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Lifshitz transition in dirty doped topological insulator with nematic superconductivity
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We study the effects of the Lifshitz transition from the closed to open Fermi surface in dirty topological
insulators with nematic superconductivity near the critical temperature. We solve linearized Gor’kov equations
and find that the nematic superconductor with an open Fermi surface has a lower critical temperature and is more
susceptible to disorder than the superconductor with the closed Fermi surface. We propose that correspondence
between the critical temperature and stability against the disorder is a general feature of the superconductivity.
We investigate the effects of the Lifshitz transition on the competition between superconducting phases in a
topological insulator. The open Fermi surface is beneficial for the nematic order parameter �4 in competition
with orbital-triplet �2 and disfavors nematic state over the s-wave order parameter. We study Meissner currents
in both clean and dirty limits. We found that transition from closed to open Fermi surface increases anisotropy
of Meissner currents. Finite disorder suppresses superconducting density stronger than critical temperature. We
compare our results with existing experimental data.
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I. INTRODUCTION

Superconductivity in topological insulators in Bi2Se3

family attracts significant attention due to realization of topo-
logical odd-parity superconductivity [1,2]. Experiments on
Knight shift [3], second critical field [4–6], and magnetic
torque [7] show twofold symmetry of the response that is
incommensurate with the crystal symmetry. Such symmetry
breaking arises from nematic superconducting order param-
eter within Eu representation [8,9]. Unconventional nematic
superconductivity gives rise to several intriguing phenomena
such as surface Andreev bound states [10–12], half-quantum
vortices [13,14], spin (nematic) vortices [15], spontaneous
strain and magnetization [16], vestigial order [17], uncon-
ventional Higgs modes [18], and anisotropic quasiparticle
interference [19,20].

The Anderson theorem [21] does not hold in general for
unconventional superconductivity that results in suppression
of the critical temperature Tc by the disorder [22]. In Ref. [23]
it was found that proton irradiation of NbxBi2Se3 decreases
critical temperature with increasing density of defects. How-
ever, only a small part of scattering events contribute to
the pair-breaking mechanism [23]. Excessive Cu doping of
Bi2Se3 brings additional defects into the system that leads
to a slight decrease of critical temperature with the increased
doping [24,25].

In Refs. [26–29] effects of the disorder on critical temper-
ature of nematic superconductor were studied. It was found
that density disorder decreases critical temperature for the ne-
matic order parameter. These results contradict the results of
Ref. [30] where the robustness of nematic superconductivity
against disorder was derived.

Superfluid density is particularly sensitive to disorder [31].
In Ref. [24] it was shown that an increase of disorder

suppresses superfluid density in a doped topological insula-
tor. This superfluid density determines the first critical field
of the superconductor and London penetration length. In
Refs. [32,33] it was shown that the out-of-plane first critical
field in NbxBi2Se3 is much smaller than the in-plane first
critical field.

The transition from closed Fermi surface to an open one
is called as Lifshitz transition [34]. This transition occurs in
underdoped cuprates and has a significant effect on the su-
perconducting properties [35–37]. Lifshitz transition appears
in topological insulator Bi2Se3 upon doping with Nb or Cu
[38,39]. The appearance of this transition coincides with the
emergence of superconductivity in the system [39].

In our paper, we answer the question of how Lifshitz transi-
tion affects critical temperature, stability against the disorder,
and Meissner currents in a topological insulator with ne-
matic superconductivity. This paper is organized as follows. In
Sec. II we introduce the Hamiltonian of a topological insulator
with nematic superconductivity and introduce a model for a
Lifshitz transition. In Sec. III we solve linearized Gor’kov
equations for Green’s functions in a clean limit and calculate
the critical temperature in case of closed and open Fermi sur-
faces of the normal state. In Sec. IV we calculate self-energy
that arises due to scattering from the randomly distributed
scalar disorder and analyze the effects of the disorder on the
critical temperature. In Sec. V we discuss general proper-
ties of the robustness of the superconducting states against
disorder. We establish a general connection between critical
temperature and stability against disorder and tie it with the
conception of superconducting fitness. In Sec. VI we calculate
superfluid density in clean and dirty limits and show how
Lifshitz transition affects the anisotropy of the first critical
field. In the Discussion section, we compare our results with
experimental results and other works within the field.
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II. MODEL

We give a short summary of derivation of the Hamiltonian
of the normal state of topological insulators from
Refs. [40,41]. Crystal structure of Bi2Se3 consists of layers of
Bi and Se. Five such layers form one quintuple layer. These
quintuple layers interact weakly through van der Waals forces.
Thus, interactions within quintuple layer are the strongest
ones. In each quintuple layer the central layer consists of Se
atoms that are sandwiched by Bi layers and Se layers are
outermost. Outermost orbitals of Bi (6s26p3) and Se (4s24p4)
are p orbitals and we can neglect other orbitals. Hybridization
between Bi and Se orbitals leads to the formation of new
hybridized orbitals of bismuth (Bi and Bi∗) and selenide
Se (Se∗ and Se0). Due to the presence of inversion crystal
symmetry it is convenient to consider bonding and antibond-
ing states with definite parity. State P1± = (Bi ± Bi∗)/

√
2

corresponds to the bonding + or antibonding − state of
Bi orbitals, state P2± = (Se ± Se∗)/

√
2 corresponds to

the bonding + or antibonding − state of Se orbitals. Here
± corresponds to the parity of the state. After taking into
account of hybridization between Bi(Se) and Bi∗(Se∗) orbitals
it is found that bonding state of P1+ and antibonding state
of P2− are closest to the Fermi level. The crystal has a
layered structure along the z direction which is different
from the x or y direction. Thus, crystal field leads to energy
splitting between pz and px, py orbitals. It is found that pz

orbitals form conduction P1+
pz

and valence bands P2−
pz

prior to
consideration of the spin-orbit interaction. Strong spin-orbit
interaction pushes energy of P1+

pz
down and P2−

pz
up. At some

value of spin-orbit interaction orbitals with opposite parity
cross, which leads to band inversion. This band inversion
is a signature of the topological insulator. This transition
occurs at the time-reversal-invariant symmetric � point that is
located at the center of the Brillouin zone �(0, 0, 0). At this
point orbitals are closest to the Fermi level. Now, low-energy
effective Hamiltonian HN (k) can be obtained by fitting kp
expansion in (P1+

pz
, P2−

pz
) basis near the � point to the density

functional theory (DFT) calculations [40,41]

HN (k) = −μ + mσz + vσx(sxky − sykx ) + vzkzσy. (1)

Here Pauli matrices sx, sy, sz act in the spin space (↑,↓),
Pauli matrices σx, σy, σz act in the space of inverted orbitals
of Bi and Se atoms near the Fermi level (P1+

pz
, P2−

pz
), μ is

the chemical potential, 2m is the value of the single-electron
gap at half-filling μ = 0 at � point (k = 0), v is the in-plane
Fermi velocity within the main (�M, �K ) plane that is
parallel to the plane of Bi and Se layers, and vz is the Fermi
velocity along the �Z direction that is perpendicular to the
orientation of Bi and Se layers. Away from the � point new
terms in the Hamiltonian arise that lead to k dependence
of the parameters of the Hamiltonian and emergence of the
hexagonal warping which will be discussed in Sec. V. It is
worth to mention that linear dispersion along the z direction
works well even away from the � point (see Ref. [41]).

The spectrum of the normal state is given by

E (k) = −μ ±
√

m2 + v2k2
x + v2k2

y + v2
z k2

z . (2)

The closed Fermi surface forms an ellipsoid that is elon-
gated along the z direction since vz < v. This ellipsoid can

FIG. 1. Fermi surface in (kx/k0, kz/k0 ) plane for ky = 0 for dif-
ferent values of Lifshitz parameter rL . Left figure corresponds to the
closed Fermi surface rL = 1 with μ = 1.5m, central figure to corru-
gated cylinder rL = 1/2 with μ = 2.8m, right figure to cylindrical
Fermi surface rL = 0 with μ = 2.8m and vz = 0. Here k0 = m/v,
upper and lower boundaries in the kz direction show the the boundary
for the first Brillouin zone. Boundary for the first Brillouin zone in
the kx direction is c/a ∼ 7 (here a and c are lattice constants) times
larger than the boundary in the kz direction and is not shown here.

be parametrized by ellipsoid coordinates (vkx, vky, vzkz ) =√
μ2 − m2(cos ϕ sin θ, sin ϕ sin θ, cos θ ). In case of closed

Fermi surface ϕ ∈ (0, 2π ) and θ ∈ (0, π ).
The Lifshitz transition from closed to open Fermi surface

occurs if the size of the Brillouin zone kc becomes smaller
than the Fermi momentum vzkc <

√
μ2 − m2. In ellipsoid

coordinates this results that angle θ ∈ (θL, π − θL ) where
cos θL = min (1, vzkc/

√
μ2 − m2). Here we introduce param-

eter rL = cos θL that controls the Lifshitz transition. If rL = 1,
then the Fermi surface is closed. In case of rL < 1 the Fermi
surface becomes open. Case rL = 0 corresponds to the purely
cylindrical Fermi surface. Fermi surface E (k) = 0 is shown in
Fig. 1 for different values of rL. Note that the obtained Fermi
surface is similar to the experimental and DFT calculated
Fermi surfaces [38,39].

In our work, we suppose that electron-phonon interaction is
short range and has no dependence on the Lifshitz transition.
In Ref. [42] it was shown that near the Lifshitz transition
electron-phonon coupling is enhanced along the [001] direc-
tion. Also, electron-phonon coupling is singular along the kz

direction and isotropic in the (kx, ky) plane. It means that elec-
trons with the small kz momentum have strongest coupling.
Anisotropic singular coupling g = g(kz ) can be modeled by
step function with the size kc. This anisotropic coupling re-
sults in the same effects on the superconductivity as a Lifshitz
transition except for the density of states ρ(μ) is unchanged.

The form of the Fermi surface has a significant impact on
the density of states. We suppose that only the states near the
Fermi surface contribute and calculate density of states at zero
frequency as

ρ(μ) = − 1

π
Im Tr

∑
k

G0(ω → +0) = rLμ
√

μ2 − m2

v2vzπ2
, (3)

where the Green’s function of the normal state G0 = [iω −
HN (k)]−1 is

G0 = −iω − μ − mσz − vσx(sxky − sykx ) − vzkzσy

m2 + v2
z k2

z + v2
(
k2

x + k2
y

) − (μ + iω)2
. (4)

We plot the density of states as a function of doping μ in
the absence and presence of the Lifshitz transition at Fig. 2.
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FIG. 2. Density of states ρ(μ) as a function of chemical potential
μ for different values of the Brillouin zone size vzkc. Red and green
circles show point of the Lifshitz transition for vzkc = 1.3 and 2,
respectively.

Increase of the chemical potential increases density of states
by the square law ρ ∝ μ2 for μ 
 m in case of the closed
Fermi surface rL = 1. After the Lifshitz transition rL < 1 the
density of states increases linearly with the increase of chem-
ical potential ρ ∝ μ. This picture is in qualitative agreement
with the density functional theory calculations: fast growth of
the density of states before Lifshitz transition and slow growth
after it.

We consider the system with the odd-parity order param-
eter within Eu representation. Such nematic order parameter
couples electrons from different orbitals with the same spin
and preserves time-reversal symmetry. This order parameter
has a vector structure � = (�x,�y) that differs from other
possible pairings that transforms as a scalar under rotation. In
Nambu basis (
(k), isy


∗(−k)) doped topological insulator
with superconductivity can be described by the Hamiltonian
(see Ref. [43] for discussion about form of the order parame-
ters in different basis)

HBdG(k) = HN (k)τz + �̂τx, (5)

�̂ = (�xsx + �ysy)σy, (6)

where Pauli matrices τi act in a Nambu particle-hole space.

III. GOR’KOV EQUATIONS FOR THE CLEAN CASE

We start with the Gor’kov equations in the general case in
the Nambu basis 
 = (
(k), isy


∗(−k)). Green’s functions

can be obtained by solving Gor’kov equations

(iω − ĤBdG)Ĝ0 = 1̂, (7)

where Hamiltonian in Nambu space expresses as

iω − ĤBdG =
(

iω − HN (k) −�̂

−�̂† iω + syH∗
N (−k)sy

)
, (8)

and Green’s function Ĝ0 as

Ĝ0 =
(

G0e F0

F̄0 G0h

)
. (9)

Here G0e (G0h) is the normal part of electrons (holes) and F0

is the anomalous part of the Green’s functions. The Hamilto-
nian of the normal state is HN (k), �̂ is the superconducting
order parameter, ω = πT (2n + 1) is the fermionic Matsubara
frequency for temperature T , and 1̂ is identity matrix. For
the anomalous Green’s function that is responsible for the
superconducting correlations in the system we have

F0 = [iω − HN (k)]−1�̂G0h, (10)

F̄0 = [iω + syH∗
N (−k)sy]−1�̂†G0e. (11)

The normal part of Green’s function expresses as

G0e = (1 − G0�̂G∗
0�̂

†)−1G0, (12)

G0h = (1 − Ḡ0�̂
†G0�̂)−1Ḡ0, (13)

where we introduce bare Green’s functions of the normal state
as

G0 = [iω − HN (k)]−1, (14)

Ḡ0 = [iω + syH∗
N (−k)sy]−1. (15)

Near critical temperature Tc we can keep only linear in order
parameter �̂ terms in the Green’s functions. We consider
a system with the time-reversal symmetry syH∗

N (−k)sy =
HN (k) that results in

G0e = G0, G0h = Ḡ0, (16)

F0 = G0�̂Ḡ0, F̄0 = Ḡ0�̂
†G0. (17)

Note that Ḡ0(ω) = −G0(−ω). We will use these linearized
in �̂ expressions for our calculations. In case of topological
insulator we use Eq. (4) for G0. Linearized anomalous Green’s
functions are written as

F0 = 2 f (k,�, ω)

BN
,

F̄0 = −2 f (k,�†,−ω)/BN , (18)

where

f (k,�, ω) = −vzkzμ(�xsx + �ysy) + mv(kx�x + ky�y)sz + vvzkz(kx�y − ky�x )σx − mω(�xsx + �ysy)σx

+ Jxsxσy + Jysyσy + vω(ky�x − kx�y)σz − vzkzm(�xsx + �ysy)σz + vμ(kx�x + ky�y)szσz,

Jx = {
�x

[
m2 − μ2 − ω2 + v2

(
k2

y − k2
x

) − v2
z k2

z

] − 2v2kxky�y
}
/2,

Jy = {
�y

[
m2 − μ2 − ω2 + v2(k2

x − k2
y

) − v2
z k2

z

] − 2v2kxky�x
}
/2,

BN = [
m2 + v2

z k2
z + v2(k2

x + k2
y

) − μ2 + ω2]2 + 4μ2ω2. (19)
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FIG. 3. Parameter ζ as a function of chemical potential μ for
different values of the Brillouin zone size vzkc. Red and green cir-
cles show the point of the Lifshitz transition for vzkc = 1.3 and 2,
respectively.

The anomalous Green’s function looks quite complex.
However, only the f̃ (k,�, ω) part of the anomalous Green’s
function contributes to the integral over the Brillouin zone

f̃ (k,�, ω) = −mω(�xsx + �ysy)σx + (�xsxσy+�ysyσy)

× (m2−μ2−ω2−v2
z k2

z )/2. (20)

The self-consistent equation for the nematic order parameter
�i = −gT/4

∑
ω,k Tr [σysiF0], i = x, y is written as

�x(y) = −gT
∑

ω

∫
d3k

(2π )3
�x(y)

×
(
m2 − μ2−ω2 − v2

z k2
z

)
(
m2+v2

z k2
z + v2

(
k2

x +k2
y

) − μ2 + ω2
)2 + 4μ2ω2

,

(21)

where g is the coupling strength. Different orientations of the
nematicity (or even any superposition of �x and �y) have
the same Tc. So, we can consider only one orientation of the
nematicity �x without loss of generality. We can see from this
expression that momentum along the z direction has a distinct
impact on the value of the critical temperature. Integration
over the momentum gives us

� = πgT ρ(μ)

4
ζ

∑
ω

�

|ω| , (22)

where we introduce parameter ζ as

ζ =
(
1 + r2

L/3
)
(μ2 − m2)

2μ2
. (23)

In a weak coupling approximation critical temperature ex-
presses as Tc0 � 1.14ωD exp[−4/gζρ(μ)], where ωD is the
Debye cutoff. We see that this expression is identical to the
expression for the critical temperature of the s-wave super-
conductor with the renormalized by ζ coupling strength. We
plot parameter ζ as a function of the chemical potential for
different values of the Brillouin zone cutoff kc in Fig. 3. We
see that after the Lifshitz transition parameter ζ has slow

growth in comparison with the case of closed Fermi surface
and can even decrease with the increase of the chemical
potential. In case of closed Fermi surface rL = 1 we have
ζ = 2/3(1 − m2/μ2) while cylindrical one rL = 0 gives us a
smaller value ζ = 1/2(1 − m2/μ2).

IV. EFFECTS OF SCALAR IMPURITIES

In this section we study the effects of random charged
impurities. We will describe disorder by a potential Vimp =
u0τz

∑
i δ(r − R j ), where δ(r) is the Dirac delta function,

R j are the positions of the randomly distributed pointlike
impurities with the local potential u0 and concentration ni, and
τz shows that electrostatic potential acts contrary on electrons
and holes. We assume that the disorder is Gaussian, that is,
〈Vimp〉 = 0 and 〈Vimp(r1)Vimp(r2)〉 = niu2

0δ(r1 − r2).
Self-energy is calculated as

�̂ = niu
2
0

∑
k

τzĜτz, (24)

and has the following matrix structure:

�̂ =
(

�e �F

�̄F �h

)
. (25)

We calculate self-energy of the normal state in a first Born
approximation as

�e(h) = niu
2
0

∑
k

G0e(h). (26)

Self-energy of the normal part has two components due to
strong hybridization between orbitals [44]. We assume that
Debye cutoff is small ωD �

√
μ2 − m2 and calculate self-

energies at infinitesimally small frequency �e(ω) = �e(ω →
0) that means that we keep only the imaginary part of the
self-energy. The real part of the self-energy leads to a small
addition to μ and m which we can neglect. Under this assump-
tion self-energy of the normal state is

�e(h)(ω) = �e(h)0 + �e(h)mσz, (27)

�e(h)0(ω) = −i�0, �e(h)m(ω) = −i�z, (28)

�0 = sgn (ω) niu
2
0
πρ(μ)

4
, �z = �0

m

μ
. (29)

Disorder-averaged Green’s function of the normal state Ge(h)

can be found using the Dyson equation G−1
e(h) = G−1

0e(h) − �e(h).
This results in renormalization of the Matsubara frequency
ω → ω + �0 and single-electron gap m → m − i�z.

We calculate anomalous self-energy using disorder-
averaged Green’s functions of the normal state as

�F = −niu
2
0

∑
k

Ge�̂Gh. (30)

Here the “minus” sign appears due to τz factor in the impurity
potential that appears due to different charges of electrons and
holes. Anomalous self-energy has two components:

�F = (�xsx + �ysy)(σy�F1 + σx�F2),

�F1(ω) = �̄ζ /ω, �F2(ω) = �̄
m

μ2
. (31)

224502-4



LIFSHITZ TRANSITION IN DIRTY DOPED … PHYSICAL REVIEW B 104, 224502 (2021)

Here �̄ = �0(1 + m2/μ2) is the effective scattering rate and
parameter ζ is defined by Eq. (23). As we can see, �F1 renor-
malizes the value of the order parameter �̂, while �F2 brings a
new term iσz�̂. In general, this means that the ground state is
a mixture between spontaneously generated order parameter
�̂ and disorder-induced term iσz�̂. However, this new term

is small since �F1 ∝ 1/|ω| and �F2 ∝ m/μ2. Thus, in case
of ωD/μ � 1 the ground state has only component �̂ in the
order parameter.

Disorder-averaged anomalous Green’s functions is calcu-
lated as F = Ge(�̂ + �F )Gh. Self-consistent equation �i =
−gT/4

∑
ω,k Tr [σysiF ] leads to

�x(y) = −gT
∑

ω

∫
d3k

(2π )3

�x(y)[1 + �F1(ω)]
[
m2 − μ2 − (ω + �0)2 + �2

z − v2
z k2

z

] + 2�F2(ω)(mω − �zμ + m�0)[
m2 + v2

z k2
z + v2

(
k2

x + k2
y

) − μ2 + (ω + �0)2 − �2
z

]2 + 4[μ(ω + �0) + m�z]2
. (32)

For weak scattering |�0|, |�z| � μ and ωD � μ we
calculate to

� = πgζρ(μ)T

4

∑
ω

�̃

|ω̃| , (33)

where renormalized by the disorder Matsubara frequency ω̃

and order parameter �̃ are

ω̃ = ω + �̄, �̃ = �

(
1 + �̄ζ

ω

)
. (34)

If we substitute ω̃ and �̃ back into the equation for the
anomalous Green’s function F we arrive to the different �̃.
Self-consistent procedure leads to �̃ in the following equa-
tions:

ω̃ = ω + �̄, �̃ = � + �̃�̄ζ /ω̃ (35)

or

ω̃ = ω + �̄, �̃ = �/(1 − �̄ζ /ω̃). (36)

The self-consistent equation in a self-consistent approxima-
tion is written as

� = πgρ(μ)ζT

4

∑
ω

�

|ω + (1 − ζ )�̄| . (37)

This equation leads to the Abrikosov-Gor’kov equation for a
critical temperature

ln
Tc

Tc0
= 
(1/2) − 


(
1/2 + �̄(1 − ζ )

2πTc

)
, (38)

where 
(x) is the digamma function. Critical temperature is
completely suppressed at

(1 − ζ )�̄c = 0.88Tc0. (39)

Nematic superconductivity is suppressed by the large dis-
order that confirms results of Refs. [27–29]. The critical
temperature depends on the parameter ζ that determines both
the critical temperature in a clean case and robustness against
the disorder according to Eqs. (22) and (37). This parameter
depends on the shape of the Fermi surface as it is shown in
Fig. 4. The closed Fermi surface rL = 1 gives ζ = 2

3 for μ 

m that is consistent with the results of Ref. [27]. Cylindrical
Fermi surface rL = 0 gives ζ = 1

2 . It means that a closed
Fermi surface is more robust against the disorder and has a
higher critical temperature for the same density of states than
a cylindrical one.

V. SPECTRAL REPRESENTATION

In order to get inside how parameter ζ ties together both
critical temperature and robustness against the disorder we
write Gor’kov equations in a spectral representation. We sup-
pose that matrix Â determines spin and orbital structures of
the order parameter �̂ = �Â where � is the scalar that deter-
mines the value of the order parameter and Â†Â = 1. A is the
n × n matrix where n is the number of bands that contribute
to the order parameter. We consider the case when only a
single band of the normal state εl crosses Fermi level μ. We
consider that this band is degenerate pl times HNψi = εlψi,
i ∈ pl = 1, . . . , pl , where pl denotes the set of eigenvectors
with energy εl . We also assume the presence of the time-
reversal symmetry. Green’s function in a normal state and
anomalous Green’s function are given by [27]

Ge0 =
∑

j

Pj

iω + μ − ε j
, Gh0 =

∑
j

Pj

iω − μ + ε j
, (40)

F0 = �
∑
i, j

PiÂPj

(iω + μ − εi )(iω − μ + ε j )
, (41)

where the projector on the band with energy εi is given by
Pi = |ψi〉〈ψi|. Using the assumption that only the level with
the energy εl crosses the Fermi level, the self-consistent equa-
tion for the value of the order parameter � in a clean limit is

0 1 2 3
0.0

0.5

1.0

Γ/Tc0

c0

= 2/3
= 1/2
= 0

T c
/T

FIG. 4. Critical temperature Tc as a function of disorder �̄ for
different values of parameter ζ .
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TABLE I. Superconducting fitness function Fc and parameter ζ for possible odd-parity superconducting pairings taken from Ref. [1]. Here
〈. . .〉 means average over the Fermi surface of the normal state.

�̂2 �̂3 �̂4

Representation A1u A2u Eu

Matrix structure Â σysz σz (σysx, σysy )
Fc/2i R1σz − mσxsz vzkzσx − v(kysx − kxsy )σy − R1szσy (vkyσz − mσxsx,−vkxσz − mσxsy )

ζ
〈 v2

z k2
z +v2k2

x +v2k2
y

μ2

〉 〈
m2

μ2

〉 (〈 m2+v2k2
x +R2

1
μ2

〉
,
〈 m2+v2k2

y +R2
1

μ2

〉)

written as

� = −gT

n

∑
ω,k

Tr[Â†F0] = πgρ(μ)

n
ζ

∑
ω

�

|ω| . (42)

Here density of states ρ(μ) = ωpl/π
∑

k 1/[ω2 + (εl −
μ)2]|ω→+0. Parameter ζ expresses through the Fermi surface
the projected order parameter Ap as

ζ = Tr〈A†
pAp〉FS/pl , (43)

Api j = 〈ψi|Â|ψ j〉, (44)

where Api j is calculated for the states with eigenenergy that
cross the Fermi level i, j ∈ pl. Similar expression can be ob-
tained through direct calculation of the Cooper susceptibility
for the general case of momentum-dependent order parameter
A = Ak [45].

If we neglect scattering between the different states within
the band then self-energy of the normal state in presence
of scalar disorder is diagonal �N = −i�01̂ where �0 =
sgn (ω)niu2

0πρ/n. The Dyson equation for the normal state
G−1

N = G−1
N0 − �N shows that disorder renormalizes Matsub-

ara frequency ω → ω̃ = ω + �0.
The leading contribution of the anomalous self-energy

�F = −niu2
0

∑
k F0(ω̃) that renormalizes the value of the or-

der parameter is

�F = σF Â†, (45)

σF = −niu
2
0�

∑
k

Tr[Â†F0]/n = �ζ�0/ω. (46)

From the Dyson equation G−1 = G−1
0 − � we can see that in

presence of the disorder the anomalous Green’s function given
by Eq. (40) can be obtained by the substitution �̂ → �̂ + �F .
As a result, the self-consistent equation is

� = πgζρ/n
∑

ω

�̃

|ω̃| , (47)

where

ω̃ = ω + �0, �̃ = � + �ζ�0/ω. (48)

Self-consistent procedure leads to

ω̃ = ω + �0, �̃ = � + �̃ζ�0/ω, (49)

and we arrived to the expression

� = −gT

n

∑
ω,k

Tr[Â†F ] = πgζρ

n

∑
ω

�

|ω + (1 − ζ )�0| , (50)

which is similar to Eq. (37) up to substitution �0 → �̄ and
n → 4. We have shown that correspondence between critical
temperature and robustness against the disorder is the general
feature of the superconductivity.

The superconducting fitness function in case of the system
with time-reversal symmetry is written as Fc = [HN , A] (see
Ref. [46]). We rewrite the fitness function Fc = ∑

Fci in a
spectral representation where Fci = εi[Pi, A]. We introduce
partial fitness function Fpc = ∑

Fci where the sum i ∈ pl is
taken over the states that correspond to band with the energy εi

that crosses the Fermi level. The expression Tr〈F †
pcFpc〉/εi =

1 − ζ establishes a connection between superconducting fit-
ness Fc and parameter ζ . If the superconducting state is
perfectly fit Fc = 0 then the parameter ζ = 1 that ensures
robustness against the disorder [30,47]. This case can hap-
pen if the Hamiltonian of the normal state commutes with
the matrix structure of the order parameter [HN , A] = 0. The
s-wave order parameter Â = 1̂ always satisfies this condition
that leads to the Anderson theorem [21]. If the matrix struc-
ture of the superconducting order parameter is the integral of
motion, then this superconductivity is also robust against the
disorder [48].

Parameter ζ is a useful quantity: it shows how the sym-
metry of the order parameter affects its critical temperature
and its robustness against the disorder. We calculate param-
eter ζ along with the superconducting fitness function Fc for
different possible odd-parity superconducting order parame-
ters for the topological insulator with the hexagonal warping
HN + R1szσz where R1 = λkx(k2

x − 3k2
y ). Results are summa-

rized in Table I. Terms that contribute to the superconducting
fitness Fc decrease the critical temperature of the correspond-
ing order parameter. We see that large single-electron gap m
disfavors �2 and nematic �4 order parameters and stimulates
�3. Hexagonal warping stimulates nematic superconductivity
[49] �4 that allows it to win against �2. This analysis is
similar to the one from Ref. [46]. Parameter ζ as a func-
tion of the Lifshitz transition parameter rL for �2 and �4

order parameters is shown in Fig. 5. We see that ζ decreases
with the transformation of the Fermi surface from closed one
to cylindrical for both states. At some point, the Lifshitz
transition makes critical temperature for �4 higher than �2.
This effect occurs due to an effective increase of warping for
an open Fermi surface. Thus, we conclude that the Lifshitz
transition helps the nematic state to compete against other
odd-parity order parameters. However, the Lifshitz transition
decreases parameter ζ for the nematic state while for the
s-wave order parameter this quantity is unaffected. Thus, the
open Fermi surface helps the s-wave order parameter the
most.

224502-6



LIFSHITZ TRANSITION IN DIRTY DOPED … PHYSICAL REVIEW B 104, 224502 (2021)

0 1

0.4

0.5

0.6
Δ
4y

Δ
2

1−r
L

ζ

FIG. 5. Parameter ζ as a function of Lifshitz parameter rL for
nematic state �4 and state �2.

VI. MEISSNER CURRENT

In this section we show how disorder and shape of the
Fermi surface affect Meissner current in the nematic super-
conductor. The superconducting current in a linear response
is proportional to the vector potential and superconducting
density Jα = −nsAα . We express the current operator as Jα =
−∑

β KαβAβ where the Meissner kernel is [50]

Kαβ = −T
∑
k,ω

vαFvβ F̄ . (51)

The current operator vα = −∂HN (kα − Aα )/∂Aα = ∂HN (kα )/
∂kα coincides with the velocity operator in case of linear
spectrum α = x, y, z. In general, we should use full Green’s
function Ĝ in Eq. (51) and then subtract the contribution of
the normal part. In our case of linearized Green’s functions,
it means that we keep the anomalous part of Green’s function
only. As it is shown in Ref. [50] this procedure is correct even
if we calculate response beyond linearized in �̂ theory.

First, we compute the correlation function in a clean limit
near the critical temperature using Eq. (19) for the anomalous
Green’s function. We consider only �x orientation. Straight-
forward calculations give us the following expressions:

Kxx = 45 − 10r2
L − 3r4

L

32
K0,

Kyy = 15 + 10r2
L − 9r4

L

32
K0,

Kzz = v2
z r2

L

(
5 + 3r2

L

)
8v2

K0. (52)

K0 = v2πρ(μ)(1 − m2/μ2)2

15
T

∑
ω

�2/|ω|3. (53)

Integration over the Matsubara frequencies gives us K0 =
κ�2/T 2 where κ = v2ρ(μ)(1 − m2/μ2)27ζ (3)/120π2.
Here ζ (3) � 1.2 is the Riemann zeta function. In case
of rL = 1 for closed Fermi surface we get Kxx = 2Kyy =
Kzzv

2
z /v

2 = K0(ω) which is similar to the results of Ref. [50].
In case of rL = 0 for cylindrical Fermi surface we have
Kxx = 3Kyy = 3K0(ω) and Kzz = 0. We plot correlation
functions Kαα as a function of the parameter of the Lifshitz

0 1
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

K
xx

K
yy

K
zz

1−r
L

Κ
αα

/Κ
0

FIG. 6. Meissner kernels Kαα as functions of Lifshitz parameter
rL for �x nematicity direction.

transition rL in Fig. 6 for vz/v = 2
3 . We see that the Lifshitz

transition increases anisotropy of the response.
We can introduce disorder by substitution ω → ω̃ and

� → �̃, where ω̃ and �̃ are determined by Eq. (36). Inserting
this into Eq. (53) gives us the following expression for the
Meissner kernel K̃0 in disordered case:

K̃0 = κ
∑

ω

�2

(ω + �̄)[ω + �̄(1 − ζ )]2
. (54)

We can see from this expression that superconducting density
is suppressed by the disorder even if the critical tempera-
ture is robust ζ = 1. In case of �̄ � Tc � �̄/(1 − ζ ) critical
temperature is unaffected by the disorder while Meissner
currents are suppressed K̃ ∝ 1/�̄. In case of large disorder
Tc � �̄/(1 − ζ ) superconducting density is suppressed be-
cause of the suppression of the critical temperature by the
disorder K̃ ∝ �2 ∝ Tc − T . We plot the Meissner kernel as a
function of disorder in Fig. 7. We see that the superconducting

0 1 2 3
0.0

0.5

1.0

T = 0.9 Tc0
T = 0.7 Tc0
T = 0.5 Tc0
Tc/Tc0

Γ/Tc0

K
0
(Γ
)/K

0
(0
)

FIG. 7. Meissner kernel K̃0 as function of disorder �̄/Tc0 for
different values of temperature T for ζ = 2

3 . Black line corresponds
to the dependence of the critical temperature Tc from the disorder �̄.
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density is suppressed stronger than the critical temperature.
Anisotropy of the Meissner currents remains the same as in
the clean case.

VII. DISCUSSION

In Ref. [39] the authors state that the superconductivity
in doped topological insulators appears along with the Lif-
shitz transition from closed to open Fermi surface. The open
Fermi surface has been observed in different compounds of
doped topological insulators with nematic superconductivity
[38,51,52]. In our work, we get that the Lifshitz transition is
destructive for nematic superconductivity. Both critical tem-
perature and robustness against the disorder are smaller for
the open Fermi surface than for the closed one if the density
of states is the same. This connection between the shape of the
Fermi surface and superconducting properties can be one of
the reasons why the critical temperature in doped topological
insulators is insensitive to the carrier density [52].

Nematic superconductivity is only partially robust against
potential disorder and is suppressed if the disorder is large.
Our results are consistent with Refs. [27–29] and are in dis-
agreement with Ref. [30]. We derive that critical temperature
in the clean case and robustness against disorder are closely
tied. The connection between these quantities comes from the
mutual symmetry between the Hamiltonian of the normal state
and the spin-orbital structure of the superconducting order
parameter. We express this connection through superconduct-
ing order parameter that is projected onto the states of the
Hamiltonian of the normal state [see Eq. (43)]. This quantity is
closely tied with the conception of the superconducting fitness
[46] (see Sec. V). A similar connection between robustness
against the disorder and superconducting fitness has been
derived for the s-wave states [27]. In Refs. [30,47] connection
between superconducting fitness and robustness against the
disorder has been discussed as well.

In Ref. [25] Cu-doped Bi2Se3 samples show twofold be-
havior of the second critical field that is a distinctive feature
of the nematic superconductivity [25]. At large doping, car-
rier density substantially increases and twofold symmetry of
the second critical field Hc2 disappears. It was suggested
that this occurs due to phase transition to the different su-
perconducting states. An increase of the chemical potential
gradually transforms the Fermi surface into the cylindri-
cal one. This process makes the nematic superconducting
state less favorable in comparison with the even-parity s-
wave superconducting state. Thus, we conclude that the most
likely superconducting state in Cu-overdoped Bi2Se3 without
twofold symmetry of Hc2 is even-parity s wave.

We found that the Meissner current near the critical tem-
perature is diamagnetic and anisotropic that confirms the
results of Ref. [50]. The Meissner current is largest along

the nematicity direction for the closed Fermi surface. This
anisotropy is increased by the Lifshitz transition Kxx = 3Kyy

for rL = 0. In general, anisotropic superconductors have quite
complex behavior in a magnetic field [53]. We assume a
simplified situation that London penetration length for the
magnetic field applied along the i direction expresses through
the Meissner kernel λ2

i ∝ 1/Kii as for the isotropic super-
conductor. We are not aware of the works on the in-plane
anisotropy of the first critical field, so we focus on the
anisotropy between averaged in-plane λ2

ab = (λ2
x + λ2

y )/2 and
out-of-plane penetration lengths λ2

c = λ2
z that is κ = λ2

c/λ
2
ab.

We take vz/v = 2
3 from Ref. [41]. In case of closed Fermi sur-

face our calculations lead to κ = 1
2 for vz/v = 2

3 . In Ref. [3]
this anisotropy parameter κ � 2.4 while in Ref. [33] κ � 2.6.
As we can see, the assumption of a closed Fermi surface
is inconsistent with the experimental results. We found that
rL ∼ 1

2 gives experimentally relevant anisotropy of the first
critical field. In this case, the Fermi surface is a corrugated
cylinder.

In Ref. [24] it was obtained that the superconducting
density is suppressed by the disorder while the critical temper-
ature is largely unaffected. In Ref. [23] the authors conclude
that only a small part of scattering events contribute to the
depairing of Cooper pairs. This situation occurs since critical
temperature Tc is suppressed by effective disorder (1 − ζ )�̄
and only 1 − ζ of scattering events contribute to the depairing.
However, every scattering event contributes to the suppression
of the superconducting density similar to the case of s-wave
superconductor [31]. Thus, superconducting density is sup-
pressed stronger by the disorder than the critical temperature.

In general, strong Coulomb repulsion that is accompanied
by the fluctuations in Eu channel can lead to the mixing
between singlet s-wave order parameter and triplet nematic
order parameter within Eu representation [54]. However, due
to large dielectric constant Coulomb repulsion is weak in
topological insulators. Note that presence of the fluctuations
Eu only does not lead to such coupling [55].

In conclusion, we get that Lifshitz transition from closed
to open Fermi surface affects both critical temperature and
robustness against the disorder in nematic superconductors.
We found that critical temperature in a clean limit and robust-
ness against the disorder are tied through the superconducting
fitness. Anisotropy of Meissner currents is increased by the
Lifshitz transition.
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