have analyzed the mean-field equations for T =
0 only. Nonzero temperatures can be included into our formal-
ism simply by multiplying the function f (ξ j,� j |ξi) defined in

Eq. (15) by tanh
√

�2
j+ξ 2

j

2T . It will complicate further analysis,
but low-T corrections to the obtained results are possible to
derive.

The nearest extensions of the developed theory will contain
a study of low-energy collective modes in strongly disordered
superconductors. The aim is to revisit this subject, consid-
ered originally in Ref. [15], with the presently developed
understanding about the order parameter distribution. Another
important subject is to include the Onsager reaction term in
our free-energy functional; it would allow us to consider the
region closer to SIT by our methods. Finally, it is of practical
importance to establish a reliable connection between the
order parameter � studied in this paper and experimentally
measurable quantities, as none such connections exist to date
for strongly disordered superconductors.
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