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Directional scrambling of quantum information in helical multiferroics
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Local excitations as carriers of quantum information spread out in the system in ways governed by the
underlying interaction and symmetry. Understanding this phenomenon, also called quantum scrambling, is a
prerequisite for employing interacting systems for quantum information processing. The character and direction
dependence of quantum scrambling can be inferred from the out-of-time-ordered commutators (OTOCs)
containing information on correlation buildup and entanglement spreading. Employing OTOC, we study and
quantify the directionality of quantum information propagation in oxide-based helical spin systems hosting a
spin-driven ferroelectric order. In these systems, magnetoelectricity permits the spin dynamics and associated
information content to be controlled by an electric field coupled to the emergent ferroelectric order. We show
that topologically nontrivial quantum phases, such as chiral or helical spin ordering, allow for electric-field
controlled anisotropic scrambling and a direction-dependent buildup of quantum correlations. Based on general
symmetry considerations, we find that starting from a pure state (e.g., the ground state) or a finite temperature
state is essential for observing directional asymmetry in scrambling. In the systematic numerical studies of
OTOC on finite-size helical multiferroic chains, we quantify the directional asymmetry of the scrambling and
verify the conjectured form of the OTOC around the ballistic wavefront. The obtained direction-dependent
butterfly velocity vg(n) provides information on the speed of the ballistic wavefront. In general, our calculations
show an early time power-law behavior of OTOC, as expected from an analytic expansion for small times. The
long-time behavior of OTOC reveals the importance of (non)integrability of the underlying Hamiltonian as well
as the implications of conserved quantities such as the z projection of the total spin. The results point to the
potential of spin-driven ferroelectric materials for the use in solid-state-based quantum information processing.
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I. INTRODUCTION AND GENERAL CONSIDERATIONS

A sudden quench in a parameter entering a many-body
Hamiltonian results in a reshuffling of quantum information
during the subsequent time evolution [1-8]. Although unitary
dynamics is reversible, meaning a closed system remembers
its initial state, local information can disperse into many-body
quantum entanglements and correlations that are distributed
over the entire system and become inaccessible to local
measurements, i.e. the initial local information is scrambled
[9,10]. This concept goes along the dynamics of thermaliza-
tion in closed quantum systems [9-16] and has recently been
discussed as a tool for characterizing chaos in black holes,
for example [17-21]. While a precise definition of quantum
scrambling is somehow elusive, the out-of-time-order corre-
lation functions are mathematically well-defined and offer a
compelling witness of scrambling.

Considering two operators W and V which act as local
perturbations on the system with a Hamiltonian H, the out-
of-time-ordered commutator (OTOC) is defined as

C(t) = (W), VI'IW (), V1), 6))

where W(t) = UT(t)WU(¢) and V(¢) are the Heisenberg
pictures of W and V, respectively, and U(t) = exp(—iH?).
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The angle brackets (-) in Eq. (1) denote either the ex-
pectation value on a pure state of interest (typically
quantum-mechanical ground state), (-) = (¥|-|v), or a finite-
temperature thermal average, (-) = Tr(p -), with a density ma-
trix p = e P /Tr(e "), the inverse temperature g = 1T,
and the Boltzmann constant scaled to kg = 1. Expansion of
C(t) in t contains both time-ordered and out-of-time-order
correlators, hence the name OTOC. In the case of unitary
operators V and W, one can rewrite OTOC in the alternative
but equivalent form C(¢) = 2(1 — Re[F (¢)]) with

F(t)= WiV W@)v), 2)

which is also referred to as OTOC (where “C” stands for
correlator) in the literature but in what follows, we use Eq. (1)
for this abbreviation. For a pure state, i), F'(¢) relates to the
fidelity of the process when the order of applied operators is
reversed |¢1) = WOV |y), |¢) = VW ()|y), and OTOC is
F(1) = (g21¢1).

The concept of OTOC was first introduced in the late
’60s by Larkin and Ovchinnikov [22] in the context of
quasiclassical approaches to quantum systems. It received
renewed interest recently [19,20,23] as it offers a quantifiable
perspective on the emergence of quantum chaos and infor-
mation propagation in quantum many-body systems [21,24—
26]. Although the OTOC was originally proposed for di-
agnosing quantum chaos, recently, OTOC has found use

©2021 American Physical Society
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in studying the dynamics of quantum many-body systems.
Due to fundamental relevance but also to the importance for
quantum information processing, research on entanglement
and quantum-information delocalization by OTOC is steadily
increasing [27-70], including many-body-localized (MBL)
systems [32-40], Luttinger-liquids [54-56], and random uni-
tary circuits [30,31,60-63].

OTOCs carry multifaceted information. For example,
OTOCs may serve as indicator for static [49-51] and dynam-
ical phase transitions [50,68], and are useful in distinguishing
between many-body and Anderson localization [32-41].
OTOC can also be related [27-32] to the second Rényi entropy
of an appropriately defined subsystem. The quasiprobability
behind the OTOC and its connection to the pseudorandomness
has been studied in Refs. [30,70-72]. While scrambling can
be captured by entropic terms (cf. Refs. [18,28]) or mea-
sured in terms of the tripartite information of a subsystem
[28,53], OTOCs are more accessible experimentally. Several
experimental realizations have been discussed in the literature
[26,27,42-47,70]. Early experiments are based on a vari-
ety of quantum-simulator platforms such as nuclear spins of
molecules [39,68,73], trapped ions [46,74,75], and ultracold
gases [76]. OTOC, Eq. (1), is closely related to another probe
of chaos, namely to the thermal average of Loschmidt echo
signals [77] providing a link to the familiar diagnostic that
captures the dynamical aspect of chaotic behavior in the time
domain and is accessible to experimental studies.

It is instructive to consider the semi-classical interpretation
of scrambling. Considering a chaotic system and taking V
and W as the canonical momentum V = p and coordinate op-
erators W(t) = ¢(t), for the short times C(t) = > exp(2Art)
applies [21]. The scrambling time is specified in terms of the
classical Lyapunov exponent A, and is equal to the Ehren-
fest time t ~ (1/A.)In(1/h). The Lyapunov exponent Aj is
unbounded for classical systems. For bounded operators and
unitary evolution, however, OTOC is also bounded. Hence,
it cannot diverge exponentially and saturates [78]. Never-
theless, at short times, before the saturation is reached, an
exponential growth of OTOC may occur with a Lyapunov
exponent bounded with the conjectured value Ay < 2mkpT /h
[21]. This behavior is found in semiclassical and large-N
models [20,21,24,63] but not in physical systems with local
Hamiltonians and finite on-site degrees of freedom. Quan-
tum systems that saturate this bound are known as fast
scramblers [25,79,80]. In contrast, a range of models with
local Hamiltonians and finite on-site degrees of freedom ex-
hibit a power-law early time growth instead of exponential
[32-37,55-59,81] and are therefore known as slow scram-
blers.

In local Hamiltonian systems with spatial structure, the
maximum rate at which correlations build up is limited by the
Lieb-Robinson (LR) bound [82], defined for local bounded
operators VX, Wo, with an initial support at x, and 0, respec-
tively, as

lim [|[Wo(1), Vi]lle"™" = 0. 3)
t—00;|X|>vt

It applies for all v > v g, with u(v) > 0 a positive increasing

function. The Lieb-Robinson velocity vir is the minimum

speed for which Eq. (3) holds, and it defines an emergent

“light-cone” causality from local dynamics on a lattice [83].
It is a state-independent microscopic velocity set by the mag-
nitude of couplings in the Hamiltonian. The function w(v)
bounds the exponential decay rate along the different constant
velocity rays |x| = vt > v gt outside the light-cone.

Based on LR bound, given by Eq. (3), the velocity-
dependent Lyapunov exponent A(v) can be introduced [59]
which quantifies the exponential growth or decay rate of the
OTOC along a given velocity (v) rays, X = v¢:

Cymyi (1) ~ &V )

with generally state dependent A(v). From this perspective,
the OTOC (4) can be viewed as a state-dependent LR bound,
which is helpful for studies of zero or finite temperature dy-
namics (cf. Refs. [26,84]). For infinite temperature Eq. (4)
and LR become equivalent. Here, OTOC, as well as A(v)
are explicit functions of the direction of the velocity. For
the one-dimensional case, this corresponds to the “left” or
“right” direction. The explicit directional dependence is rel-
evant when we consider helical systems or helical-states and
evaluate OTOC.

In spatially local systems that exhibit a ballistic spread of
quantum information (linear light cone), a universal form of
OTOC for the region close to the wavefront has been conjec-
tured [59,63]

t(){*l

0y~ exp (e, D =)

or equivalently [59]

Cxzvi (1) ~ exp (—c2(v — vp(11))1), )
which includes the velocity-dependent Lyapunov exponent
A(Vv) = —c2(v — vp(1))* and the direction-dependent butter-

fly velocity vg(ii) characterizing the speed of the ballistic
spreading of OTOC. The natural upper bound of this velocity
is given by LR velocity, vg(fi) < v g. The existence of a
negative velocity-dependent exponent outside the wavefront
also follows directly from the LR type bounds [26,84] which
also applies to nonchaotic integrable systems that display
ballistic operator spreading [83]. Generally, disorder can im-
pede correlation buildup and a different ansatz for localized
systems is needed. For example, in noninteracting disordered
systems correlations (including OTOC) do not spread beyond
the localization length [34,37], and these systems satisfy the
so-called zero-velocity LR bound [85], whereas, in MBL sys-
tems, they extend beyond the localization length, exhibiting
the so-called logarithmic light-cone behavior [35-37,81]. The
shape of the wavefront Eq. (5) is characterized by a single
parameter « that depends on the studied system. ¢ =1, a
simple exponential growth, is characteristic only for semi-
classical or large-N models, e.g., Sachdev-Ye-Kitaev (SYK)
model [86] and chains of coupled SYK dots with large-N
local dimension [20,63,80,87,88], exhibiting a sharp wave-
front. These cases are reminiscent of the classical butterfly
effect. « > 1, is generally attributed to the broadening of the
wavefront during the propagation, and is typical for lattice
systems with local interactions. « = 2, implying a diffusive
broadening of the wavefront, is found for random circuit
models in one dimension [56,59,61-63], whereas, o = 3/2
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applies to general noninteracting systems with translational
invariance [57-59,63,89].

Most reported studies are done for systems with symmetric
(direction independent) correlation buildup and entanglement
spreading. Anyonic statistics is found to induce asymmetric
spreading of quantum information with asymmetric OTOC
and light cones in nonequilibrium dynamics of Abelian
anyons in a one-dimensional system [90]. Quite recently, sim-
ilar findings have been made for parafermion (non-Abelian
anyons) chains, even for inversion-invariant Hamiltonians
[91]. Some early studies [92] demonstrated the possibility of
asymmetric scrambling for explicitly constructed Hamiltonian
comprised out of solely asymmetric local interaction terms.
Reference [93] presented a family of integrable Hamiltonians
with asymmetric information spreading showing that anyonic
particle statistics is not a necessary condition. Asymmetric
transport prevails even when interaction terms are considered
that render the system nonintegrable. For the latter case, the
left/right butterfly velocities were also obtained by fitting the
shape of OTOC near the ballistic wavefront to the universal
form given by Eq. (5).

We are interested in a possible control of correlation
buildup and entanglement spreading of quantum spin ex-
citations in oxide-based chains [94-105] such as LiCu,0,
[94-98] and LiCuVOy4 [99,100], which host helical spin or-
dering resulting in an emergent spin-driven ferroelectric phase
[106-109]. Such systems are not only interesting for use
in solid-state-based quantum information processing but also
provide a bridge to the broader class of magnetoelectrics and
multiferroics that have a variety of (spin)electronic applica-
tions [110-124]. External electric and magnetic fields can
affect, in a controlled way, the chiral order in spin-driven mag-
netoelectrics [125-128]. Here, we envisage the use of these
external fields to create/control the directionality of informa-
tion scrambling (equivalently spatial information spreading)
and to study the form of the information spreading and its
character.

We consider the local (single site or bond) perturbations,
e.g., local spin flips, and probe the scrambling with similar
local (single site or bond) operators. These shortest wave-
length perturbations allow probing the entire dispersion band
of elementary excitations and the direction-dependent max-
imal group velocities in the underlying system. We show
that topologically nontrivial quantum phases, such as chiral
or helical spin ordering, allows for electric-field controlled
anisotropic scrambling and a direction-dependent buildup of
quantum correlations. We analyze the left-right asymmetric
scrambling and determine the directional dependent butter-
fly velocities in the cases with conserving SU(2) or U(1)
symmetries. Assisted with exact numerical results, we assess
the sensitivity of OTOC to the (non)integrability of the stud-
ied models. Since the spin ordering induces ferroelectricity,
it is possible to act indirectly on the spin via an external
electric field (that couples to the ferroelectric polarization)
and modify the dynamic of OTOC, as will be demonstrated
below.

A complementary approach to the investigated short-
wavelength limit will be OTOC with the low-energy large
wave-length excitations, where the probing is done with sim-
ilar low-energy large wave-length detectors.

The paper is organized as follows. Section II specifies
the mathematical model and Sec. III introduces left-right-
asymmetry measures for OTOC and by virtue of symmetry
the set of nontrivial cases is identified. Also, analytical re-
sults for the early time regime and L = 4-spin model are
presented. Section IV contains a discussion of the numerical
results for spin chains of L = 22 and L = 102 sites, including
the implications of chirality on the directional asymmetry of
scrambling. We also discuss the short- and long-time limits for
L = 22 sites and verify the conjectured universal form Eq. (5)
around the ballistic wavefront for spin chains of L = 102
sites. We also present results for the directional dependence
of the butterfly velocity, and determine the wavefront shape
parameter . A summary in Sec. V concludes the paper.
Technicalities and detailed calculations are deferred to Ap-
pendices.

II. THEORY AND MODEL HAMILTONIAN

The Hamiltonian of the studied helical system with spin-
driven ferroelectricity reads

L L L
H=J Zsi Sii+ Zgi Siio — ZB,ZS',Z
i1 i1 im1

L
+D) (S xSii). D= Eygue. ©)
i=1

The L quantum spins positioned at sites i along the x axis are
described by spin (1/2) operators S;. The nearest-neighbor
exchange interaction is ferromagnetic (J; < 0) whereas the
next-nearest-neighbor is antiferromagnetic (J, > 0) resulting
generally in a frustrated spin order. Typical values, e.g.,
for LiCu,0, are J; = —11£+3meV and J, &7+t 1meV
[95,98]. External electric and magnetic (in general site de-
pendent) fields are applied along y (E,) and z (B}) axes,
respectively. The emergent spin-driven ferroelectric polariza-
tion follows from P = gME€, X Kk, where &, is the unit vector
along the chain, & = Zle ki = ZiL:l(Si x Sit1) is the vec-
tor spin chirality, and gvg is the magnetoelectric coupling
constant. An external electric field (in our case along the
y axis), which can be generated via dielectric or liquid ion
gating [129], couples to P as —P - E,=D Zle(si x Sit1):
The coefficient D encompasses the electric field strength and
the magnetoelectric coupling constant and mimics an electric-
field tunable inverse Dzyaloshinskii Moriya (DM) interaction
term. Hence, depending on the strength and direction of the
external fields the system can be driven to the chiral or nonchi-
ral phase. This term breaks explicitly the Dihedral group
D, symmetry: It is symmetric with respect to time inver-
sion, 7", but antisymmetric with respect to spin-flip, Z (e.g.,
Z= ]_[iLzl 28 or Z = exp(in Z,'L=1 8%)), or a spatial inver-
sion, P. The vector-spin-chirality order parameter, ¥ = (k),
is nonzero in the helical phase and disappears for collinear
spin ordering [106—-109]. Of interest here is the impact of
the chirality on the delocalization of quantum information,
that signifies the loss of information under time evolution,

meaning scrambling.
A unitary local rotation of the spins about the z axis by
the angle ¥ = — arctan(D/J,), S‘J* — S.;Fe‘ijﬁ, converts the
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Hamiltonian (6) to

. L
e = 65, 456 355
Hr= i=1 S + 57850+ ) 885,

i=1

! L L
2 AL A a— A oz &
+2 > SF8, + 878 )+ ) 858,
i=1

i=1
L L
=D'Y S x 8. — ) BiS;. ™
i=1 i=1

Here S'li = S'j‘ + 13‘1’ are spin raising/lowering operators
on site i, J| = VJ{ + D*, J, = L(J} — D*)/(J} + D?), and
D' =DJ\J,/ (J12 + D?). Depending on the values of parame-
ters, in the case of a homogeneous magnetic field (B; = B;),
the ground state of Hamiltonians (6)/(7) can be either fer-
romagnetic, chiral, or nematic [6,7]. For J, =0, the DM
interaction term is absorbed by the transverse-exchange term.
The Hamiltonian is equivalent to the ferromagnetic easy-
plane XXZ model with renormalized exchange J;, exchange

anisotropy J, /J; = 1/4/1 + (D/J1)? < 1, and admits an exact
solution through the Bethe ansatz. The chirality in the case of

open boundary conditions (OBC) is «* ~ J1D/ (Jl2 + D?). For
Jo # 0, D # 0, the system is not integrable and displays mixed
GOE/GUE level statistics in the case of randomly distributed
B [124].

In the case of a zero magnetic field (B = 0) and vanish-
ing DM interaction (D = 0), the total spin Smt = Zi S,- is
conserved, [Stot, H] =0, and the system is SU(2) symmetric.
Otherwise, for a homogeneous magnetic field (B; = B;), the
z component of the total spin $i, = Y, 8% is a conserved
quantity, [Sfol,l-? 1=0, and our model is U(l) symmetric.
Therefore, the total number of “down” (“up”) spins can be
used to characterize any eigenstate of the system. Also, each
S subsector can be solved independently. The magnetic field
B, only causes a constant shift in the energy within each
subsector and does not affect the eigenstates. Besides, the
spectrum of Hamiltonian (6) is symmetric with respect to a
spin flip [130], Z, in combination with a spatial inversion

[1311, P,
P32 -
H(J1.J,D.B)) = H(1,J,D.B) +2B, ) 87 (8
i=1

The fully saturated state, all spins either up or down, is a triv-
ial eigenstate of the Hamiltonian. We choose the state |0) =
[11...1) as a ferromagnetic reference state (vacuum state)
and consider S, > 0 sectors only. We call M-excitation state
(M-magnon state) the state with M spins flipped down with
respect to the ferromagnetic reference state. These states com-
prise the M-excitation/magnon sector with S5, = L/2 — M.

One can solve the one-magnon sector exactly by taking
the eigenstates of the total momentum (lattice translation)
operator, |W;) = LL > e ™)) with [ ) = STIM .. 1), as
an ansatz. The one-magnon dispersion relation for this case
reads

ek)y=—Uy + )+ Jicosk +Jycos2k — Dsink, (9)

t t t
3]  — =-10,/,=00,D=00 h=-10,/,=00, D=05
Ji=-10,J,=1.0,0=0.0  ---- J;=—-1.0, ,=1.0, D=05

/2 n

Ao

FIG. 1. The dispersion relation (upper) and a corresponding
group velocity (lower) for different J;, J,, and D, parameters. Bands
are shifted for D # 0 (green dotted and red dashed curves) and
k <> —k reflection symmetry is explicitly broken. The maximal val-
ues of the right (vy(k) > 0) and left (—v,(k) > 0) group velocities
differ only for J,, D # 0 (red dashed curves), whereas they are equal
for any J;, D, but J, = 0 (blue and orange solid and green dotted
curves).

with the one-magnon energies e(k,) and wave vec-
tors k, =2nn/L, n=0,...,L—1. For finite DM in-
teraction (D # 0), e(k) # e(—k) applies, resulting in a
mismatch between the group velocities v,(k) = de(k)/dk
of magnons with wave vectors k and —k, namely
[vg(k)| — |vs(—k)| = 2D cos(k) (see also Fig. 1, where we
show the dispersion (9) and the corresponding group veloc-
ities for the different values of J, and D). For the one-magnon
case, the spreading of information occurs through magnon
propagation only. A probe of scrambling with OTOC of lo-
cal operators samples the entire magnon band. Therefore the
Lieb-Robinson bound for a one-magnon sector can be ex-
pressed in terms of the maximum group velocities of “right”
(r) and “left” (£) moving magnons

. detk) AN,
VIR T R ok 0 TR T LA ok )’

A positive next-nearest-neighbor term (J, > 0), generates
an additional peak in the dispersion relation Eq. (9). Thus,
generally there are four local extrema in the group veloc-
ity (see Fig. 1). Two positive-valued ones correspond to the
“right” moving branch of magnons, and two negative-valued
ones associated with the “left” moving branch. In the case of a
finite D # 0, vy # va. The second isolated extremum value
in each branch will generate the second wavefront behind the
main one (see below Sec. IV). Because the spin-flip operator
Z not only flips the spin but also the sign of D term, the
dispersion relation for the (L — 1)-magnon sector is reflected
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(k <> —k) as compared to the one-magnon sector, and v{ ; and
va are exchanged.

For J, = 0, the dispersion relation is expressible as

e(k) = —Jy +/J} + D? cos(k + q), (11)

which is rescaled by ~/J7 + D?/J; and rigidly shifted by
a momentum ¢ = arctan(D/J;) (the twisted boundary con-
ditions), as compared to the case with a vanishing DM
interaction, &(k) = —J; + Jycos(k) for D = 0. Therefore,
the maximal left and right group velocities are equal,
Vg = va = lez + D?, for J, = 0 and any D case. Only the
probes with the long-wave excitations—OTOC with nonlocal
operators—will exhibit the dominant direction of the informa-
tion spreading, because of a finite value of the group velocity
de(k)/dk ~ D at k — 0. Those will not be considered here.

Different J, > 0 and D parameters renormalize the max-
imal group velocities without affecting the essence of the
results and conclusions. Therefore, without loss of general-
ity in what follows, we stick with J; = —1, J, =0, 1, and
D = 0, £0.5. Time will be measured in units of 1/|J;].

III. OTOC ANALYTICAL RESULTS

For simplicity let us set gyg = 1 and study the spread-
ing of the quantum information with pairs of unitary
operators W= exp(iﬁfj), V= exp(iﬁ,‘;‘,), and W = exp(ik}),
V= exp(ik},), where « is any of {x,y, z} and &7 is the lon-
gitudinal component of the vector spin chirality operator, &,

A

Ky = (Sn X Sn-}—l)z- (12)
With the operator identity
e?" = cosbhl +isinbé*, (13)

where 6% (x € {x,y, z}) is one of the Pauli operators, the
commutator of exp(iS;) and exp(iS,’Z) is expressed in terms
of commutators of Pauli operators 6% and 6/ as

sin ( JIEAGH m] (14)
OTOC given by Eq. (1) then reads

(e, e1F) = sin* (DI[or . 821F). a5

Equation (15) already shows that OTOCs given by these two
sets of unitary operators saturate to values that differ by a
factor sin*(1/2). Hence, they cannot saturate to the same finite
value, as other reported studies have suggested for any unitary
operators. The Pauli operators are Hermitian and unitary as
well, (6*) 0% = (¢%)*> = L.

One can also express OTOC, Eqs (1)/(2), with the second
operator pairs (W = exp(ik}), V= exp(ik},)) in terms of the
Pauli operators, but the resulting expressions are not as com-
pact any more, see Appendix A [132].

[ eng (t)’ eiS/?,]

A. Scrambling anisotropy measures

Let us first introduce the notation with the site dependence
of the operators made explicit:

Com () = (W (0), V1 W (2), V). (16)

To quantify the directional asymmetry in the scrambling, we
define the following left-right asymmetry measures:

Acg,m(t) = %(Cn,m(t) - Cm,n(t))s 17

AC) /(1) = HChnra(®) = Con—a(®)), (18)

where the operator W is acting on the sites either to the left
or to the right of V. ACy, (t) (17) measures the directional
asymmetry for the exchange of indices, whereas ACS () (18)

for a reflection of indices on the nth site. AC;; . ,(t) becomes

equivalent to ACfY 4() in the case of a translationally invariant
system.

Yet another alternative measure for the directional asym-
metry utilizes the spatial inversion operator applied solely
to the Hamiltonian and the state (operators W, V are not
permuted on the lattice). Formally, this operation results in
the change of sign of the DM amplitude in the Hamiltonian
(6) (75 :H(,,J»,D)= H(J;,J,, —D)) and the directional
asymmetry can be defined as
Com' () = C230(0)

ACVLl,m(t) = _( n,m n,m ) (19)

where the expectation value C,?;O(t) is taken with respect
to the spatially inverted state. For a translationally invariant
system AC; . ,(7) also corresponds to Cy/ . ,(¢).

Generally, the directional anisotropy in the scrambling can
be caused by a chiral term (DM interaction) in the Hamilto-
nian (through the time-evolved operators) or the nonvanishing
chiral order in the probed state. Besides, OTOC, given by
Eq. (16), and the explicit asymmetry measures, i.e. Egs. (17)—
(19), depend on the employed operators, the distance between
them, and the specific lattice sites on which these operators act
nontrivially. From the latter two only the distance d between
the operators matters in the case of a translationally invariant
system,

Cinta(t) = Cy(1). (20)

Furthermore, by inserting P2 =1 on both sides of the squared
commutator (scrambling kernel) in Eq. (16), it can be shown
that

(1) = P50, Q21

Therefore the directional asymmetry measures Egs. (17)—(19)
fulfill the following equalities:

ACy (1) = Ade(t) = AC, ) = AC,(1),  (22)

AC;(t) = —=AC_4(), (23)
and

ACPZ (1) = ACPS(). (24)

For the sectors with opposite magnetization, S5,
+(L/2 — M), the spectrum of the Hamiltonian (6) is identical,
aside of a constant energy shift proportional to an applied
magnetic field, B, [see Sec. II, Eq. (8)]. This shift is irrelevant
when the magnetic field is zero (B, = 0) or scrambling is
probed with 6%-s (“B,” term commutes with these operators).
The eigenstates in these sectors are mapped onto each other
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by a combination of a spin-flip (Z2) and a spatial-inversion
(‘P) operators:

AlY) = (E + B.(L — M))ly), (25)

HPZly) = (E - B.(L—M)PZ|y). (26)
Each state |¢) of a given magnetization sector (S,) has a cor-
responding state P Z|¢) in the opposite-magnetization sector
(—S5,) and for these states
52,20 52, <0
Clo7 (@) =C9~7 (). (27)
Here, the expectation values on the different sides of the
equality are taken with respect to the corresponding states |¢)
and P Z|¢), respectively [133]. From Eq. (27) follows that the
asymmetry AC,(t) measured for the corresponding states has
an opposite sign, i.e.,

ACT (1) = —ACT* (). (28)

As a result, for the PZ symmetric state, like any eigenstate
of the Hamiltonian in the zero-magnetization sector (S5, = 0,
the so-called half-filled case), the OTOC is symmetric. The
sum of OTOCs is symmetric for a pair of states that are
mapped on each other by PZ such as in the case of equal
participation rates of the opposite-magnetization sectors, for
example, at finite temperatures (8~! < o) for a zero mag-
netic field (B, = 0). At infinite temperature (8 = 0) [134], the
scrambling is symmetric in the case of vanishing magnetic
field, and the directional asymmetry is invisible for the probe
with 6%-s even in the case of a finite magnetic field.

Finally, because ZPT where T is a time inversion opera-
tor leaves the system Hamiltonian unchanged,

ACHs (1) = =ACHS, (=1),

AC) (1) = —=AC) ,(—1), (29)

and only odd in ¢ terms are contributing to the directional
asymmetry in scrambling.

B. Short-time limit

In this section, we determine the leading and subleading
contributions to the OTOC kernel (squared commutator) in
the short-time limit # < 1. By expanding the Heisenberg rep-
resentation of W, W (t) = exp(—iHt)W exp(iHt), in time ¢

N NN @{t)? . A .
W(t)=W+ll[H,W]+T[H,[H,W]]
(it)’
31

=30 i, (30)

+ (A, [H,[H W+

where

[A, B]...]] (31)

denotes the nested commutator, the kernel of OTOC (1) can
be rewritten in the following form:

(Z O 11,1, V])
n.

n=1

2
W), VI =

(32)

Accordingly, the first nonvanishing  commutator
[([H, W]z, V1 #0 (whereas [[H, W]y, V]=0) deter-
mines the leading contribution in ¢ in the short-time limit:

t2v

wh?

a it

P 5112 A 71 712
W), VII® ~ <|[[ W, V]| T

x 2Im([[H, W1,, VI'I[[H, W1,11, V])>.
(33)

Here, in the second line, we kept only the leading and the sub-
leading contributions in . For operators that commute initially
[W,V]=0 (not commute [W,V]#0), v>1 (v=0), the
leading term is of order #*" and subleading correction to it of
order t?"*!. For a translationally invariant case, according to
Eq. (29), the leading contribution to the scrambling is always
symmetric, and only the subleading one causes the directional
asymmetry. For operators that do not commute initially, this
leads to a constant (#-independent) shift and the linear in ¢
left-right asymmetric contribution.

Early time power-law behavior, instead of initially spec-
ulated exponential one, were also reported for chains with
local Hamiltonians (see Refs. [36,56-58]). In earlier works
[55] based on the results for the Luttinger-liquid, this type of
behavior was viewed as a distinct feature of integrable models.

1. Scrambling measurements with Pauli operators

Here we only consider the cases where the scrambling is
measured solely with Pauli operators, W = 6% and V = 6¢.
Both operators have single site support, the sites m and n,
respectively. The Hamiltonian H(J,, J», D, B,) (6) contains
quadratic terms in 6 -s, acting on the nearest- (terms “J;”” and
“D”) and the next-nearest-neighbor sites (term “J,”), and the
linear one (term “B,”). The commutation relations between
the Pauli operators [6%, 671 = 2i§,,,, %P7 6, where 8, , is
the Kronecker delta and %7 the completely antisymmetric
tensor (Levi-Civita symbol) with ¢*%* = 1, yield

[.6] = 51 Gy 0,00

ih, .
+ T(Gm X (Um—2+0.171+2))a
D

2
— 6560 —6m.1)) +iB.e"*P6L . (34)

LA A A
((3 Oy - (Gnl—l_am+l)

The magnetic field (B;) contributions (the last line) are only
relevant for 6*Y-s and they vanish for 6%-s. In Eq. (34), and
in what follows, the Greek superscripts o, B, and y denote
any of {x,y, z}, the Latin subscripts j, m, n, are the lattice
site indices, and the summation over repeating indices is as-
sumed except for the explicitly given x, y, or z. For %, which
has a support only on a single site m, the commutator with
H(\, J»,D,B,) [Eq. (34)] stretches over the nearest-neighbor
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sites to m, namely, m %+ 1 (due to “J;” and “D” terms) and the
next-nearest-neighbor sites m &= 2 (due to “J,” term). There-
fore the support of the resulting operator (34) expands over
two additional sites in each direction. Contributions due to
“J>” term of the Hamiltonian are similar to those from “J;”
term, with m % 2 instead of m £ 1. They also act only on two
sites, the width of the support, however, increases by four
sites in this case. Consequently, for the nested commutators
in Eq. (30), the width of the support increases by four sites
(two in each direction) after each iteration.

One can probe this operator spreading, for example, with
yet another Pauli operator, V = 6, by employing OTOC
Eq. (16). In this case, the index of the first nonvanishing
term in the expansion of the OTOC kernel, Eq. (32), is
v =max(l, (Jn — m| 4+ 1)div2) when Jy#0 or
v =max(l, |n —m|) when J, =0 but J; #0 or D #0.
Accordingly, the leading and subleading contributions in
OTOC are

t2v

T oAd ~al|?
Qi(r?rz(t) = (U')2|[[H’ m]v’an]| ’ (35)
000 = — T (([.52),.o Y ([ 52),.,. 0]
mn V!(v+ ])! >Ymly’ Tn > miyp41’ Tn
-85, 601 [[A.65],.600). G6)
ith _Jmax(1, (Jn —m| +1)div2) for J, #0
w1 ~ |max(1, |n — m|) for J, =0

In Appendix B, we explicitly evaluate these two terms for
d=|n—m| <2.

Spin chains allow us to define A(v) for arbitrary large v in
contrast to local quantum circuits and relativistic field theo-
ries, where there is a strict “light cone” beyond which even
exponentially weak signaling is impossible. For rays at fixed
velocity v with vt > 1 and ¢+ < 1 such that v =vt/2 € Z
(2 #0)orv =1t eZ(J=0),Eq. (35) leads to the follow-
ing estimate for the decay exponent A(v) (4) [see Appendix D,
Eq. (D4)]

A(v)~ —2vinv. 37

Therefore |A(v)| grows slower than 2v* where o > 1 at (ex-
tremely) early times.

C. Exact expressions for L = 4 site system

For illustrative purposes, we present analytical solutions
for the system of four spins (L = 4) for the particular choice
of operator pairs W =67, V =67, and W = exp(ik’, ),
V = exp(ik}).

In the case of fully polarized states, |[1111) and [{{]]),
the corresponding Hilbert sub-spaces are one-dimensional and
there is no scrambling in the system. The two-magnon sector
has a zero magnetization, S5, = 0 (half-filled case), hence all
asymmetric contributions vanish (see Sec. III A). The remain-
ing one- and three-magnon sectors correspond to the case
with opposite magnetization, and the asymmetric contribu-
tions only differ by a sign (see Sec. IIT A). Therefore, we only
consider the one-magnon sector and evaluate OTOC (16) for
the system eigenstates with finite or vanishing chirality.

We consider the eigenstates of the Hamiltonian (6), with
eigenenergies —(D + J,) and (J| + J»),

ICh) = FULAAD) — it ) — M) +ilr ), (38)

W) = LA + 1A + 111D + 11410, (39)

which have a finite ({(Ch|&%|Ch) = 1/4) and zero chiral-
ity ((W|k*|W) = 0). They are also the eigenstates of the
translation operator with the crystal momentum 7 /2 and O,
respectively. The states |W) and |Ch) are also well known
from quantum information theory as W and twisted W state
[135].

For small ¢, expanding OTOC up to subleading contribu-
tion in 7, for the directional asymmetries we have (detailed
calculations are given in Appendix C 1):

|ACTY | =217(J] + D*Jy 4+ 8DJ L) + OF%),  (40)

|ACY.,| =263(D +J2D +8DJ1 ) + O@°),  (41)

respectively. Expressions for |Ch) and |W) are similar, with
only D and J; exchanged (D <> J;). The leading term in ¢
is the cubic one. As expected, the scrambling is symmetric
for vanishing DM interaction, D = 0, in the case of nonchiral
eigenstate |W).

Obviously, for |d| = 2, the asymmetric contribution van-
ishes, because d =2 and d = —2 are equivalent—one can
reach the site on |d| = 2 distance from both ends of the chain
with PBC.

To better quantify the directional asymmetry in scrambling,
we also check OTOC with the vector spin chirality opera-
tors, V, = exp(ik}) and W, = exp(ix},). In this case, again, a
nonchiral state exhibits the directional asymmetry only if the
Hamiltonian has a nonvanishing DM interaction (the chiral
term, D # 0). In the short-time limit, the directional asymme-
tries in OTOC are

|ACSE | =81Jil]r — (7} +3(D +24)%) 1

+ O(#%)| sin* 1 cos® 1, (42)

|ACY., | =8ID ||t — L(D* +3(272 + (/i — 2)°
— 41,(Jy + 2>) cos 1)) + 0|
x sin* § cos” 1, (43)

respectively. The leading term is linear in ¢ because
chiralities on the neighboring bonds share the site and
lexp(ix},,), exp(ix};)] # 0. Comparing Eqgs. (40) and (41)
with Egs. (42) and (43), it is evident that the different observ-
ables are not equally sensitive to the asymmetric spreading of
quantum information.

IV. OTOC NUMERIC RESULTS

We performed systematic numerical studies of OTOC by
employing exact techniques. The ground state for the given
parameters is obtained by generalized block Davidson exact-
diagonalization methods and unitary time evolution is carried
out by the Krylov’s subspace Arnoldi method. The latter
iteratively computes the product of the matrix exponential
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with a given vector without explicitly constructing the matrix
exponential.

As an initial state, we consider the ground state of the
system in the two-magnon sector (S5, = L/2 — 2) for finite,
D = 0.5, or zero, D = 0, DM interaction. The former is also
the chiral state, k* # 0, whereas the latter one has a vanish-
ing chirality order, x* = 0. We refer to them as chiral and
nonchiral states, respectively. We consider two scenarios, one
with unchanged system Hamiltonian, and another with DM
interaction quenched at r =0 from D = 0.5 to 0 or from
D =0 to 0.5, respectively. With these setups, we examine
(a) nonchiral initial state and time evolution with Hamiltonian
without DM interaction, the symmetric case; (b) chiral initial
state and time evolution with the Hamiltonian with a finite
DM interaction (chiral Hamiltonian), the asymmetric case;
(c) the role of chirality at the level of state—chiral initial
state and time evolution with Hamiltonian with vanishing
DM interaction; and (d) the role of chirality at the level of
Hamiltonian (time-evolved operators) level—nonchiral initial
state and time evolution with the chiral Hamiltonian.

We consider both integrable and nonintegrable cases.
We always use the PBC. For nonintegrable case with
J, = —J; = 1, the considered quench in DM interaction is
across the dynamical (as well as static) phase-transition line
between the chiral and nonchiral phases [7]. In the case of
quenched Hamiltonian, the initial state would correspond to
nontrivial excitations in the same S5, sector (all considered
Hamiltonians preserve S¢ ).

We investigate the quantum information scrambling by
employing OTOC for three different pairs of operators:

C (1) = ([67,4). 67] [67,4(0). 65]). (44)
Ci0 =([6140. 6] [65a0. 7)) @9)
Cie ) = ([, 5] [, ). (46

Taking S/% or exp(iS¥/7) instead of 6/* will only lead to a
constant multiplicative factor (see Sec. III). The results for
67-s will be the same, as in the case of 6*-s, because of rota-
tional symmetry about z axis. The first Eq. (44) and the third
Eq. (46) act in the same S, sector (recall that Hamiltonian
(6), as well as 67 and «; preserve the z component of the total
spin). Hence, the entire calculations can be performed in the
same S5, sector. The second measure given by Eq. (45) acts
across the S, sectors (67 = S'f + S'j_). Nonetheless, only S¢,,
S¢ . £ 1,and S, & 2 sectors are involved in the time evolution
in this case, reducing the necessary computational complex-
ity considerably. We only compute | (¢)) = W (t)V |) and
|p(2)) = VW (¢)|0) and recover OTOC C(r) as

CO= @O @) + (9@)Ie(1)) = 2Re((p()|¥ (1))). (47)

With this approach, we need to propagate appropriate states
only once forward and once backward in time.

We will distinguish three time regimes, early (r <« 1, when
the time series expansion is still valid), intermediate- (near and
around the approaching wavefront, r ~ d /vg(i1)), and long-
time (r — oo) regimes. We investigate the intermediate-time
regime more accurately at the end of this section.

A. Early and long-time behavior

We start with the nonintegrable case (J, = —J; = 1). Fig-
ures 2 and 3 show the spatiotemporal evolution of OTOC for
the L = 22 site system. The results correspond to the four
mentioned combinations of the setup. In all studied cases,
we found that OTOC spreads ballistically in both directions,
falling sharply outside a light cone, before the left and right
fronts collide (recall that we use PBC), see Figs. 2 and 3. As
expected, the OTOC for the nonchiral state is fully symmetric
when DM interaction is also zero (D = 0)—the symmetric
case [see Figs. 2(a) and 3(a)]. For a chiral initial state and
time evolution with the system Hamiltonian with a finite DM
interaction—the asymmetric (chiral) case, the speeds of the
left and right propagating wavefronts do differ, see Figs. 2(b)
and 3(b). Comparing the cases with chiral state versus chiral
Hamiltonian, one sees that [Figs. 2(c) and 3(c)] the con-
tour lines corresponding to C5°(¢) < 0.05 and Cj*(r) < 0.25
thresholds remain symmetric even for the chiral state but the
time evolution under the nonchiral Hamiltonian. The lines
matching to higher than the threshold values are asymmetric.
In the case of a chiral Hamiltonian (finite DM interaction),
the wavefronts spread asymmetrically even in the case of a
nonchiral initial state, see Figs. 2(d) and 3(d). The asymmetry
is most apparent for the chiral state and the time-evolution
with the chiral Hamiltonian (D = 0.5). Barely, but one can
still distinguish the second wavefront due to the second iso-
lated maximum in the left and right branches of the group
velocity [see plots (a)—(c) in Figs. 2 and 3]. The scrambling
around and behind the wavefronts is considerably stronger for
6 as compared to 6° operators. This can be also connected to
the nonlocal character of the effective Fermionic representa-
tion of the corresponding 6 operators, similar to the findings
made for quantum Ising chains [57] and larger dimensions of
the total %, sectors involved in the scrambling: S%, + 1 and
St £ 2 sectors for 6 as compared to only S¢, in the case of
6°.

In the long-time regime, the saturation of OTOC to its
maximum value 2 [equivalently decay of OTOC Eq. (2) to
0] at long times for all subsystems (i.e., for all separations)
and for all operators W and V implies a complete quantum
information scrambling [28]. At longer times, in the case of
scrambling, C5*(¢) should converge to

2

255\’
(1 — 00) = 2(1 _ (T) ) , (48)

(see Appendix F), which certainly differs from 2 when
S 7 0. It will be different from value 2 even if one takes
the infinite temperature ensemble instead of a pure state. Typ-
ically, one expects 2 for the Hermitian and at the same time
unitary operators, like 6%-s, but because the z component of
the total spin is conserved, (6;) # 0, (6, ,(t)) # O, hence,
the commutator in Eq. (44) is not a connected one [24], and
the result deviates from the value 2. For 6*-s on the other
hand, (6;,,(t)) = 0 and (6,’) = 0, because of the rotational
symmetry about z axis. Therefore the squared commutator
in Eq. (45) is the connected one, and in the case of full

scrambling, it converges to

Cj(t > o0) =2, (49)
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FIG. 2. Spatiotemporal evolution of the OTOC C¥(¢) [(a)—(d)] and time average of it [(e)—(h)] for nonchiral [(a), (d), (e), and (h)] and

chiral [(b), (c), (), and (g)] states, in two-excitation sector [S5, = (L/2 — 2)] of L = 22 spin chain with PBC; J, =

—J; = 1; time is measured

in units of |J;|~'. The initial chiral or nonchiral state is prepared as the ground state of the system with a vanishing (D = 0) or finite (D = 0.5)
DM interaction, respectively. DM interaction is quenched att = 0D = 0.5 — 0 [(c) and (g)] and D = 0 — 0.5 [(d) and (h)]. [(a)—(d)] Contour
lines are interpolated to non integer d; the left and the top subplots correspond to vertical and horizontal cross-sections of the main plot at
distances d = 0, =1, 5, =11 and at times r = 0, 1, 2, 3, 4, respectively; a white spot around d = 0 t = 0.75 is due to contour lines. Insets
in plots (e)—(g) show the time-averaged values with the standard deviation for ¢+ > 400 values; red dash-dotted line corresponds to the value

expected in the case of complete scrambling.

as it was typically expected for the unitary operators [24] (see
also Appendix. F).

In Figs. 2(e)-2(h) and 3(e)-3(h), on a semilogarithmic
plot, we show the time-averaged values of OTOC, I;(t) =
%fé Ci(t")dt’ and I;(t) = %fé C3(1")dt’, respectively. The
actual values, Eqgs. (48) and (49), are only acquired for sys-
tems with finite DM interaction [see Figs. 2(e)-2(h) and
3(e)-3(h)]. The latter also indicates the vanishing long-time
average of corresponding F(¢). In the case of a vanishing
DM interaction (D = 0) for both the chiral and the nonchiral
initial states, the values to which the time-averaged values
of C;*(¢) saturate are smaller than 2 [see plots (e) and (g)
in Fig. 3]. They are homogeneous, however (do not depend
on the distance, d). The long-time limit of the time-averaged
values of C5*(¢) have a clear dependence on the distance d for
D = 0 cases, being largest on the same and farthest sites [see
plots (e) and (g) in Fig. 2 and the insets therein]. For the case
with the nonchiral initial state, the interior eigenenergies of
the system Hamiltonian are also at least doubly degenerate.

For the short-time limit (early time regime), in all cases
that we studied, we observe a power-law growth of the OTOC,
as shown, for example, for D = 0.5, in the center panels
of Figs. 4 and 5 which is consistent with the discussion in

Sec. III B. At leading order, the OTOC behaves as 2’ where
v = max(1, (|d| 4+ 1) div 2). For the chiral initial state or in
a system with a nonvanishing DM interaction, we also ob-
serve the asymmetric subleading #>*! corrections. This is
also demonstrated in Fig. 6, where we plot the scaled values
of C;*(¢) and the corresponding scaled values of the direc-
tional asymmetry |AC;*(¢)| for the fixed |d| =5 and |d| = 6
distances as a function of time (see also the bottom panels in
Figs. 4 and 5). All these are also in line with the discussion
in Sec. III B. As we see, integrability is not essential for the
power-law behavior of OTOC. It is generic for any quantum
system with local-Hamiltonian and finite on-site subspaces.

We continue with integrable limit J, =0 and J; = —1. In
this case (J; = 0), DM interaction can be gauged out from
the Hamiltonian (6), leading to the effective easy-plane XXZ-
Heisenberg model [see Sec. II, Eq. (7)] with modified, twisted
boundary conditions S’fﬂ. = ¢*PL8* in the case of PBC.
For ¥L = 2my with y € Z (integer multiples of 2r), corre-
sponding to a “magical” D = —J; tan(ym /L), one recovers
the PBC in the latter case too. One can avoid these subtleties
by considering OBC, but the translation invariance is lost in
this case, complicating further the assessments of analytical
results. Therefore, we study PBC.

224421-9



M. SEKANIA et al.

PHYSICAL REVIEW B 104, 224421 (2021)

—
D
-
N
<)

(b =0

=
5

=2t ly(t> )

=
=)

QaQQq

TN
SR
I T T

Ruie
=y

HPHO®NOUIRWNHO

—o

HHHFHHEEEHFEH

o
8]

t
lo(t=1] Ca(t)dt’

0
(f) 20

=
5

: ‘ 1‘0
AL L
ALARRARARRRRARR

8L2  tltow)

Cr(t)dt
5

t

la(t)=2f

«Q
-
N o
o o

(

=
5

-2} Ig(t> ®)

@
Crtrdt
s

C
4
t

CF(b) o $oeet

[SRX-X°%

Fmmm i e .

HHHO
Pue

o
Qoaq
LI |
=y

N
o

0
d

o
5

N o
o o

—_

(t)dt' Z Iy(t)=1f

=
5}

t
XX
ocd
-
o

t lg(t— )

Sl d
102 1071 10° 101 102 103

la(t)=%]

FIG. 3. Spatiotemporal evolution of the OTOC C}*(¢) [(a)—(d)] and time average of it [(e)—(h)] for nonchiral [(a), (d), (¢), and (h)] and
chiral states [(b), (c), (f), and (g)], in two-excitation sector [S5,, = (L/2 — 2)] of L = 22 spin chain with PBC; J, = —J; = 1; time is measured
in units of |J;|~". The initial chiral- or nonchiral-state is prepared as the ground state of the system with a vanishing (D = 0) or finite (D = 0.5)
DM interaction, and B, = 1.235 and B, = 1.51, respectively. Finite magnetic field (B, # 0) does not change behavior of C}*(¢) qualitatively.
DM interaction is quenched att = 0D = 0.5 — 0 [(c) and (g)] and D = 0 — 0.5 [(d) and (h)]. [(a)—(d)] Contour lines are interpolated to non
integer d; the left and the top subplots correspond to vertical and horizontal cross-sections of the main plot at distances d = 0, 1, 5, =11 and
attimest = 0, 1, 2, 3, 4, respectively; a white spot around d = 0¢ = 0.75 is due to contour lines. Insets in plots (e)—(g) show the time-averaged
values with the standard deviation for # > 400 values; red dash-dotted line corresponds to the value expected in the case of complete scrambling.

Figures 7-9, show the results for C}*(z), Eq. (45). In the
integrable case, OTOC also spreads ballistically in both di-
rections, falling sharply outside the light cone before the left
and right fronts collide. We find a linear light cone behavior
which agrees with the Lieb-Robinson bound with velocity
VIR = /J? + D?, corresponding to the maximal velocity in
easy-plane XXZ-Heisenberg chain with exchange amplitude
vJ 12 + D?. The overall amplitude and speed of the scrambling
are lower as compared to case with J, # 0; the velocities of
the front propagation to the left and the right are now equal,
and directional asymmetry only shows up in the amplitudes
of OTOC (cf. the nonintegrable case with J, = 1). For C5(¢),
we do not expect any directional asymmetry—except the one,
caused by twisted boundary conditions—because unlike 6*/,
6* remains unchanged under the mentioned gauge transfor-
mation.

For OTOC with low-energy long-wavelength probes (not
studied here) we expect to observe a different velocities for the
front propagation to the left and to the right for nonvanishing
DM interaction also in the case of J, = 0. The velocities
for the low-energy long-wavelength probes, however, will
not correspond to the Lieb-Robinson velocities for the given
parameters.

The OTOC for the nonchiral state is fully symmetric in the
case of a vanishing DM interaction, D = 0 [see Fig. 7(a)].
The contour lines corresponding to C;*(¢) < 0.5 threshold
remain symmetric for all considered cases, unlike the case
with finite, J, = 1, where the vanishing of DM interaction was
also required (cf. Fig. 3).

In the long-time limit, the results shown in Fig. 7, evi-
dence that only the case with the chiral initial state and the
chiral Hamiltonian (finite, D = 0.5, DM interaction), satu-
rates the desired value 2 [see Fig. 7(d)]. For D = 0.5 and,
in general, D # —J; tan(2km /L) the Hamiltonian eigenspec-
trum is not degenerate. For the quenched cases [plots (g)
and (h) in Fig. 7], the values to which C}*(z) saturate do
not depend on distance d, but are still smaller than 2. The
symmetric case (nonchiral state and nonchiral Hamiltonian,
D = 0) is different. The values to which the time-averaged
OTOC saturate are farther away from expected 2. There is
also a structure in the time-averaged OTOC, namely for the
farthest (d = 11) and closest (d = 0) distance time-averaged
OTOC values are the same and larger than the rest. Spec-
tra of the system Hamiltonian and decomposition of the
initial state in eigenvectors of the system Hamiltonian ex-
hibit an extra symmetry in this case, containing two- and
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fourfold degenerate eigenpairs, indicating that OTOC is ca-
pable of distinguishing higher symmetric phases (see also
Appendix F).

For the short-time limit, also, for the integrable case, we
observe a power-law growth of OTOC in all four studied
setups, as shown, e.g., for D = 0.5 in the center panel of
Fig. 8. At leading order, C}*(¢) increases as 2V, but now
with v = max(1, |d|) (cf. J, = 1). For the chiral initial state
(«* # 0) or in the system with a nonvanishing DM interaction
(D # 0) we also observe the asymmetric subleading, 12!,
corrections to it. This is also demonstrated in Fig. 9, where
we plot the scaled values of C}*(¢) and the corresponding
scaled values of the directional asymmetry |AC}*(¢)| for the
fixed |d| = 3 and |d| = 4 distances (see also the bottom panel
in Fig. 8). All these are also consistent with the discussion
in Sec. IIIB. Similar power-law behavior was reported in
Refs. [55,58], where the authors studied the one-dimensional
spinless fermions with nearest-neighbor repulsion (which is
equivalent to the 1D Heisenberg XXZ) and noninteracting XX
model, respectively.

Finally, in Fig. 10, we show the results for the spatiotem-
poral evolution of Cj“(¢) (46) for symmetric [D = 0, plots
(a) and (c)] and asymmetric cases [D = 0.5, plots (b) and
(d)] for nonintegrable J, = —J; = 1 [plots (a) and (b)] and
integrable J, = 0, J; = —1 [plots (c) and (d)] cases. For this
operator pairs, we also found ballistically spreading fronts in
both directions, falling sharply outside a light cone, before
the left and right fronts collide. As expected, the OTOC for

0.0 0.5 1.0 15 2.0 2.5 3.0
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t
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FIG. 5. Short-time behavior of OTOC Cj*(t) from
Fig. 3(d) (D =0.5) and a corresponding directional asymmetry
|AC;*(t)|. Dotted lines in the center and bottom log-log plots
correspond to power-law fits forr < 1.

the nonchiral case is fully symmetric [see plots (a) and (c) in
Fig. 2]. One can identify the second light cone for the noninte-
grable J, = —J; = 1 case for a vanishing DM interaction [see
Fig. 10(a)] reflecting the two distinct isolated maxima in the
single-magnon group velocities. The directional asymmetry in
scrambling for the chiral case is also more pronounced when
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FIG. 6. Short-time behavior of the scaled OTOC C;*(¢) (top row)

from Fig. 3 and a corresponding directional asymmetry |[ACY*(¢)|
(bottom row) for fixed distance d = 5 (left) and 6 (right). Dotted
lines correspond to power-law fits for# < 1.
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FIG. 7. Spatiotemporal evolution of the OTOC C};*(¢) [(a)—(d)] and time-average of it [(e)—(h)] for nonchiral [(a), (d), (), and (h)] and chiral
[(b), (c), (f), and (g)] states, in two-excitation sector [S;, = (L/2 — 2)] of L = 22 spin chain with PBC; J; = —1; J, = 0; time is measured in
units of |J;|~!. The initial chiral- or nonchiral-state is prepared as the ground state of the system with a vanishing (D = 0, XXX-Heisenberg)
or finite (D = 0.5 easy-plane XXZ-Heisenberg) DM interaction, and B, = 0 and B, = 0.099, respectively. Finite magnetic field (B, # 0) does
not change behavior of C}*(¢) qualitatively. DM interaction is quenched atf =0 D = 0.5 — 0 [(c) and (g)] and D = 0 — 0.5 [(d) and (h)].
[(a)—(d)] Contour lines are interpolated to non integer d; the left and the top subplots correspond to vertical and horizontal cross-sections of
the main plot; a white spot around d = 0 ¢ = 1 is due to contour lines. Insets in plots (e)—(g) show the time-averaged values with the standard
deviation for ¢ > 800 values; red dash-dotted line corresponds to the value expected in the case of complete scrambling.

probed with chirality ¢/ operators instead of 6/° operators
[cf. Fig. 10(b) with Figs. 2(b) and 3(b) and Fig. 10(d) with
Fig. 7(b)]. The long-time behavior of time-averaged OTOC
(not shown here) is less conclusive in this case—because
we do not have exact (analytic) values to which the long-
time averaged OTOC should converge—in order to compare
with. Therefore we cannot judge whether desired values are
reached, even in a nonintegrable case. Only for the integrable
case and symmetric setup, we can for sure say that the scram-
bling is incomplete, exhibiting explicit distance dependence
in the long-time averaged OTOC values.

For the short-time limit, Cj“(t) exhibits a power-law
growth in an early time regime. However, there are also dif-
ferences. Because the chirality operators on the adjacent links
(d = 1) do not commute (they share one site), the largest
among the leading terms in the directional asymmetry of
OTOC is linear in time, ~¢, as compared to cubic, ~t3, for
6';.‘/ ¢ operators (see Fig. 17 in Appendix E). These show that
different observables are not equally sensitive to the asymmet-
ric spreading of quantum information.

All OTOC probes with local operators show similar expan-
sion speed which is close to the maximal group velocities of
single-magnon excitations for the given direction [136]. The

latter is governed by the model Hamiltonian parameters [see
Eq. (10) in Sec. II].

B. Intermediate time regime

In this section, we discuss the intermediate time regimes
in the OTOC propagation, i.e., the times up to the wavefront
reaching the location at a given distance or equivalently the
fixed-velocity rays, for speeds larger than butterfly velocity.

To verify the proposed universal form, Eq. (5), of the space-
time evolution of OTOC around and outside of the ballistic
light cone, we study the L = 102-spin chain in a two-magnon
sector. L = 102 sites give us a possibility to examine dis-
tances, d, large enough so that the local correlation effects are
weak, and longer times for which the propagating wavefronts
have not collided yet due to PBC. Long chains give us also the
opportunity to crosscheck whether exponential behavior sets
in for some time interval.

To assess the proposed universal functional form,
Eq. (5), we consider the Cj*(z) behavior along the
fixed-velocity rays. For this, we sample the data at
t = (to +nAt)d for d = —101,...,101 with n € N. The
results would correspond to rays with v = £1/(ty + nAt)
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velocities [“+” for the right () and “—” for the left (£)
wavefronts]. We fit the obtained numerical results in two
steps. First, we identify the exponents of the decay, A(v),
for each of the fixed-velocity rays, employing the linear-
regression on a semilogarithmic scale. Then we fit (with a
nonlinear fit) the obtained exponents, A(V)-s, to c(v — vg(i1))*
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FIG. 9. Short-time behavior of the scaled OTOC C;*(¢) (top row)
from Fig. 7 and the associated directional asymmetry | AC;*(¢)| (bot-
tom row) for fixed distance d = 3 (left) and 4 (right). Dotted lines
correspond to power-law fits forr < 1.
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FIG. 10. Spatiotemporal evolution of the OTOC Cj*(t) (46) for
fully nonchiral [(a) and (c)] and chiral[(b) and (d)] cases, in two-
excitation sector [S;, = (L/2 — 2)] of L = 22 spin chain with PBC;
the initial chiral- and nonchiral-state is prepared as the ground state
of the system with a vanishing (D = 0) or finite (D = 0.5) DM
interaction, respectively; time is measured in units of |J;|~!. [(a) and
()] J» = —J; = 1. [(c) and (d)] Integrable case, J; = —1, J, = 0.
Contour lines are interpolated to non integer d. For each panel,
the left and the top subplots correspond to vertical and horizontal
cross-sections of the main plot. A black spot around d =0t =0 is
due to contour lines (cf. r = 0 cut).

function, with o, vg(), and c fitting parameters, in order
to determine a scaling exponent o and a butterfly velocity
vp(fi), for the left and right branches, i = —e, and i = e,,
respectively.

We start with the nonintegrable case J, = —J; = 1. As a
representative example in Fig. 11, we show spatiotemporal
evolution of the OTOC Cj*(¢) (45) along the fixed-velocity
rays for D = 0.5 (the asymmetric/chiral case), fy = 0.25,
and n =0, ...,50. Figures 11(a), 11(b), 11(d), and 11(e),
show C}*(t) along selected fixed-velocity rays (ve,) on a
semilogarithmic scale together with the corresponding linear-
regression lines (exponential fits). The same rays we also
display in Fig. 11(c). We perform fits for 10 < d < 40 and
10 < d < 50, for the left and right rays, respectively, to avoid
effects caused by short-range correlations at short distances
and collisions of wavefronts for long distances. In Fig. 12, we
show the obtained exponents A;,-(v) (left and right branches,
respectively) of the OTOC decay together with the standard
deviation as a function of ray velocity v for all four stud-
ied cases. We also display the local maximum of Ay (v)
corresponding to the largest velocity vg,,. For smaller veloci-
ties (v < vg,), fitting to the exponential form is less reliable
(other functions might fit better) even when the error bars (the
standard deviations) of the fitted values are small. We found
that the directional asymmetry in the exponents of the decay
is determined by the Hamiltonian under which the system
evolves in time, and there is a negligible influence of the finite
chirality of the initial state. On the level of A(v), there is no
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FIG. 11. Spatiotemporal evolution of the OTOC Cj*(t) (45) along the constant velocity rays for a chain with L = 102 sites with PBC in a
—Ji =1,D = 0.5, B, = 1.604, the chiral case. A finite magnetic field does not change the behavior

of Cj*(t) qualitatively. The central panel, plot (c), a false-color logarithmic plot at fixed velocity rays for v, = 1/(ty + nAt), with t, = 0.25,

At =0.005,andn =0, ...,

50. Pairs of semilogarithmic plots (a), (b), and (d), (e), show several cuts at the given velocities for the left and

right going rays [also shown on the central panel, plot (c)], together with the corresponding linear regression lines. The linear regressions
(exponential fits) are performed for the data in the range 10 < d < 40 and 10 < d < 50 for the left and right going rays, respectively; dotted
lines are just guides for the eye; the red dots and the red lines represent the data with the minimal inclination.

directional asymmetry when the time-evolving Hamiltonian
does not contain a chiral term (DM interaction).

Within the accuracy of the fitted data, we do not iden-
tify any region with strictly positive values of A,/ (see also
Fig. 12), which is consistent with the expected behavior that
there is no exponential divergence for the quantum system
with local Hamiltonians and finite-dimensional sub-spaces of
constituent parts, even in the case of well-separated operators
[59,63,78].

To determine the butterfly velocity vg(fi) and the exponent
o, we have performed a nonlinear curve fit of the data in
the range vy < v < 1.4 vy, to the function c(v — vg(fi))*,
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FIG. 12. The exponents of the decay A,(v) and A, (v) of the fitted
OTOC for the left and right fixed velocity rays, respectively, for all
four studied cases. Exponential fits are performed for the data in
the ranges 10 < d < 44 (a), (c)and 10 < d < 40 and 10 < d < 50,
for the left and right branch, respectively, (b),(d). Fitting error bars
and the local maximum, corresponding to the highest velocity vy,
(triangles) are also shown.

with «, vg(fi), and ¢ being fitting parameters. The fitting
results are shown in Fig. 13 indicating that o depends on
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FIG. 13. Log-log plots of the A,/ (v) from Fig. 12 (blue and
orange dots with error bars) along with the least-square fits for the
range vy, < v < 1.4 vy, to c(v — vg(h))* (dash-dotted lines).
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FIG. 14. Spatiotemporal evolution of the OTOC C;*(r) (45) along the constant velocity rays for a chain with L = 102 sites with PBC in

the two-magnon sector (Sg,, = L/2 — 2), J;

—1,J, =0, and D = 0.5, the chiral case. The central panel, plot (c), a false-color logarithmic

plot at fixed velocity rays for v, = 1/(tp + nAt), with tp = 0.3, At =0.01, and n =0, ..., 90. Pairs of semilogarithmic plots (a), (b), and
(d), (e), show several cuts at the given velocities for the left and right going rays [also shown on the central panel, plot (c)], together with the
corresponding linear regression lines. The linear regressions (exponential fits) are performed for the data in the range 9 < d < 46; dotted lines
are just guides for the eye; the red dots and the red lines represent the data with the minimal inclination.

the fitting range, decreasing from some « 2 1.5 value (for
velocities close to vg(i)) towards some « > 1 with consid-
erably increased fitting range. Eventually a crossover occurs
from ~ (v — vg(fi))* towards ~ v In v functional form, which
is consistent with expected behavior for r < 1 and vt > 1
case—the validity region of a small-time expansion, where
we expect ~ viInv behavior (37) [see also Appendix D,
Eq. (D4)]. The obtained results (within error-bars) reveal that
the Hamiltonian under which the system time-evolves, deter-
mines entirely the vg(fi) and « values. On the level of A(V),
there is no directional asymmetry when the time-evolving
Hamiltonian is symmetric (D = 0). It only shows up at the
level of different amplitudes in the case of the chiral initial
state. On the other hand, in the case of chiral Hamiltonian
(D # 0), there is a clear difference between the values ob-
tained for the left and right branches irrespective of the fact
whether the chiral or nonchiral initial state were considered.

The determined butterfly velocities are comparable with
the maximal group velocities of the single free magnon
case (see Sec. II), indicating that the fronts in OTOC are
dominantly free-magnonlike. The same butterfly velocities
and exponent o (within error bars) are also obtained for
the OTOC with &%-s and exp(ik®)-s. The fact that o =~ 3/2,
the specific value for the case of the free particles (see
Refs. [57-59,63,89]), further supports this observation.

All these findings, except one, also hold for the integrable
case (J, = 0). For this case, we took 7o = 0.3, At = 0.01,
andn =0, ..., 90. The results are shown in Figs. 14—16. The
only difference is that the finite chirality is no longer exposed
at the level of OTOC decay exponents A/. Because finite
DM interaction merely renormalizes the exchange amplitude
Ji — VJ} + D?, the maximal group velocities are only in-
creased but are equal for left and right traveling free magnons

(see Sec. II), which is manifest in the same left and right decay
exponents A¢(v) & A,(v) (see Fig. 15) and the same « and vg
for the left and right branches (see Fig. 16). The directional
asymmetry for this case shows up only in the different ampli-
tudes, even in the case of a finite DM interaction and the chiral
initial state.

Thus, different left and right butterfly velocities necessitate
a finite frustration term (J, # 0) in addition to a chirality
breaking finite DM interaction (D # 0) term.
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FIG. 15. The exponents of decay A,(v) and X,(v) of the fitted
OTOC for the left and right fixed velocity rays, respectively, for
all four studied cases. Exponential fits are performed for the data
in the range 9 < d < 46. Fitting error bars and the local maximum,
corresponding to the highest velocity v, (triangles) are also shown.
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FIG. 16. Log-log plots of the A.(v) from Fig. 15 (blue and
orange dots with error bars) along with the least-square fits for the
range vy, < v < 1.3 vy, to c(v — vg(h))* (dash-dotted lines).

V. CONCLUSIONS

We studied the spreading of quantum spin correlations
in frustrated spin chains with spin-current-driven ferro-
electricity [106]. Such chains are experimentally realized
in oxide-based single-phase multiferroics [100,101]. The
emergent ferroelectric polarization, which allows coupling to
an external electric field, is proportional to the spin chirality.
Therefore, the latter can also be tuned by external electrical
field. The impact of residual chirality on quantum information
spreading/delocalization, meaning scrambling, is exposed by
analytical and exact numerical results. To quantify quantum
scrambling, we employed OTOC as a useful witness.

The symmetry considerations in Sec. III A showed that
scrambling is symmetric for any eigenstate of the Hamilto-
nian in the zero-magnetization sector (S5, = 0, i.e., half-filled
case) or at finite or infinite temperatures for a zero magnetic
field (B, = 0). At infinite temperature in the case of the non-
vanishing magnetic field (B, # 0), the directional asymmetry
in scrambling escapes the detection by OTOC of 6%-s.

We found that OTOC exhibits a power-law growth at early
times, irrespective of the integrability of the model. This
power-law behavior is extracted by expanding the OTOC ker-
nel (squared commutator) for sufficiently small times ¢ < 1.
The found power-law behavior is consistent with the models

characterized by local Hamiltonians and finite on-site de-
grees of freedom [55-59,63,78]. The leading order is always
symmetric and only the subleading corrections exhibit the
directional asymmetry.

Exact numerical studies for chains with 22 spins close
to saturation magnetization revealed that OTOC spread bal-
listically to both (the left and the right) directions, falling
sharply outside a light cone before the fronts collide. The
directional asymmetry in scrambling is governed by the chiral
coupling, a nonvanishishing dynamical DM interaction. We
verified numerically the conjectured universal form, Eq. (5),
of OTOC outside and close to the wavefront. For this, we
studied the OTOC along fixed velocity rays for a chain with
L = 102 sites close to saturation. We considered the distances
on which local correlation effects are weak, and examined
longer times for which the wavefronts have not collided yet.
We showed numerically that the proposed universal form
Eq. (5) fits almost perfectly to the obtained data. Within the
accuracy of the fitted data, no regions are found with the
simple exponential growth of OTOC. The butterfly velocity is
direction dependent only in the cases with chiral Hamiltoni-
ans with a finite next-nearest-neighbor exchange, J, # 0. For
Jo =0, the chiral term (DM interaction) symmetrically en-
hances the butterfly velocity, unlike for the case of low-energy
large-wavelength probes where nonvanishing DM would be
sufficient. For spatially local probes and for J, = 0, which
is equivalent to the easy-plane XXZ Heisenberg model the
directional asymmetry is only exposed with respect to ampli-
tude (but not the functional form of the velocity-dependent
decay exponent and butterfly velocity). The obtained veloc-
ities are comparable to the group velocities found for the
single magnon dispersion. The parameter which characterizes
the expansion of the wavefront during the ballistic spreading,
o = 3/2, is free-particle like. Thus, the spatial spreading of
OTOC is predominantly free-magnon like. Whether this pic-
ture holds for the effective easy-axis XXZ model remains to
be investigated. The obtained results are useful for applica-
tions based on the transfer of quantum information through
chiral channels and multiferroic spintronics.
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APPENDIX A: EQUIVALENT EXPRESSIONS FOR SPIN
VECTOR CHIRALITY OPERATORS: £ AND ¢

In this section, we consider the unitary operators, e/,
made out of local vector spin chirality

= (SJ X Sj.»,.])z ZS‘jS'};_,'_]

=>
~. M

oy ox
- Sij+1

1(axay

I P A _ AYAX
=3(0;x06;,,):= Z(G'Ujﬂ - Uj0j+1)- (A1)
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The parts on the right-hand side of Eq. (A1) do commute, [6}‘6,5 , 6}'6,2‘ ] = 0. Therefore,

XAY AV

g axaY _aVax G oAxaY gAY ax . o i . AV AV A
P10 = %)% ¢ 0% = cos® b1 + sin” b 6767 + 3 sin(2b)(6767 — 6767). (A2)

Here we made use of operator identities

M2 — cosb1 @1 +isinh6? @ 6/ (A3)
and 6;‘6} = i&;. From Egs. (A1) and (A2) follows that
e*i = cos? }1 I + sin? j—tﬁfﬁfﬂ + i2sin %Kf (A4)
Hence,
[€50, ¢][* = | sin? i[67@0)65,,(0), 6568, ]+ i2sin 3([67(1)67, (1), 7]
+ [K5(0), 6767, ]) — 16cos® L[icé(0), i ]| sin* L. (A5)

APPENDIX B: SHORT-TIME LIMIT, LEADING AND SUBLEADING CONTRIBUTIONS
0 #) (35), for d = |n — m| < 2 which are quadratic in ¢. For |d| = +1,

mn

We start with the leading contributions in OTOC, Q

m=n=xl,
[[H’ 617:I:1]’ 6}?] ==/ (&n ’ anil —6’36’::‘:1) FD 81,‘1(&;1 X a.nil )z B
The first term in Eq. (B1) is real-valued, whereas the second is pure imaginary. Therefore,
FA rana )2 A A Al A
O () =12 (J1(6, 6,4, —676%,) +87°D*(6, x &,,,):") =262 (J7 + 6°°D*) (I — 6767, (B2)
For a translationally invariant system,
ACYED ) = ACHD (1) = ACs-1 (1) = 0. (B3)
For |d| = +2,m =n £ 2,
[[I:I» 6&2]7 6:2(] =—h (6:1 ’ &rzi2_6;6:i2)' (B4)

As expected, this term vanishes in the case of J, = 0. The right-hand side of Eq. (B4) is real valued. Hence,
Qo) = 1P (8, 8,1,=671672)” = 2073 (1 = 61675,) (BS)
For systems with translation invariance
ACYED () = ACHV (1) = ACu2 (1) = 0. (B6)

Finally, for larger values of d > 2, higher-order terms (quartic in ¢, v > 2) must be considered because, as expected,
[[H, 6,1, 6,1 = 0in this case.
The subleading correction of Q,S?,)n(t.) 35), anl)n (t)(36),ford =+l (m=n=+1)andd = 2 (m = n £ 2) are cubic in t and
have the following forms:
3
1 R A A A A TS A «
0,20 =i {[[H. 67,1 671 [[A. [A, 674.]], 671}

3
t 2 z,a 2 AU (A A AU (A A N zZ,a ~AZ(A S AZ  AZ
= 5((J1 +458%D )(Jl 6, (0,41 X 6,90 +,6,(6,. X(6,.,+6,.3))a F5“D6, (anil : U;iiZ_UtlilUniZ))

£ (1= 8D (8,165 (6551 + 67n) +26,671,8740 — 6/ — 2671, — 671r)
FLDI (1= 676,0,) (2 +26) (6,71 + 61a) + (1= 87 (655 + 613))
+4B.J (176260, F D(1 - 5)(I - 656%,)). @7

T . AT A .
0,0 =i {[[A,670]. 671 [[A. [A, 675, ]] 671}
= t3]2(J1]2 6,/ (6,49 X (6,4140,.3))0 + ]22 6, (6,19 X 6,14)a
£ DJ, (5 65(&”12 (6,4176,43) — 5&2(5}&1_6&3)) —(1=8%)6, (@ﬁl - 55&)@&2)

+ DI (1 4 8767, (I — 6262, + 2B.J 6P 5267,). (B8)
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In Eq. (B7), the term proportional to (1 — §%*)JZD and in Eqs. (B7) and (B8), the terms proportional to J,DJ; (the prelast terms)
are fully antisymmetric with respect to inversion P. Therefore, for translationally invariant states,

Oy, () # O () (B9)
applies and
ACIH (1) = AC V(1) = AC,(1) # 0. (B10)

In the case of Cg’ﬁ) 4 (1), the expectation values have to be taken for the corresponding spatially inverted states.

APPENDIX C: EXACT EXPRESSIONS FOR L = 4 SITE SYSTEM

1. One(three)-magnon

The OTOC for the states |Ch) Eq. (38) and |W) Eq. (39) reads

Cory ) = (|[650 . 651 ey = AT O £ BT ), (€1

with
A" (1) = sin® (Ji£)(1 4 cos (2Dt) + sin (D) sin (D + 4J>)t)) + 4 sin® (D)3 + cos (2D 1)), (C2)
A}V(t) = sin® (D)1 4 cos (2J1t) + sin (Jy2) sin ((J1 + 4»)t)) + % sin® (J1t)(3 + cos (2J11)), (C3)

and

B{™(t) = sin(Jy1)[ sin® (J11) cos (D + 2J>)t) + 4 sin (D#)(sin(2(D — Jo)t) — 2sin(2(D + L)) — S5sin(2/21))],  (C4)

BY () = sin (Dt)[ sin® (D) cos (J; + 2J>)t) + 4 sin (Jit)(sin 2(J; — Jo)t) — 2sin (2(J; + Jo)t) — Ssin (2421))],  (C5)

symmetric and antisymmetric contributions, respectively. Expressions for |Ch) and |W) are similar, with only D and J;
exchanged (D < J}). In the case of small ¢, expanding OTOC up-to subleading contribution in #, gives

Ch L (1) =213(D* + J7) F 21 (JT + DD + 81)) + Oth), (C6)
CV (1) = 212(D* + J}) F£2D(D* + J1(J; + 81)) + O@t*). (C7)

In the case of OTOC with the vector spin chirality operators, V,, = exp(ix}) and W, = exp(ix},),

CMN (1) = sin* L(ASYY £ BEVY) (C8)
with symmetric
AS" = 8cos” {(1 + sin® (J11)) — 4sin” (2/5t) cos® (25t) + 4 sin® (Jy1) sin® (D + 2/)1), (C9)
AY = 4sin? 1 +8cos® I[1 — sin® (J;1)(1 — 2 cos® 1 cos (2J11)) ] — 2'sin (Jy#) sin ((J; + 4J>)t) cos (2D 1) 10
+ 2 cos 1[sin® ((Ji + 2J>)t) + sin® (2J51)]
and antisymmetric
BE" = 4.cos® L sin (2J51) cos (Jy1) cos (D + 2/)1), (C11)
BY = 8cos” § sin (D) cos (J;1)[ cos (Jit) cos ((J; — 2J2)t) + 2 cos 4 sin (J31) sin ((J; + 25)1)], (C12)

contributions, respectively. Again, a nonchiral state exhibits the directional asymmetry only if the Hamiltonian has a nonvanish-
ing DM interaction (the chiral term, D # 0).

2. Two-Magnons in a four site chain, half-filled sector

In the half-filled case, S’fot = 0 (two-magnon sector in the L = 4 site system), two eigenstates of the Hamiltonian (6) with

energies —1(J; + 2/ + /(J1 — 4))? + 8D?) and (J; + o),
[Ch) = w([ LD =TI DA =) AT — AT, (C13)
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and
1
W) = %(IHTT)HNH)+|TN¢>+IHN) + AN I, (C14)
where
M= m» A= g :\/(-]1 —4J,)* + 8D?,

have a finite ((Ch|&*|Ch) = D/E) and zero chirality ((W|k?|W) = 0), respectively. These are also the eigenstates of the
translation operator with the crystal momentum 7 /2 and 0, respectively. OTOC has only symmetric contribution in both cases

Crnl (1) = AT (1) (C15)
with
h 4D?
AN() =2 — ﬁ[4 cos (4J5t) + 4 cos ((3J; — 4Jx)t) + cos((3J; + 4J,)1)]
E— (J; — 4, 1 1
- Lﬁz)) 2cos [ =(E —Jy —4h)t ) +cos [ =(E + 5/, — 4h)t
3E 2 2
E+ (J; — 44))>
- (E+ (1;%:,2 2)) [4cos ((E+4J2)t) +4cos((E —3J) +4Jy)t) + cos((E + 3J; + 4J,)1)]. (C16)
8D? 2E — (J; — 4. 1
AV =2-— g3 12¢0s (421) — cos By +442)0)] — ( (3L 2) cos (E(: —J - 4J2)t>

2 — (J] —4))?

2E 4 (J; —4J 1
_ 2B+ 2))cos(§(s+11+412)t)—

3E 1882
E+ (J; —40))?
_ ¢ (1s];w2 2)) [2cos ((E + 4J2)t) + cos ((E + 3J; + 41)t)].

The scrambling is symmetric, ACg" ¥ (1) = 0.

We will not consider n £ 2 case, because for L = 4 spin
chain with PBC, the site on the distance |d| =2 could be
reached from both sides of the chain from the initial position,
hence directional asymmetry is trivially zero.

APPENDIX D: THE DECAY EXPONENT
FOR SMALL TIME LIMIT

In this section, we will estimate the decay exponent A(v)
(4), for the d = vt rays at fixed (given) velocity v, with
vt > landt < 1. We can define A(v) for arbitrary large v for
spin-chains (unlike to local quantum circuits and relativistic
field theories, where even exponentially weak signaling is
impossible beyond a strict “light cone”).

At the integer vt = 2k or vt = k, k € Z, distances, the
leading in ¢ contribution, following Eq. (35) (v = k), is

Ci=u=2k(t) = %A(Zk) = WA(W) (D)
or
2% f2vt
Ca=u(t) = WB(k) = WB(W)’ (D2)
for Jr#0 and J, =0, respectively. Here
A(vr) = (|LH, Wolu=x, Va—sarIP) ~ O(1), B(vr) =

(IlLH, Wolv=k, Vaesxk]I*) ~ O(1), and [H, Wyl,— is a nested
commutator, Eq. (31). Note that for free fermions on 1D
lattice, B(k) = 1 [89].

[2cos ((E — 4J))t) + cos ((E — 3J; — 4J)1)]

(C17)

Estimates will be the same for both cases (substitute
v = 2v’ in the case of J, # 0). The decay exponent
InCy—y, (¢
)»(U) — n d_vt( )

=2vint — 2In(@n)) +

ln(Bt(vt)) - (D3)

For vt > 1 and t « 1, employing Stirling’s formula for
the factorial (Inn! = nlnn — n + O(Inn)), it can be approxi-
mated as

vt In(vt) — vt + O(In(vt))

t
= —2u(nv—1)— 0<ln(tm)>.

Here, we also dropped In(B(vt))/t term because
O(In(vt)) > O(n(B(vt))) (B(vt) ~ O(1)). Consequently,
for the fixed-velocity rays with vt > 1 and f <1,
[L(v)| & 2v(Inv) grows slower in v than 2v* where o > 1.

Av)~2vint —2

(D4)

APPENDIX E: EARLY TIME REGIME
FOR OTOC WITH ¢

In this Appendix, we consider the early time regime of the
C/*(t). In all studied cases, we observe a power-law growth of
the OTOC, as shown, for example, for D = 0.5, in the center
panels of Fig. 17, and this is consistent with the discussion
in Sec. III B. At leading order, the OTOC behaves as t9 for
|d| = 1 and as ¢?¥ with v = max(1, |d| div 2) for |d| > 1. For
the chiral initial state or in a system with a nonvanishing DM
interaction, we also observe the asymmetric subleading, ¢! for
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FIG. 17. Short-time behavior of OTOC Cj“(t) from
Fig. 10(b) (D =0.5) and a corresponding directional asymmetry
|AC(t)|. Dotted lines in the center and bottom log-log plots
correspond to power-law fits for r < 1.

|d| = 1 and 2! for |d| > 1, corrections to it (see the bottom
panel in Fig. 17).
APPENDIX F: SATURATION VALUE OF OTOC
The general form of OTOC is given as
Ct) = (W), V1)
= WiOW@)V'v

PN

—Wi@e)V'W(@)V +He), (Fl)

J

F(t)= (W@’
Jk.p.q.r

where the second term
F(t)= (W e)V'W@)V) (F2)

is also known as out-of-time-ordered correlator.
For unitary operators W (¢) and V/, the first term in Eq. (F1)
reduces to

WHOW@VTV)Y =1, (F3)

otherwise

WiOWOVV)= D e EEIWIWLVE Vo

J.k.p.q.r

Z ka] rpjr

J.k.q.r

—i(E;—E,
+ Y e BT WAWLV Ve
Jsk.q,r

P#J
iVivirp;

=Y GIWIWIi)(
J.r

+ Y e BRI GIW W p)
i
x (plVTV|r)pj,. (F4)

Here, (-) = (¥|-[), Apy = (PlAIq), ppg = (IP)al)s 1]), 1K),
|p), |g), and |r), are the eigenstates of the system Hamiltonian

(H|i) = E; |l)) the initAial state |1ﬁ) resides in the given Sg-
sector, <‘/f|SotW) (S5) = S&,, (¥]¥) = Trp = 1. For the
system Hamiltonian with a nondegenerate energy spectrum,
the long-time average of the last term will vanish in the limit
of t — oo.

The second term in Eq. (F1) or equivalently Eq. (F2) can
be rewritten as

Z e BBty E")tW WVioWoaVarpir

= WAVEWoVorpie + 3 Wy PV Viepjr = Y IWIPViViepjr + Z e E B E LWV W Ve (FS)

Jnp Jnp Jir

T j.k.p.q

Here Y’ denotes the summation over indices where non of the following pairs of indices are equal simultaneously: (j, k) and
(p, q) or (J, q) and (p, k). The third sum in Eq. (F5) corresponds to the double-counted term in the second sum.
In the case of Pauli operators, 6%-s, the first term in Eq. (F1) reduces to

8Y(1)6%(1)6%6%) = 1 (F6)
< n n m m)

[Eq. (F3), 6%-s are also unitary operators] and for the second term in Eq. (F1), F(¢), from Eq. (F5) follows:

F(t) = (6p(1)860(1)65 (1)) =

—Z| (Lol

Jpr

A s cAQ A A AO| » 2 A Al
D G116 PPl Y ple s r) o + Y (Pl (PI61P) 16 1) ojr

Jp.r

2GI6S 1) 162 1r) g + 3 3 e EEE B 168 k) (16 |p) (pI6L 1) @I6E P Py (FT)
r j.k.p.q
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For the 83, conserving Hamlltoman [8:,,Hl =0, (l|0,1 iy = 0 for any site n = 1, ..., L and any eigenstate i) of the system
Hamiltonian, because 6; = S + 8- and 6; = i(S;” — §;") both alter the S, sector. Therefore, for 6*/7-s from Eq. (F7) follows
F;iﬁ/”‘@) = Y BB GG ) (K16 ) (Pl ) (9167 ) (F8)

Jjk.p.q.r

As for 6%-s, (i|6}|i) = 285, /L for the translationally invariant system, for any site n =1, ...,

L and any eigenstate |i) of the

system Hamiltonian. Therefore for the translationally invariant initial state |y), which is also an eigenstate of the z-component

of the total spin, S e = S,

258 \? 25
FE(t) = Z (%) (J16,1p){pl6 ;1) pjr + Z (

Jp.r Jp.r

+Z/

J.k.p.q.r

2Sfot
T\ L

3

e—i(Ej —Ek-‘rEp—Eq)l (_]|

7I(E —Ex+E,—E, )t(

6, 1k) (k16,31 p) (pl

25¢ 25¢
+Z< ) 11656,517) (167 |r>p,r—( L)

16,1k} (k16,1p)(pl6,

. 285\
>|< 1651701 <j|65|r>pjr—Z(T°> (16217 pjr

Jr

Gnla)(qlé;1r)pjy

@) (ql6;1r) o,

J.k.p.q.r
ZStZot 2Sfot —i(Ej—Ex+Ep—E, )t Az Az ~z
=2(= +3 Y (165 1K) (K161 p)(pl6 . 19)(q16 1) pjir- (F9)
T Jk.p.q
[
Here we used that 626 =1, Y_(jlAlr)pjr = (¥|Aly), and  and
(|67 1r) = 285, /L for translationally invariant state |v).
For the Hamiltonian with a nondegenerate energy spec- N Y L. s 1t
trum, if OTOC converges/saturates for long times, from ,ILTO; Clahdt =2 (F16)
Egs. (F8) and (F9) follows: 0
Ry 255\*\’
Fn):Z/yy(t — 00) =0, (F10) tll}glo; Cn;n(t) dt' =2 L . F17)
255\ (28’ . . . .
FZ(t — 00)=2 3 3 , (F11) For the studied system, in the case of a vanishing DM inter-

unless there are some extra symmetries (e.g., symmetric en-
ergy spectrum) for which (E; — Ex + E, — E;) =0 in the
Y. Consequently, plugging Eqs. (F6)—(F11) in Eq. (F1)
yield

CEM(t — 00) =2, (F12)
2
2%
CE (1t — oo)—2( ( L“) > : (F13)

If OTOC does not converge, Eqgs. (F10)—(F13) still give accu-
rate time-averaged values, namely,

1
lim — (F14)
t—o00 t

t
Fel(thydt' =0,
0

o1
lim —
t—o00 t

t 757 2 282
F,f,fl(t/) dt’ = 2(—“”) — ( mt) , (F15)
0 L L

action, e.g., in the two-excitation sector of H(J; = —1,J, =
1,D =0,b) of L =22 site spin chain with PBC, all inte-
rior eigenenergies except for a few are doubly degenerate.
In the case of exactly solvable (ferromagnetic) Heisenberg
model, H(J, = —1,J, =0, D =0, b), the level of energy de-
generacy is even higher. For these cases, there will be the
time-independent contributions from the Y also. In this re-
spect, OTOC is sensitive to the degeneracies in the energy
spectrum of the Hamiltonian and can be utilized for the de-
tection of some quantum phase transitions.

APPENDIX G: OTOC FOR DIFFERENT
MAGNETIZATION SECTORS

In this Appendix, we show spatiotemporal evolution of
OTOC Ci“(t) for the L = 22-site system and different
=9,...,0 magnetization sectors, for both noninte-
grable J2 —J1 =1 [see Figs. 18(a)-18(j)] and integrable
J»=0,J; =—1 [see Fig. 18(k)-18(t)] cases. We chose
Ci“(t) and the asymmetric case D = 0.5 to demonstrate
that the directional asymmetry is indeed vanishing as one
approaches the Si, = 0 (half-filling) sector, as it was also
concluded from the symmetry consideration (see Sec. III A).

lOt
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FIG. 18. Spatiotemporal evolution of the OTOC Cj*(¢) (46) for the chiral case, in 2, . .., L/2-excitation sector (Si,, =9, ...,0) of L =22
spin chain with PBC; [(a)-(j)] J» = —J; = 1, D = 0.5 and [(k)—(t)] J, = —1, J, =0, D = 0.5 (integrable case). The initial chiral-state is
prepared as the ground state of the system; Time is measured in units of |J;|~". The upper limit of the color bar, is scaled with the excitation-
sector number. In each plot, there is the same number of contour lines in the color-bar range. Black and white spots around d = 0 ¢t = 0 are

due to contour lines.
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