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Heisenberg representation of nonthermal ultrafast laser excitation of magnetic precessions

Daria Popova-Gorelova ,1,2,3 Andreas Bringer,1 and Stefan Blügel 1

1Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
2Department of Physics, Universität Hamburg, Notkestrasse 9, D-22607 Hamburg, Germany

3The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany

(Received 21 June 2020; revised 1 December 2021; accepted 2 December 2021; published 14 December 2021)

We derive the Heisenberg representation of the ultrafast inverse Faraday effect that provides the time evolution
of magnetic vectors of a magnetic system during its interaction with a laser pulse. We obtain a time-dependent
effective magnetic operator acting in the Hilbert space of the total angular momentum that describes a process of
nonthermal excitation of magnetic precessions in an electronic system by a circularly polarized laser pulse. The
magnetic operator separates the effect of the laser pulse on the magnetic system from other magnetic interactions.
The effective magnetic operator provides the equations of motion of magnetic vectors during the excitation by
the laser. We show that magnetization dynamics calculated with these equations is equivalent to magnetization
dynamics calculated with the time-dependent Schrödinger equation, which takes into account the interaction
of an electronic system with the electric field of light. We model and compare laser-induced precessions of
magnetic sublattices of the easy-plane and easy-axis antiferromagnetic systems. Using these models, we show
how the ultrafast inverse Faraday effect induces a net magnetic moment in antiferromagnets and demonstrate
that a crystal field environment and the exchange interaction play essential roles for laser-induced magnetization
dynamics even during the action of a pump pulse. Using our approach, we show that light-induced precessions
can start even during the action of the pump pulse with a duration several tens times shorter than the period of
induced precessions and affect the position of magnetic vectors after the action of the pump pulse.
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I. INTRODUCTION

Ultrafast optical control of a magnetic state of a medium
is a rapidly developing field of research [1,2]. Laser-induced
magnetization dynamics can take place on a subpicosecond
timescale providing the possibility to overcome the time
limit of several picoseconds for precessional magnetic switch-
ing. Therefore laser manipulation techniques are extremely
promising for the development of data operation devices
which are several orders of magnitude faster than that avail-
able now. However, despite the importance of subpicosecond
laser-induced magnetization effects for technological applica-
tions, their origin is poorly understood.

The inverse Faraday effect (IFE) that leads to nonther-
mal induction of magnetization by circularly-polarized laser
pulses [3,4] is one of magneto-optical effects, which can
take place on a femtosecond timescale. The ultrafast inverse
Faraday effect (UIFE) is particularly important for poten-
tial applications in magnetic recording and magneto-optical
devices, since it enables nonthermal coherent control of mag-
netization dynamics at a subpicosecond timescale. It avoids
problems caused by material heating, which limits a repetition
frequency due to a required cooling time and a recording
density due to heat diffusion. Therefore the demonstration
of the UIFE, in which magnetic oscillations in canted an-
tiferromagnet DyFeO3 were induced by circularly polarized
ultrashort laser pulses [5], motivated intensive theoretical
[6–18] and experimental [19–23] studies of this process. A

significant progress in development of techniques of ultrafast
spin control using femtosecond laser pulses based on the UIFE
was demonstrated in recent years [22,24–33]. It has recently
became possible to gain atomic- and spin-selective real-time
insight into light-induced magnetization dynamics during the
excitation by a pump pulse employing attosecond extreme
ultraviolet pulses [34–36]. A big effort is being performed at
Free-Electron Laser Facilities such as Linear Coherent Light
Source LCLS to enable attosecond x-ray imaging experiments
[37]. Such attosecond x-ray pulses can provide a detailed
insight into real-time laser-driven electron and spin dynamics
[38,39]. These advances give rise to a demand to better un-
derstand light-induced magnetization dynamics at ultrashort
timescales.

Equations of motion for a magnetic moment are a stan-
dard tool to describe magnetization dynamics. Usually, it is
straightforward to derive magnetic equations of motion af-
ter the action of a pump pulse taking the new laser-induced
magnetic state as an initial condition. Landau-Lifschitz-Bloch
equation is usually applied for a macroscopic description
of magnetization dynamics [1,40–42], which can be derived
from a microscopic description within the Heisenberg repre-
sentation. However, the ability to fully control magnetization
dynamics in a material requires not only a description of mag-
netization dynamics after the excitation, but also an ability to
calculate evolution of a magnetic moment due to the action
of a pump pulse depending on its parameters and material
properties. An inclusion of a coupling between a magnetic
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system and a pump pulse into magnetic equations of motion
is necessary for this goal.

The phenomenological description of the IFE [3,4] sug-
gests that the action of a circularly polarized laser pulse should
be considered as an effective magnetic field, which is pro-
portional to the pulse intensity. However, it was shown by us
theoretically [7–9] and demonstrated in several experimental
works [19,20] that this description of the IFE is not applica-
ble at subpicosecond timescales, since it was developed for
laser pulses with duration much longer than system relaxation
times. Thus a proper description of this process at subpicosec-
ond timescales is necessary for further achievements in the
field of ultrafast magnetization dynamics control.

A sudden approximation can be used as an alternative to
the phenomenological description [43–46]. Within this ap-
proach, the effect of a laser pulse is considered as an action
of an ultrashort magnetic pulse, amplitude of which is pro-
portional to light intensity multiplied by the Verdet constant.
However, there are two disadvantages of this approach. First,
if the action of a laser pulse is substituted by a magnetic
field, then a new magnetic state after the excitation cannot
be predicted accurately and, hence, this approach cannot be
applied for a development of a mechanism to control magne-
tization dynamics. The second problem is that the condition
that a laser pulse duration is much shorter than a system’s
oscillation period is not valid in many cases. For instance, it is
not applicable to the description of experiments demonstrat-
ing light-induced terahertz precessions[24,26,27,47], when
a magnetic oscillation with a period of one or several pi-
coseconds is induced by a laser pulse of several hundreds of
femtoseconds duration.

In this paper, we derive an effective magnetic operator
expressed in terms of total angular momentum operators that
accurately describes magnetization dynamics at a subpicosec-
ond timescale during the action of an ultrashort laser pulse via
the UIFE. The time-dependent functions entering the operator
depend on parameters of a laser pulse and the coupling of the
electric field of a laser pulse to the electronic system of a ma-
terial. They are nonzero during the action of a laser pulse and
zero afterwards. The action of the effective magnetic operator
is separated from that of other magnetic operators describing
fields acting on a magnetic system apart from light, such as an
external magnetic field, exchange interaction, etc. Thus, after
the action of the laser pulse, the action of the effective mag-
netic operator turns off and magnetization dynamics persist
due to a deviation of a magnetic vector from its ground state.

The equations of motion of magnetic vectors are obtained
from the commutators of total angular momentum operators
with the effective magnetic operator and other magnetic op-
erators describing fields acting on a magnetic system. This
way, we calculate magnetization dynamics during and after
the action of light within the Heisenberg representation. We
show that magnetization dynamics obtained in the Heisenberg
picture are equivalent to that obtained with the time-dependent
Schrödinger equation, which describes the perturbation of
an electronic system by the electric field of a laser pulse.
The first advantage of the Heisenberg representation over the
Schrödinger representation is that it shows how the optical
process affects components of the total angular momentum
individually. And, most importantly, the Heisenberg represen-

tation provides a link for the derivation of the description of
the UIFE at a nanoscale [48].

In our previous studies, we described the effect of the spin-
orbit coupling on the IFE and how light-induced electronic
transitions lead to the change of a spin state [7,8]. In this
paper, we also consider the effects of the Zeeman, exchange
and crystal field interactions, and include their corresponding
effective magnetic Hamiltonians into the derived equations of
motion. We find that the exchange interaction and, especially,
the crystal field interaction can considerably influence the dy-
namics of magnetic vectors even during the action of the pump
pulse. The approach derived in this paper is able to describe
the interplay between the deviation of magnetic vectors due
to the action of the pump pulse and light-induced magnetic
precessions launched due to this deviation. As we will show,
this effect can be substantial even if the pump-pulse duration
is several tens of times shorter than the period of precessions.

The paper is organized as follows. We derive the effective
magnetic operator operator and the equations of motion of
magnetic moment due to the action of the UIFE in Sec. I. We
apply this formalism to describe the dynamics of a single spin
system in an external magnetic field during and after the exci-
tation by a circularly polarized laser pulse in Sec. II. We show
that an accurate calculation of the time evolution of a magnetic
vector during the action of the pump pulse is necessary even if
the period of the induced oscillations is several tens of times
longer than the laser pulse duration. We derive equations of
motion for magnetic vectors of a system consisting of two
antiferromagnetically coupled sublattices during and after the
action of an ultrashort laser pulse in Sec. III. With the help
of the equations of motion, we describe the mechanism of the
generation of a nonzero magnetic moment and its precessions
in compensated antiferromagnets due to the UIFE. It is shown
that a crystal field environment and exchange and crystal field
coupling have a strong effect on laser-induced magnetization
dynamics even during the action of a pump pulse.

II. DERIVATION OF THE EFFECTIVE MAGNETIC
OPERATOR

The UIFE leads to a nonthermal change of a magnetic state
of a system by a circularly-polarized laser pulse via the stim-
ulated Raman scattering process [4,7–9]. Thereby, the laser
pulse excites electron transitions in the system in such a way
that the initial and the final states belong to the same ground
state manifold, but are energetically separated by internal or
external magnetic interactions [49,50]. The magnetic state
of this electronic system is described by a spinor �g with
components, which are projections of the wave function of
the system on the eigenstates of the total angular momentum.
Since the UIFE leads to the change of a magnetic state of
the electronic system, it must be possible to introduce an
effective magnetic operator ĤJ , which describes this effect.
ĤJ must act on the spinor �g and fulfill the time-dependent
Schrödinger equation

i� ′
g = [Ĥm + ĤJ ]�g. (1)

Here and throughout this paper, we use the atomic units.
Hm is the magnetic Hamiltonian, which includes all external
and internal magnetic interactions acting on the total angular
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momentum apart from ĤJ . If the operator ĤJ is known, one
can determine the equations of motion of projections Jx, Jy,
and Jz of the total angular momentum due to the action of the
IFE using the Heisenberg representation as

iJ ′
α = 〈�g|[Ĵα, Ĥm + ĤJ ]|�g〉, (2)

where Jα = i〈�g|Ĵα|�g〉, α stays for x, y and z.
In order to derive ĤJ , we take into account that the time

evolution of spinor �g obtained with the time-dependent
Schrödinger equation in Eq. (1) should be equivalent to the
one derived from the solution of time-dependent Schrödinger
equation for the wave function �̃(t ) of the electronic system

i�̃ ′(t ) = (Ĥ0 − d · E)�̃(t ). (3)

Ĥ0 = ∑
i p2

i + V̂ , where pi is the momentum of an electron,
the summation is over all electrons in the system. V̂ includes
the kinetic energy of nuclei, the interaction energy between
electrons and nuclei, mutual Coulomb energy of the electrons
and nuclei, and all internal and external magnetic interactions
[7–9]. d is the dipole moment of the system. E is the electric
field of a laser pulse with a frequency ω0

E = nE p(t/T − r/(cT )) sin(ω0t ). (4)

The electronic system is assumed to have the spatial extend
much smaller than the wavelength λ0 = c/ω0 is considered.
Also it is assumed that λ0 � cT , thus the pulse spatial de-
pendence is ignored. E is the amplitude of the electric field,
p(t/T ) describes the time-dependence of the amplitude of
the electric field. n is a unit vector perpendicular to the light
propagation direction. Throughout this paper, we consider the
action of a left-circularly polarized laser pulse propagating in
the z direction, which corresponds to n = (nx + iny)/

√
2.

The solution of the Eq. (3) can be represented by an expan-
sion in functions �̃n of order (1/c)n

�̃(t ) = Û (�̃0 + �̃1(t ) + �̃2(t ) + · · · )

= Û
(

�̃0 − i
∫ t

−∞
dt ′ Û−1V̂ Û�̃0 (5)

−
∫ t

−∞
dt ′ Û−1V̂ Û

∫ t ′

−∞
dt ′′ Û−1V̂ Û�̃0 + · · ·

)
,

where �̃0 = �̃(0), V̂ = −A · ∑
i pi/c, A is a vector poten-

tial, which is related to the electric field by E = −Ȧ/c. Û is
the time evolution operator, which fulfils the equation i Û ′ =
Ĥ0 Û . The IFE experiments are typically done at frequencies
corresponding to a material transparency region, where the
absorption is very weak. The intermediate states can be con-
sidered as virtually excited, and the contribution of the first
order wave function is not taken into account. The stimulated
Raman scattering is described by the second order wave func-
tion �̃2(t ). Thus the normalized spinor �g(t ) is obtained by

�g(t ) = Û (�0 + �2(t ))

‖�0 + �2(t )‖ , (6)

where �0 and �2(t ) are the spinors associated with the wave
functions �̃0 and �̃2(t ).

The spinor �0, which describes the magnetic state of the
electronic system before the action of light, can be represented
as

�0 =

⎛⎜⎜⎝
P01

P02
...

P0n

⎞⎟⎟⎠ = P01|J, Jz = J〉 + P02|J, J − 1〉 + · · · , (7)

where J is the total angular magnetic momentum, n = 2J + 1

and P0k is the projection of �0 on the state |J, Jz = J + 1 − k〉.∑
k |P0k|2 = 1 is the normalization condition.
�2(t ) is a spinor with n time-dependent components. Each

component of this spinor is given by a transition amplitude of
stimulated Raman scattering to a final state with a correspond-
ing projection of Jz (see Refs. [7–9] for details). According to
the selection rules for the stimulated Raman scattering process
induced by a circularly polarized laser pulse propagating in
the z direction, a transition from a state |J, Jz〉 back only to the
same state is allowed. This means that the k-th component of
�2(t ) is a transition amplitude Tk describing transition from
an initial state |J, J + 1 − k〉 to a final state |J, J + 1 − k〉.
Due to the presence of the spin-orbit coupling, transition am-
plitudes Tk are different for each k. Thus the spinor �2(t ) is
not proportional to �0 and describes a magnetic state, which
is different from the initial one.

We introduce time-dependent factors Ak (t ) such that the
k-th element of the spinor �0 + �2(t ) is equal to Ak (t )P0k

and satisfy Ak (0) = 1. The factors Ak (t ) are determined by
Eq. (5) and depend on the electric field of the laser pulse,
selection rules and energies of system’s ground and excited
states, but does not depend on the initial state of the system.
Applying Eq. (6), �g(t ) can be represented as

�g = Û
N (t )

⎛⎜⎜⎜⎝
A1(t )P01

...

Ak (t )P0k
...

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
P1(t )

...

Pk (t )
...

⎞⎟⎟⎟⎠, (8)

where N (t ) = ‖�0 + �2(t )‖ is the normalization factor.
We derived the operator ĤJ providing �g from Eq. (1),

which is equivalent to the solution of Eq. (6) (see Appendix A
and Ref. [9] for the details). We obtain that

ĤJ =

⎛⎜⎜⎜⎜⎜⎝
. . .

−γa · · · iPaP∗
b (νa − νb) · · ·

...
. . .

iP∗
a Pb(νb − νa)

...

⎞⎟⎟⎟⎟⎟⎠,

(9)

where a = 1 . . . n is the row number and b = 1 . . . n is the
column number. Namely, the diagonal elements of the oper-
ator are [ĤJ ]aa = −γa(t ), and the off-diagonal elements are
[ĤJ ]ab = iPa(t )Pb(t )∗(νa(t ) − νb(t )). Pa(t ) and Pb(t ) are the
components of �g, and

νa(t ) = Re(Ya(t )),

γa(t ) = Im(Ya(t )), (10)

Ya(t ) = [ÛA′]a/[ÛA]a,

224418-3



POPOVA-GORELOVA, BRINGER, AND BLÜGEL PHYSICAL REVIEW B 104, 224418 (2021)

where A is a spinor with elements Aa(t ) and A′ is a spinor
with elements A′

a(t ). [ÛA′]a and [ÛA]a are the a-th compo-
nents of the spinors ÛA′ and ÛA, correspondingly.

One can express the operator ĤJ via operators N̂ab+ and
N̂ab− and their expectation values, where the elements of these
operators are

(N̂ab+)ab = (N̂ab+)ba = 1, where b � a,

(N̂ab−)ba = (N̂ab−)∗ab = i, where b > a,

N̂a = N̂aa+, (11)

(N̂a)aa = 1,

(N̂ab±)mn = 0, if m 
= a, m 
= b, n 
= a, n 
= b or b < a.

For example, if J = 3/2, these operators are

N̂12+ =

⎛⎜⎝0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠,

N̂12− =

⎛⎜⎝0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠, (12)

N̂1 =

⎛⎜⎝1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠.

Applying that PaP∗
b = 〈�g|N̂ab+ − iN̂ab−|�g〉/2 and P∗

a Pb =
〈�g|N̂ab+ + iN̂ab−|�g〉/2, the effective magnetic operator ĤJ

can be represented as

ĤJ = −
n∑
a

γaN̂a

+ 1

2

n∑
a,b

(νa − νb)(〈N̂ab−〉N̂ab+ − 〈N̂ab+〉N̂ab−). (13)

This representation allows deriving a convenient system of
differential equations for the variables 〈N̂ab±〉, which are con-
nected to the expectation values of the momentum operators
Ĵx, Ĵy, and Ĵz as will be shown below.

The equations of motion for the expectation values of N̂ab±
operators are given by [see Eq. (2)]

〈N̂ab±〉′ = −i〈[N̂ab±, ĤJ + Ĥm]〉. (14)

The commutators −i〈[N̂ab±, ĤJ ]〉 are derived in Appendix A
and result in

〈N̂ab±〉′ =
(

−2
∑

k

νk〈N̂k〉 + νa + νb

)
〈N̂ab±〉

± (γa − γb)〈N̂ab∓〉 − i〈[N̂ab±, Ĥm]〉. (15)

The matrices representing total angular momentum oper-
ators Ĵx, Ĵy and Ĵz can be expressed by linear combinations

FIG. 1. Spin 1/2 in an external magnetic field.

of N̂ab± operators. For example, Ĵx = √
3N̂12+/2 + N̂23+ +√

3N̂34+/2, Ĵy = √
3N̂12−/2 + N̂23− + √

3N̂34−/2, and Ĵz =
3N̂1/2 + N̂2/2 − N̂3/2 − 3N̂4/2 for J = 3/2. This way, the
time evolutions of Jx, Jy and Jz can be obtained from the
equations of motion for 〈N̂ab±〉 as will be shown with the
examples presented in Secs. III and IV.

The advantage of our approach derived in the Heisenberg
representation is that one can include the dissipation processes
using the density matrix formalism and the Redfield equation
[51]

iρ ′ = [Ĥm + ĤJ , ρ] − i	̂(ρ − ρeq). (16)

Here, ρ = |�g〉〈�g| is the time-dependent density matrix in
the Hilbert space of the magnetic system, ρeq is the density
matrix at the equilibrium. 	̂ is the relaxation superoperator.
For example, it can be diagonal with the matrix elements
being relaxation rates. The time evolution of the magnetic
vectors is then derived using the trace of ρ acting on cor-
responding magnetic operators, e.g., Tr[ρJx]. We do not
consider the dissipation in the processes described in the fol-
lowing sections, since its treatment is beyond our study.

III. SINGLE SPIN DYNAMICS DUE AN EXTERNAL
MAGNETIC FIELD AND UIFE

A. Equations of motion

In this section, we describe single-spin dynamics due to
a joint action of the UIFE and an external magnetic field B.
We assume that an external magnetic field B is aligned in
the −x direction and the gyromagnetic ratio is equal to 1
(see Fig. 1). The ground state is split into two states: spin
parallel, |x−〉, and antiparallel, |x+〉, to the magnetic field
with the corresponding energies εx− = ε1s + B/2 and εx+ =
ε1s − B/2, where ε1s is the ground state energy in the absence
of the magnetic field. The system is initially in the lowest
energy state with the spin aligned in the +x direction, which

is described by the spinor �0 = (
1/

√
2

1/
√

2
). A left-circularly

polarized ultrashort laser pulse propagating in the z direction
triggers Raman transitions via a virtual excited state 2p, which
is split due to the spin orbit coupling λ(L · S) and Zeeman
interaction μ((2S + L) · B) into six states (see Fig. 2 and
Appendix B). Here, μ is the gyromagnetic ratio, λ is the
spin-orbit coupling constant, and L is the orbital momentum.
We assume μ = −1/2 and λ = 20 meV. The UIFE leads to a
change of a spin state, thereby the spin deviates from its initial
position and starts precessing due to the magnetic field.

The total magnetic Hamiltonian Ĥtot
m , which determined

spin dynamics, is the sum of the effective magnetic operator
ĤJ and Hamiltonian describing the Zeeman interaction with
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FIG. 2. The energy level scheme of the single-spin system.

the external magnetic field

Ĥtot
m = ĤJ − BxŜx. (17)

In the case of S = 1/2, the spin operators are linear com-
binations of the N̂ab± operators: Ŝx = N̂12+/2, Ŝy = N̂12−/2,
Ŝz = (N̂1 − N̂2)/2, and Ŝ2 = 3(N̂1 + N̂2)/2. Thus the operator
ĤJ can be represented as

ĤJ = f (t )(SyŜx − SxŜy) + g(t )Ŝz + h(t )Ŝ2, (18)

where f (t ) = 2 Re(Y2(t ) − Y1(t )), g(t ) = Im(Y2(t ) − Y1(t )),
and h(t ) = − 2

3 Im(Y2(t ) + Y1(t )), Sα = 〈Ŝα〉 for α = x, y, z.
The function Y1(t ) is determined by the transition amplitude of
the Raman transitions from the state |1s, Sz = + 1

2 〉 back to the
state |1s, Sz = + 1

2 〉 and Y2(t ) is determined by the transition
amplitude the Raman transitions from the state |1s, Sz = − 1

2 〉
to the state |1s, Sz = − 1

2 〉 [see Eq. (10)].
The third term of ĤJ in Eq. (18) determined by function

h(t ) is proportional to the identity matrix and does not influ-
ence the spin. The action of the first and the second terms
of ĤJ , which are determined by the functions f (t ) and g(t ),
lead to spin rotation. Both functions f (t ) and g(t ) are given
by the difference between Y1(t ) and Y2(t ). Thus the larger the
difference between the transition amplitudes for spin-up and
spin-down states is, the larger functions f (t ) and g(t ) are, and
the more effective the spin is rotated by light [see Eq. (10)]. If
transition amplitudes for different spin components are equal,
then Y1(t ) = Y2(t ), ĤJ is proportional to the identity matrix,
and no rotation of spin by light is possible.

The equations of motion for the spin vector can be derived
either from the general equation (15) or from the relation S′

α =
−i〈[Ŝα, Ĥtot

m ]〉 resulting in

S′
x = − f (t )SxSz − g(t )Sy,

S′
y = − f (t )SySz + g(t )Sx + BSz, (19)

S′
z = − f (t )(S2

x + S2
y ) − BSy.

It follows from these equations that the first term of the ef-
fective operator ĤJ determined by the function f (t ) results in
a quadratic effect on a spin and the second term determined
by g(t ) - in a linear one. Both terms describe rotation of a
spin around some axis with a time-dependent frequency. The

first term describes nonlinear rotation of spin around an axis,
which is perpendicular to the light propagation direction and
to the initial direction of spin. The second part determined by
g(t ) describes rotation of the spin around the z axis. This is in
agreement to a conclusion that a spin is rotated only around
the light propagation direction via the UIFE, if a laser pulse
has a frequency far from a resonance [8]. In this case, both
functions f (t ) and g(t ) are relatively small since the transition
amplitudes are low and, consequently, the quadratic effect is
stronger suppressed than the linear one.

The functions f (t ) and g(t ) can be calculated as follows.
According to Eq. (10), the functions Y1(t ) and Y2(t ) depend on
the spinor A(t ) and the time evolution operator Û . The time
evolution operator, which fulfils the relation i Û ′ = Ĥm Û , is

Û = e−iBŜxt . The spinor A(t ) = (
1 + ψ2↑(t )
1 + ψ2↓(t )) is determined

by the transition amplitudes of the Raman scattering process
for the spin-up state and spin-down states, ψ2↑(t ) and ψ2↓(t ),
correspondingly. According to Eq. (5),

A(t ) =
(

1
1

)
+

( E
ω0

)2∫ t

−∞
dt ′ Û (t ′)

(∑
j |d↑ j |2Gj (t ′)∑
j |d↓ j |2Gj (t ′)

)
, (20)

where

Gj (t
′) = e−i�ω0 j t ′

F (t ′)
∫ t ′

−∞
dt ′′ei�ω0 j t ′′

e−iBt ′′/2F (t ′′),

F (t ) = p(t/T ) cos(ω0t ). (21)

Here, the summation is over intermediate states j. �ω0 j =
ε2p, j − ε1s, ε2p, j are the energies of the intermediate states. d↑ j

and d↓ j are the dipole matrix elements of the transitions from
the states |1s, Sz = 1/2〉 and |1s, Sz = −1/2〉 to the state j.
The dipole matrix elements are calculated in Appendix B. It is
also shown in Appendix B that a spin state can be changed via
the Raman scattering process only if the spin-orbit coupling is
nonzero even if an external magnetic field is nonzero.

As shown in the next section, the functions f (t ) and g(t )
are nonzero during the action of a laser pulse and smoothly
become zero at time τp, when the excitation is finished. Thus,
during the action of a laser pulse, Eq. (19) describes the spin
motion due to both laser excitation and the external magnetic
field. The terms in Eq. (19), which describe spin motion due to
the coupling to the electromagnetic field, are smoothly turning
off while the excitation is finishing, and spin moves only due
to an external magnetic field after the action of a laser pulse.
Thus we have obtained a system of differential equations with
terms separately describing spin motion due to the Zeeman
interaction and due to the UIFE, which shows the interplay of
the interactions leading to the rotation of spin.

B. Time evolution of the spin vector

We calculate and compare laser-induced spin dynamics
in the presence of an external magnetic field with a magni-
tude of 7 and of 20 T. Although the chosen magnetic field
magnitudes are rather high, they are reasonable for a goal of
comparison to the experiments studying the UIFE in the pres-
ence of an applied external magnetic field. Although external
magnetic fields with magnitudes of up to 0.5 T are usually
applied in experiments, materials under consideration obtain
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TABLE I. Larmor periods TL and their ratios to the laser pulse
duration, TL/Tdr, for the chosen magnetic fields.

B TL TL/Tdr

7 T 5 ps 40
20 T 1.7 ps 15

gyromagnetic factor about ten times higher than that of a
single electron spin, (see e.g., Refs. [19,46,52,53]). Thus the
chosen magnitudes of the magnetic fields result in Larmor
precession frequencies comparable to the ones in experiments.

We consider the action of a left-circularly polarized Gaus-
sian shaped laser pulse with p(t/T ) = exp(−t2/T 2)/

√
π3

and fluence Efl ≈ 2 mJ/cm2. We assume T = 100 fs, which
corresponds to the pulse duration of 117 fs at FWHM of
the intensity and the bandwidth of 15 meV. The laser pulse
central frequency ω0 is equal to (ε2p − ε1s), where ε2p is the
energy of the unsplit 2p state, i.e., the energy of the state in
the absence of the Zeeman and spin-orbit interactions. The
Larmor precession periods of the magnetic fields of 7 and
20 T are approximately 5 and 1.7 ps, correspondingly (see
Table I). The ratios of the induced precession periods to the
pulse duration are 40 and 15, respectively.

The time evolutions of the spin-vector components Sx, Sy,
and Sz are shown on Fig. 3 for B = 0, 7 T and 20 T. Sx

component is influenced only due to the interaction with light
and its dynamics does not depend on the magnetic field [see
Eq. (19)]. But comparing the time evolutions of the spin com-

FIG. 3. Time evolution of the spin-vector components due to the
excitation at different applied magnetic fields in the x direction. The
gray line represents the time evolution of the electric field amplitude.
Laser pulse duration is 117 fs.

ponents Sy and Sz at different magnetic fields, one can see that
they noticeably depend on the magnitude of the magnetic field
even during the interaction with light. The values of Sy and Sz

at time τp = 200 fs, when the excitation is negligible, are very
strongly affected by the magnetic field. This demonstrates
that Larmor precession has a considerable impact on laser-
induced spin dynamics already during the action of the laser
pulse.

A sudden approximation suggests that the laser excitation
is immediate and thus the spin oscillation in an external mag-
netic field during the excitation can be ignored. Thus one may
assume that spin Larmor precession starts after the excitation,
namely, at time τp = 200 fs. The spin state at τp calculated
without an applied magnetic field would be taken as the initial
condition for the precession. Applying this assumption and
comparing it to the results obtained with Eq. (19), we obtain
that the phase disagreement between spin dynamics calculated
with and without this assumption are 14◦ in the case of B =
7 T (the corresponding Larmor frequency of 5 ps) and 47◦ in
the case of B = 20 T (the corresponding Larmor frequency
of 1.7 ps). Thus the sudden approximation does not work
correctly even if the oscillation period is about fifty times
larger than the pulse duration. This statement is confirmed by
the observation of Satoh et al. in Ref. [24] that models, which
ignore the time-dependency of a laser pulse, are not sufficient
to describe the initial state of a magnetic precession.

Figure 4 shows the 3D picture of spin-vector trajecto-
ries during and after the excitation. This Figure additionally
demonstrates how an applied magnetic field influences the
spin dynamics. When the magnetic field is zero, the spin
moves during the action of the laser pulse almost always in the
xy plane. However, the spin trajectories during the excitation
in the presence of the external magnetic fields are rotated
around the z axis relatively to the trajectory at a zero magnetic
field. Furthermore, the spin trajectory starts to follow that of
the Larmor oscillation even during the action of the laser pulse
at B = 20 T corresponding to the Larmor frequency of 1.7 ps
[see Fig. 4(f)].

Figure 4 compares the fields acting on the spin due to
the magnetic field, B, and the interaction with light, f (t )
and g(t ) [see Eq. (19)]. We obtain that f (t ) and g(t ) during
the excitation are of the same order of magnitude as that of
the chosen magnetic fields. Although f (t ) and g(t ) depend
on the magnetic field via their dependence on the operator
Û = e−iŜxB [see Eq. (10)], this dependence is negligible even
at the magnetic field of 20 T. Since the bandwidth of the laser
pulse, which is equal to 15 meV in the considered case, is
much larger than energy splittings induced by the Zeeman
interaction, the transition amplitudes are almost not affected
by the Zeeman interaction. Thus the dependence of the func-
tions f (t ) and g(t ), which are determined by the transition
amplitudes, on the magnetic field is negligible.

We have shown that the action of an external magnetic field
can strongly affect spin dynamics and lead to an accumulation
of a phase of the Larmor precession even during the excitation
by light. Our simple model demonstrates that an exact calcula-
tion of the time evolution of the magnetic moment during the
action of a laser pulse is necessary even if the pulse duration
is several tens of times shorter than the period of an induced
magnetic precession.
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FIG. 4. (Left) Fields (in energy units) acting on the spin during
the excitation. Right column: the corresponding time evolution of
the spin vector on the Bloch sphere. The black arrow shows the
initial alignment of spin. The dotted lines on the left plots show the
dynamics of the spin during the excitation, i.e., at t < 200 fs, the
continuous lines show the dynamics of the spin after the excitation
at t > 200 fs. The external magnetic fields are [(a) and (b)] B = 0,
[(c) and (d)] 7, and [(e) and (f)] 20 T.

IV. DYNAMICS OF AN ANTIFERROMAGNET

In this section, we apply the Heisenberg picture to describe
magnetization dynamics of two types of antiferromagnets,
an easy-plane and an easy-axis antiferromagnet. We demon-
strate the mechanism of the excitation of magnetic precessions
and induction of a magnetic moment by the UIFE. A study
of antiferromagnet dynamics is especially interesting, since
magnetic resonances of such a system would not be observed,
if a circularly polarized laser pulse could be treated as an
effective magnetic field. If it were true, magnetic precessions
would be possible only in a material with a net magnetic
moment, so that the effective magnetic field can produce a
torque to it, which would result in magnetization precession
[54]. However, light-induced terahertz magnetic precessions
in antiferromagnets have been observed [24,26].

The phenomenological model of Ref. [55] indeed predicted
the possibility of the UIFE in an antiferromagnet. However,
there are several problems to apply this approach to the in-

terpretation of the experiments demonstrating light-induced
terahertz magnetic precessions in antiferromagnets. First, the
model is based on an assumption that the duration of a laser
pulse is much shorter than the period of an induced spin
precession. This approximation is not applicable for this ex-
periment, since the ratio of the induced precessions periods to
the pulse duration is about ten. Second, the model considers
the light excitation as an ultrashort magnetic pulse and does
not provide the information about the dependence of the effect
on laser-pulse and material parameters.

The method introduced by us, first, does not make any
assumptions on a pulse duration and, thus, can be applied
to describe subpicosecond magnetization dynamics. Second,
the technique involves the analysis of material properties and
thus provides details about the dependence of the effect on a
material structure.

We apply several assumptions to treat the antiferromag-
netic systems. However, our technique is not restricted to
these assumptions, and other magnetic models can be cho-
sen depending on a considered magnetic system. The model,
which we use, is an example that can be adjusted to a realistic
magnetic system.

A. Antiferromagnetic systems

We treat the exchange interaction in the framework of the
Weiss mean field theory [56]. According to this theory, the
quantum fluctuations can be neglected, and the exchange in-
teraction between any two atoms is considered as the Zeeman
interaction of a spin of each atom with a magnetic field,
which is the spin average of the other atom. This means that
the Hamiltonian Ĥex12 = Jex0Ŝ1 · Ŝ2 is substituted by Ĥex =
Jex0(Ŝ1〈S2〉 + 〈S1〉Ŝ2). With the assumption that the exchange
interaction only with the next neighbor atoms is relevant, the
Hamiltonian acting on an atom i is expressed as

Ĥex(i) = ZJex0〈Snn〉Ŝi, (22)

where Z is the number of the neighboring atoms and 〈Snn〉 is
the average spin of a next neighbor atom. Applying that the
magnetic moment of an atom in the presence of the spin-orbit
coupling is proportional to gJJ = L + 2S, where gJ is the
Landé factor and J = L + S, the exchange interaction acting
on atom i can be expressed as

Ĥex(i) = ZJex0(gL − 1)2〈Jnn〉Ĵi. (23)

The approximation is valid, when the fluctuations of the effec-
tive magnetic field Z〈Jnn〉 are small, which is true, when each
spin has many nearest neighbors.

We consider a system consisting of two equal sublattices
coupled antiferromagnetically (Jex0 > 0). Every atom be-
longing to the sublattice 1 is surrounded by Z atoms belonging
to the sublattice 2 and vice versa. The exchange interaction
acting on atoms belonging to the sublattices 1 and 2 can be
written in the framework of the Weiss mean field theory as

Ĥ(1)
ex = Jex(Jx2Ĵx1 + Jy2Ĵy1 + Jz2Ĵz1),

Ĥ(2)
ex = Jex(Jx1Ĵx2 + Jy1Ĵy2 + Jz1Ĵz2), (24)

where Jex = ZJex0(gL − 1)2.
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We treat the crystal field environment in the framework
of the crystal field theory. Two types of uniaxial crystal
fields are considered: one with the symmetry along the pulse
propagation direction, z, and one in the x direction, per-
pendicular to the pulse propagation direction. The spin-orbit
coupling is assumed to be much larger than the crystal field,
and the crystal field Hamiltonians can be expressed via the
total angular momentum operators. The crystal fields are de-
scribed by Hamiltonians Ĥcrz = �z(3Ĵ2

z1,z2 − Ĵ2
1,2) and Ĥcrx =

�x(3Ĵ2
x1,x2 − Ĵ2

1,2), correspondingly. This assumption and the
treatment of the crystal field are applicable to rare-earth-based
magnetic materials [56] that are often used in magneto-optical
experiments.

The magnetic Hamiltonian of the antiferromagnetic system
in the case of the two types of crystal fields are

Ĥm = Ĥ(1)
ex + Ĥ(2)

ex + �z(x)
(
3Ĵ2

z1(x1) − Ĵ2
1

)
+ �z(x)

(
3Ĵ2

z2(x2) − Ĵ2
2

)
. (25)

The alignment of the magnetic vectors in the ground state
are determined by the sign of the crystal field constants �z,x

[56]. We chose the sign of both constants, �z and �x in
such a way that in both cases the alignment of the magnetic
vectors perpendicular to the pulse propagation direction, z,
is energetically favorable. Thus we choose �z > 0, which
results in the xy plane being the easy plane (the z axis becomes
energetically unfavorable), and �x < 0, which results in the x
being the easy axis.

Thus, in the ground state, the magnetic vectors are aligned
along the x direction in the case of the crystal field Ĥcrx, and
are aligned along some direction in the xy plane, which we
define as the x axis, in the case of the crystal field Ĥcrz. There-
fore, in both cases, the energy of the system is the lowest,
when the absolute values of Jx1 and Jx2 are the largest, but
the vectors M1 and M2 are antiparallel. We assume that the
ground state is characterized by the term J = 3/2, therefore,
the spinors in both cases have initially the form

�
(1)
0 =

⎛⎜⎝c
d
d
c

⎞⎟⎠, �
(2)
0 =

⎛⎜⎝ c
−d
d
−c

⎞⎟⎠, (26)

Im(c) = Im(d ) = 0, c > 0, d > 0.

These spinors correspond to Jx1 = −Jx2, Jy1,y2 = Jz1,z2 = 0
(see Appendix C). In the case of Ĥcrx, c = 1/(2

√
2), d =√

3/(2
√

2) providing the functions �
(1,2)
0 , which are the

eigenfunctions of the operators Ĵx1,x2 with the corresponding
expectation values Jx1 = 3/2 and Jx2 = −3/2. In the case of
Ĥcrz, the factors c and d depend on the exchange interaction
and the crystal field. The crystal field interaction Ĥcrz leads
to a partial quenching of the total magnetic moment, and
the expectation values of the Ĵx1,x2 operators are smaller than
±3/2 (see Appendix C and Ref. [9]).

We assume, that the laser-induced Raman transitions of
the atoms belonging to each sublattice involve excited states
characterized by a term with J = 5/2. Other excited states,
e.g., with J = 3/2 and 1/2, are assumed to be energetically
inaccessible for the applied laser pulse. It is also assumed that
the Hamiltonian for the excited state is simply �ze(3Ĵ2

z1,z2 −

Ĵ2
1,2) or �xe(3Ĵ2

x1,x2 − Ĵ2
1,2) and that the effect of the exchange

interaction between the sublattices on the excited state is
negligible. Thus J = 5/2 term is splitted into three doubly
degenerate levels. The crystal field constants �ze(xe) depend
on the orbital radius and are not necessary equal to �x,z. We
take crystal field constants for the excited states �ze = 3 meV
and �xe = −3 meV.

It is assumed that all atoms belonging to the same sublattice
are excited coherently by the laser pulse. Thus the dynamics
of all atoms belonging to a same sublattice can be simulated
by one system. Therefore we describe the dynamics of the an-
tiferromagnets by considering the dynamics of the interacting
sublattices 1 and 2.

B. Time-dependent functions

The functions entering the operators Ĥ(1)
J and Ĥ(2)

J
are determined by dipole matrix elements involved in the
light-induced electronic transitions between electronic states.
Calculating the matrix elements, we take into account that the
character of these electronic states is affected by crystal field
and magnetic interactions as described in Appendix C 1.

The functions ν (1,2)
a and γ (1,2)

a entering the operators
Ĥ(1)

J and Ĥ(2)
J depend on the time evolution operators

Û (1,2), which are defined by the equation i Û (1,2)′ = [Ĥ(1,2)
ex +

�z(x)(3Ĵ2
z1,2(x1,2) − Ĵ2

1,2)] Û (1,2), correspondingly. Since the

Hamiltonians Ĥ(1)
ex and Ĥ(2)

ex are not equal, the time evolution
operators Û (1) and Û (2) are not equal as well. However, the
functions ν (1,2)

a and γ (1,2)
a are indeed equal for both systems,

ν (1)
a = ν (2)

a = νa and γ (1)
a = γ (2)

a = γa, due to the symmetry
considerations (see Appendix C and Ref. [9]). Thus the func-
tions νa and γa can be calculated only for the sublattice 1.

These functions are νa = Re(Ya) and γa = Im(Ya), where
Ya = [Û (1)A′]a/[Û (1)A]a. The ath element of A is Aa = 1 −
Ca/P0a, if P0a 
= 0, otherwise Aa = 0. Here, P0a is the ath
element of �

(1)
0 and Ca is the ath element of the spinor

C(t ) = E2|d0|2
[∫ t

−∞
dt ′F (t ′) (Û (1) )−1(t ′)D̂T Ûe(t ′)

×
∫ t ′

−∞
dt ′F (t ′′)′Ûe(t ′′)D̂ Û (1)(t ′′)

]⎛⎜⎝c
d
d
c

⎞⎟⎠, (27)

where the operator in the squared brackets acts on
the initial state vector of the sublattice 1, �

(1)
0 . Ûe =

exp[−i�ze(xe)(3Ĵ2
z1(x1) − Ĵ2

1 )t] is the time evolution operator
related to the Hamiltonian acting on the excited state and F (t )
is defined in Eq. (21). See Appendix C 2 and Ref. [9] for the
details of the derivation and the definition of D̂.

Note that the operator Ĥ(1)
ex , which determines Û (1), is

time-dependent, since it depends on expectation values of
Ĵx2, Ĵy2, and Ĵz2 and, in general, this dependence should be
taken into account. However, we obtain that the variation of
Ĥ(1)

ex (t ) in time, |Ĥ(1)
ex (t ) − Ĥ(1)

ex (0)|, is much smaller than the
laser pulse bandwidth [9]. According to our calculations, the
dependence of νa and γa on the time evolution of Ĥ(1)

ex (t ) is
negligible, and the time evolution operator can be written as
Û (1)(t ) = exp[−i(Ĥ(1)

ex (0) + �z(x)(3Ĵ2
z1,2(x1,2) − Ĵ2

1,2))t]. The
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calculation of νa and γa can be even simplified further, if the
pump laser pulse bandwidth �ωsw is much larger than the
splitting of the ground state manifold. As shown in Sec. III B,
the dependence of νa and γa on the time evolution operator Û
can be neglected in this case.

As discussed in Sec. III A, the diversity of the elements
of the vector A is a necessary condition for the IFE. In the
considered case, all four elements of A are different. As in the
previous example, this is due to the spin-orbit coupling, which
leads to dipole matrix elements of the Raman transitions from
the states with different projections of the total angular mo-
mentum on the pulse propagation direction being different.

C. Equations of motion

The dynamics of the magnetic vectors of the sublattices
M1 = (Jx1, Jy1, Jz1) and M2 = (Jx2, Jy2, Jz2), can be derived
from the dynamics of the expectation values of the operators
N̂ (1)

ab± and N̂ (2)
ab± [see Eq. (12)], which act in the Hilbert space

of spinorscorresponding to the sublattice 1 and 2, correspond-
ingly. The dynamics of 〈N̂ (1)

ab±〉 and 〈N̂ (2)
ab±〉 can be derived

from the equations of motion (15), which must be solved for
〈N (1)

ab±〉 and 〈N (2)
ab±〉 simultaneously, since the systems 1 and 2

are coupled via the exchange interaction term. The action of a
laser pulse on the sublattice 1 and 2 is described by operators
Ĥ(1)

J and Ĥ(2)
J , correspondingly. Note that since the mean

field theory is applied and quantum fluctuations are ignored,
the operators N̂ (1)

ab±,and, consequently, the operators Ĵx1, Ĵy1,

and Ĵz1 commute with operators Ĥ(2)
ex , �z(3Ĵ2

z2 − J2
2 ), Ĥ(2)

J .
Correspondingly, N̂ (2)

ab±, Ĵx2, Ĵy2, and Ĵz2 commute with Ĥ(1)
ex ,

�z(3Ĵ2
z1 − J2

1 ), Ĥ(1)
J .

We consider the equations of motion for the functions
mab±(t ) and lab±(t ), which are defined as [cf. Eq. (C16)]

mab±(t ) = 〈m̂ab±〉 = pa pb
〈
N̂ (1)

ab± + N̂ (2)
ab±

〉
, if b > a,

lab±(t ) = 〈l̂ab±〉 = pa pb
〈
N̂ (1)

ab± − N̂ (2)
ab±

〉
, if b > a, (28)

ma(t ) = maa+(t ) = 〈m̂a〉 = 〈m̂aa+〉 = 〈
N̂ (1)

a + N̂ (2)
a

〉
,

la(t ) = laa+(t ) = 〈l̂a〉 = 〈l̂aa+〉 = 〈
N̂ (1)

a − N̂ (2)
a

〉
,

where a and b are integers between 1 and 4, p1 = p4 = √
3/2

and p2 = p3 = 1. This way, it is convenient to take into ac-
count symmetries of the antiferromagnetic systems.

Additionally, instead of vectors M1 and M2, we consider
the dynamics of vectors M = M1 + M2 and L = M1 − M2,
which are proportional to ferromagnetic and antiferromag-
netic vectors of the antiferromagnets. Instead of operators Ĵα ,
(α stays for x, y or z), we use M̂α = Ĵα1 + Ĵα2 and L̂α = Ĵα1 −
Ĵα2, which are connected to m̂ab± and l̂ab± via the relations

M̂x = m̂12+ + m̂23+ + m̂34+,

M̂y = m̂12− + m̂23− + m̂34−,

M̂z = 3
2 m̂1 + 1

2 m̂2 − 1
2 m̂3 − 3

2 m̂4, (29)

L̂x = l̂12+ + l̂23+ + l̂34+,

L̂y = l̂12− + l̂23− + l̂34−,

L̂z = 3
2 l̂1 + 1

2 l̂2 − 1
2 l̂3 − 3

2 l̂4.

In the Heisenberg picture, the equations of motion of the
functions mab± and lab± are given by

im′
ab± = 〈[m̂ab±, Ĥm + ĤJ ]〉,

il ′
ab± = 〈[l̂ab±, Ĥm + ĤJ ]〉, (30)

ĤJ = Ĥ(1)
J + Ĥ(2)

J .

There are sixteen functions mab± and sixteen functions lab±. It
is shown in Appendix C that sixteen of the thirty-two func-
tions always remain zero, namely, m12±(t ) = 0, m23±(t ) =
0, m34±(t ) = 0, m14±(t ) = 0, l13±(t ) = 0 l24±(t ) = 0 and
l1,2,3,4(t ) = 0. Applying this result together with Eq. (15), we
obtain

m′
ab± =

(
−

4∑
k=1

νkmk + νa + νb

)
mab±

± (γa − γb)mab∓ − i〈[m̂ab±, Ĥm]〉, (31)

l ′
ab± =

(
−

4∑
k=1

νkmk + νa + νb

)
lab±

± (γa − γb)lab∓ − i〈[l̂ab±, Ĥm]〉.
The commutators of m̂ab± and l̂ab± with the magnetic Hamil-
tonian Ĥm are given in Table II in Appendix C.

Combining Eqs. (29) and (31), we obtain the following
equations of motion for the vectors M and L:

Mx = 0, My = 0, Lz = 0,

L′
x = F0Lx + gLy + Fxy(l12+, l34+) + Gxy(l12−, l34−)

− i[L̂x, Ĥm],

L′
y = F0Ly − gLx + Fxy(l12−, l34−) − Gxy(l12+, l34+)

− i[L̂y, Ĥm], (32)

M ′
z = F0Mz + Fz − i[M̂z, Ĥm],

where

g(t ) = γ2(t ) − γ3(t ),

F0(t ) = −
4∑
a

νa(t )ma(t ) + ν2(t ) + ν3(t ),

Fxy(t )(l12±, l34±) = (ν1(t ) − ν3(t ))l12±(t )

+ (ν4(t ) − ν2(t ))l34±(t ), (33)

Gxy(t )(l12±, l34±) = (γ1(t ) − 2γ2(t ) + γ3(t ))l12±(t )

+ (−γ2(t ) + 2γ3(t ) − γ4(t ))l34±(t ),

Fz(t ) = ν2(t ) − ν3(t )

2
+ (3ν1(t ) − 2ν2(t ) − ν3(t ))m1(t )

+ (ν2(t ) + 2ν3(t ) − 3ν4(t ))m4(t ).

Analogously to the system of differential equations in Eq. (19)
describing the dynamics of the single-spin system, Eq. (32)
contains a linear term determined by the function g(t ) describ-
ing a rotation of the magnetic vectors around the z axis. Also,
analogously to the single-spin system, the terms determined
by the function F0 describe a rotation around the y axis,
which is perpendicular to the light propagation direction and
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TABLE II. First column: k′, which is equal to −i〈[k̂, Ĥm + ĤJ ]〉, where k̂ is l̂ab± or m̂ab±. Four left columns: −i〈[k̂, Ô]〉, where Ô denotes
the operators entering Ĥm: L̂x , L̂y, M̂z, (M̂2

z + L̂2
z )/2, and (M̂2

x + L̂2
x )/2.

L̂x L̂y M̂z

(
M̂2

z + L̂2
z

)
/2

(
M̂2

x + L̂2
x

)
/2

l ′
12+ m13− 3

2 m1 − 3
2 m2 − m13+ −l12− −2l12− l12− + 3

4 l23− + l14−
l ′
12− − 3

2 m1 + 3
2 m2 − m13+ −m13− l12+ 2l12+ l12+ 3

4 l23+ − l14+
l ′
23+ −m13− + m24− 2m2 − 2m3 + m13+ − m24+ −l23− 0 −l12− + l34−

l ′
23− −2m2 + 2m3 + m13+ − m24+ m13− − m24− l23+ 0 −l12+ + l34+

l ′
34+ −m24− 3

2 m3 − 3
2 m4 + m24+ −l34− 2l34− − 3

4 l23− − l34− − l14−
l ′
34− − 3

2 m3 + 3
2 m4 + m24+ m24− l34+ −2l34+ − 3

4 l23+ + l34+ + l14+
l ′
14+

3
4 (m13− − m24−) 3

4 (m13+ − m24+) −3l14− 0 3
4 l12− − 3

4 l34−
l ′
14−

3
4 (−m13+ + m24+) 3

4 (m13− − m24−) 3l14+ 0 − 3
4 l12+ + 3

4 l34+
m′

13+ l12− + l14− − 3
4 l23− l12+ − l14+ − 3

4 l23+ −2m13− −2m13− m13−
m′

13− −l12+ − l14+ + 3
4 l23+ l12− − l14− − 3

4 l23− 2m13+ 2m13+ − 3
2 m1 − m13+ + 3

2 m3

m′
24+

3
4 l23− − l14− − l34− l14+ + 3

4 l23+ − l34+ −2m24− 2m24− −m24−
m′

24− − 3
4 l23+ + l14+ + l34+ l14− + 3

4 l23− − l34− 2m24+ −2m24+ − 3
2 m2 + 3

2 m4 + m24+
m′

1 l12− −l12+ 0 0 m13−
m′

2 l23− − l12− −l23+ + l12+ 0 0 m24−
m′

3 −l23− + l34− l23+ − l34+ 0 0 −m13−
m′

4 −l34− l34+ 0 0 −m24−

to the initial alignment of the magnetic vectors. These terms
are also nonlinear, since they depend on the variables ma. The
terms Fxy, Gxy, and Fz do not appear in the equations for the
single-spin system.

The set of the first-order differential equations in Eq. (32)
is not sufficient to obtain the time evolution of Mz, Lx, and Lz,
since apart from these variables, the functions mab± and lab±
also enter these differential equations. Thus, in contrast to the
single-spin system, it is not possible to describe dynamics of
a system with the total angular momentum J = 3/2 induced
by the UIFE with differential equations, which include only
Jx, Jy and Jz to a first order (or Mx,y,z and Lx,y,z in the consid-
ered case). Even in the absence of the optical excitation, the
dynamics of the considered antiferromagnetic systems could
not be described by first-order differential equations, which
include solely Mx,y,z and Lx,y,z variables, due to the presence
of the crystal field. Thus, rather than applying Eq. (32), it is
more convenient to solve the system of differential equations
in Eq. (31) for variables lab± and mab± and to derive the
time evolutions of vectors M and L with Eq. (29). In our
case, it is sufficient to solve a system of fifteen first order
differential equations, which involves fifteen variables l12±,
l23±, l34±, l14±, m13±, m24±, m1, m2, m3. The sixteenth vari-
able m4 is derived from the constrain

∑4
a ma = ∑4

a〈N̂ (1)
a 〉 +∑4

a〈N̂ (2)
a 〉 = 2.

D. Time evolution of the magnetic vectors

According to Eq. (32), Mx = 0, My = 0, and Lz = 0. Thus
the action of the UIFE makes the magnetic vectors of the sub-
lattices M1 and M2 deviate from their equilibrium positions
in such a way that their x and y components are opposite
and z components are equal (see Fig. 5). Since the mag-
netic vectors are deviated from their equilibrium positions,
precession modes due to the exchange interaction and the
crystal field are evoked in the antiferromagnetic system as

shown in Figs. 5(b)–5(d). The exchange interaction leads to
the circular rotation of the magnetic vectors around the z axis
[see Fig. 5(b)]. The crystal field with the symmetry in the z
direction leads to elliptical rotation of the magnetic vectors
around the z axis [see Fig. 5(c)]. However, this elliptical mode
exists only in the presence of the exchange interaction. The
crystal field with the symmetry in the x direction leads to
elliptical rotation of the magnetic vectors around the x axis
[see Fig. 5(d)] in such a way that their x and y projections
are always opposite to each other, and z projections are alway
equal to each other.

We calculated the time evolutions of the magnetic vec-
tors triggered by a left-circularly polarized Gaussian shaped
laser pulse of the duration of 117 fs, which corresponds
to bandwidth of 15 meV. We assume the peak intensity of
2 × 1010 W/cm2, the fluence 8 mJ/cm2 and the central fre-
quency of 2.0 eV. Figure 6 shows the time evolution of

FIG. 5. (a) The initial alignment of the magnetic vectors. (b) The
circular mode due to the exchange interaction. The elliptical modes
due to the crystal field with the symmetry along (c) z axis and (d) x
axis.
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FIG. 6. (Left) Time evolutions of Lx , Ly and Mz depending on the
values of Jex and �x,z. The gray line represents the time evolution of
the electric field amplitude. Right column: the corresponding trajec-
tory of the M1 (red) and M2 (blue) vectors. The dotted yellow line
represents the dynamics of the vectors during the excitation. [(a) and
(b)] Jex = 3 meV and �z = 2 meV. [(c) and (d)] Jex = 3 meV and
�z = 0.02 meV. [(e) and (f)] Jex = 3 meV and �x = 0.02 meV. [(g)
and (h)] Jex = 3 meV and �x = −2 meV. [(i) and (j)] Jex ≈ 0 meV
and �x = −2 meV.

the components Lx = M1x − M2x, Ly = M1y − M2y, and Mz =
M1z + M2z and the corresponding 3D picture of the trajecto-
ries of the magnetic vectors M1 and M2 at different values
of the exchange interaction and the crystal field interaction
constants. The red and blue arrows on the right panel show the
initial alignments of the magnetic vectors of the sublattices 1
and 2 correspondingly. The dotted yellow-red and yellow-blue
lines show the dynamics of the corresponding vectors during
the excitation. The continuous red and blue lines show their
dynamics after the excitation.

The dynamics of the magnetic vectors during and after the
action of the laser pulse depends considerably on the exchange
and crystal field interactions. Figures 6(a)–6(d) show the dy-
namics of the magnetic vectors in the case of the crystal field
Ĥcrz with the symmetry along the z axis. In this case, vectors
M1 and M2 move upwards during the action of the pump
pulse and start to precess around the z axis slightly before
the excitation finishes. Their z projections remain constant
after the excitation, since the oscillation modes due to the
exchange interaction and the crystal field Ĥcrz correspond to
constant Mz [cf. Figs. 5(b) and 5(c)]. The precession of the
magnetic vectors involves both elliptical and circular modes,
when Jex ∼ �z [cf. Figs. 6(a) and 6(b)]. The length of the
magnetic vectors is slightly lower than 3/2 due to the par-
tial quenching of the angular momentum by the crystal field
as discussed earlier. The magnetic vectors simply circulate
around the z axis, when Jex � �z [cf. Figs. 6(c) and 6(d)].

In the case of the crystal field Ĥcrx with the symmetry
along the x axis, the dynamics of the magnetic vectors during
the excitation are much more dependent on the value of the
crystal field constant [cf. Figs. 6(e)–6(j)]. After the excitation,
the magnetic vectors start to follow an elliptical trajectory
around the x axis, which is slightly bent to the z axis in the
case of Jex � |�x| [cf. Fig. 6(e)–6(f)]. As discussed earlier,
the magnetic vectors always move in such a way that their
projections on the z axis are equal to each other, and the x and
y projections are opposite.

The trajectories of the magnetic vectors during the excita-
tion in the case of Jex � |�x| [cf. Figs. 6(e) and 6(f)] are quite
similar to the ones in the case of Jex ∼ �z [cf. Figs. 6(a) and
6(b)] and Jex � �z [cf. Figs. 6(c) and 6(d)]. Magnetic vectors
on Figs. 6(e) and 6(f) also start to precess slightly before the
excitation has finished. This means that the time evolutions
of the magnetic vectors during the excitation are not strongly
influenced by the exchange and crystal field interactions, and
approximate positions of the magnetic vectors after the exci-
tation are determined mainly by the interaction with the pump
pulse. Still, it is noticeable that the values of Ly right after the
excitation on Figs. 6(a), 6(c) and 6(e) differ from each other.
In all these cases, the periods of the induced precessions are
more than twenty times larger than the pulse duration.

A situation is quite different in the case of Jex ∼ |�x|
and Jex � |�x|. The magnetic vectors start to precess during
the excitation at approximately half of the pulse duration
[cf. Figs. 6(g)–6(j)]. The trajectories during the excitation are
strongly dependent on the value of the crystal field constant
�x. The magnetic vectors even move downwards before the
start of the precession on Figs. 6(i) and 6(j)], which is the
opposite direction to the ones in all other cases in Fig. 6.
This means that the dynamics of the magnetic vectors during
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the action of the pump pulse is strongly dependent on the
exchange interaction and the crystal field Ĥcrx. The period of
the induced precessions is about two times longer than the
pulse duration, when Jex ∼ |�x|, and about three time longer
than the pulse duration, when Jex � |�x|.

Thus, if the pulse duration is several tens of times shorter
than the period of laser-induced magnetic precessions, then
the trajectories of the magnetic vectors during the excitation
are similar even at different values of the crystal field con-
stants of the antiferromagnetic system. However, the positions
of the magnetic vectors right after the excitation still slightly
differ in this case. If the pulse duration is just several times
shorter than the period of the laser-induced magnetic preces-
sions, then the dynamics of the magnetic vectors during the
excitation can be absolutely divergent at different values of the
exchange and crystal field constants. Thus the dynamics of the
magnetic vectors during the excitation are mainly determined
by the action of the pump pulse in the former case. In the
latter case, the magnetization dynamics during the excitation
are mainly determined by the internal magnetic interactions
and the pump pulse serves as a slight impulse prompting
the dynamics. This demonstrates that an accurate calculation
of the magnetization dynamics during the action of light is
necessary to predict correct positions of the magnetic vectors
right after the excitation.

V. CONCLUSIONS

The action of the UIFE on a magnetic system leads to de-
viation of its magnetic moment from the ground state, which
prompts the magnetic moment to precess [9]. In our paper,
we have shown that this process cannot be described within
the sudden approximation even if the pump-pulse duration is
several tens of times shorter than the period of laser-induced
precessions. We provide a technique that accurately describes
magnetization dynamics during the action of a laser pulse at a
subpicosecond timescale.

We derived the Heisenberg representation for the UIFE
from the Schrödinger picture, which describes coupling of
light to electrons of a magnetic system. We obtained an opera-
tor ĤJ acting in the Hilbert space of total angular momentum
with time-dependent elements, which depend on laser-pulse
parameters and transition amplitudes of the electronic system
under the action of a laser pulse. This way we substituted
the operator −d · E by the nondiagonal effective magnetic
operator ĤJ . The effective magnetic operator allows to sep-
arate the motion of a magnetic vector due to the action of
light from that induced by other fields acting on a magnetic
system. Commuting the magnetic operator with total angular
momentum operators, we obtained equations of motion for
magnetic vectors of a magnetic system. During the action of
light, magnetic vectors move due to the joint action of ĤJ and
other magnetic operators acting on the magnetic system. After
the action of light, the elements of ĤJ naturally become zero.

The Heisenberg representation of the UIFE could be
implemented for macroscopic calculations of laser-induced
magnetization dynamics, which are a practical technique al-
lowing to take simultaneously many different magnetic effects
into account [1,40–42]. The effective magnetic operator ĤJ

could be also used as a convenient tool to adjust pump-pulse

properties enhancing the UIFE, since it directly illustrates how
a pump pulse couples to the total angular momentum.

With the help of the illustrative single-spin system in an
external magnetic field, we showed that laser-induced mag-
netization dynamics can be strongly affected by the Larmor
precession even during the action of a laser pulse. The spin
started to precess during the action of the laser pulse even
when the Larmor period was forty times longer than the
pump-pulse duration. Thus, even in this case, it was necessary
to calculate the joint action of the external magnetic field and
the UIFE on spin in order to obtain the correct position of the
spin vector after the excitation.

We calculated magnetization dynamics induced by the
UIFE in model antiferromagnetic systems consisting of two
sublattices with opposite magnetic vectors. The magnetization
dynamics in these systems were described by a system of
fifteen first-order differential equations within the Heisenberg
picture. We demonstrated that the action of the UIFE induced
by a pump pulse propagating in the z direction made both
magnetic vectors bend upwards to the z axis and rotate around
it in such a way that their z projections were equal, and x and
y projections were opposite. The deviation of the magnetic
vectors from their initial positions evoked a circular preces-
sion mode due to the exchange interaction and an elliptical
precession mode due to the crystal field.

In the case of the xy-easy-plane antiferromagnetic system
with the exchange-interaction constant of 3 meV and the
crystal field constant of 2 meV, the period of the induced
precessions was more than twenty times longer than the
pump-pulse duration. The motion of the magnetic vectors was
mainly determined by the UIFE and to some extend affected
by the crystal field and exchange interactions. In the case
of the z-easy-axis antiferromagnetic system with the same
absolute values of the exchange interaction and crystal field
constants, the period of the induced precessions was just two
times longer than the pump-pulse duration. The motion of the
magnetic vectors was mainly determined by the crystal field
and the exchange interaction, and the pump pulse served just
as a slight impulse prompting the magnetization dynamics.
The magnetic vectors moved even in the opposite direction to
the one, in which the action of the UIFE alone would make the
magnetic vectors move. This example also demonstrates that
an accurate calculation of magnetization dynamics during the
action of a pump pulse is necessary even if the pump-pulse
duration is several tens of times shorter than the period of
induced magnetic precessions.

We thus observed that the character of induced magnetic
precessions depends on the ratio of the pump-pulse duration to
the period of magnetic-oscillation modes. This effect could be
used for control of magnetic precessions by varying the pump-
pulse duration in the regime, when it is comparable with the
period of magnetic oscillation modes. In this regime, the mo-
tion due to the UIFE-driven deviation of magnetic vectors can
cooperate or compete with the one due to magnetic preces-
sions caused by this deviation. For example, in the z-easy-axis
antiferromagnetic system, the UIFE-induced deviation is
in the upward z direction, but the crystal field interaction
causes the precession upwards and downwards the z axis.
Varying the pump-pulse duration, one can apply the driving
during the time, when it either enhances or counteracts the
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precession mode, which would influence the magnitude and
the phase of resulting precessions after the action of the pump
pulse. This effect does not follow from the phenomenological
description of the IFE, in which the pump-pulse fluence alone
determines the character of magnetic precessions.

The developed technique to study the magnetization dy-
namics induced by the UIFE can be applied to other types
of magnetic materials, not necessary antiferromagnetic. The
Heisenberg representation of other magneto-optical effects
driven by Raman transitions [57–61] can be derived anal-
ogously to our methodology. The presented concept of the
time-dependent effective magnetic operator paves the way
towards the macroscopic description of ultrafast laser-induced
magnetization dynamics that accurately takes electronic tran-
sitions induced by an ultrashort light pulse into account.
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APPENDIX A: EFFECTIVE MAGNETIC OPERATOR
DESCRIBING THE UIFE

1. Derivation of the effective magnetic operator

Let us first derive the operator for the case, when there is
no field except light acting on the total angular momentum of
the system, meaning that Û = 1 and i� ′

g = Ĥ0
J�

0
g . Here, Ĥ0

J

and �0
g are the operator and the time-dependent spinor in this

case. The relation (8) can be rewritten as

�0
g = A�0

N = 1

N (t )

⎛⎜⎜⎜⎝
A1(t )eiφ1(t )P01

...

Ak (t )eiφk (t )P0k
...

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
P1(t )

...

Pk (t )
...

⎞⎟⎟⎟⎠, (A1)

where the elements of the spinor A are Ak = Ak (t )eiφk (t ).
We apply the condition that the magnetic moment of a

system is not rotated by the IFE, if it is parallel to the
laser pulse propagation direction. The magnetic moment is
parallel to the quantization axis, if all elements except one

of the spinor �0 are zero. This means that, if �0 = (

0
...

P0k
...

),

there |P0k| = 1, then the effective magnetic operator acts only
on the k-th component of the state vector, so that the other

magnetic components remain zero, �0
g = 1

N (t ) (

0
...

Ak (t )eiφk (t )

...

).

Since |�0
g | = 1, the spinor during and after the action of

light is �0
g = eiφk (t )�0. Thus the diagonal elements of Ĥ0

J are

(Ĥ0
J )aa = −φ′

a(t ), and if the magnetic moment is parallel to
the light propagation direction, the off-diagonal elements of
Ĥ0

J must become zero.

Let us now derive the off-diagonal elements of Ĥ0
J , which

are nonzero, if the magnetic moment is not parallel to the
light propagation direction. The ath element of i�0

g
′ can be

expressed as

iP′
a = −φ′

aPa + i
∑

b,b
=a

Pb

[
PaP∗

b

(
A′

a

Aa
− A′

b

Ab

)]
, (A2)

which follows from the relations Pa(t ) =
Aa(t )eiφa (t )P0a/

∑
k |Pk (t )| and P0a = const. Applying this

expression with i�0
g

′ = Ĥ0
J�

0
g , we obtain

Ĥ0
J=

⎛⎜⎜⎜⎜⎜⎝
. . .

−γa · · · iPaP∗
b (νa − νb) · · ·

...
. . .

iP∗
a Pb(νb − νa)

...

⎞⎟⎟⎟⎟⎟⎠,

(A3)

where νa = Re(A′
a/Aa), γa = φ′

a = Im(A′
a/Aa) for Û = 1.

If there is a field Ĥm, which acts on the magnetic system
apart from light, then Û 
= 1 and i� ′

g = [ĤJ + Ĥm]�g. In this

case the spinor is �g = ÛA�0/N = Û�0
g . Substituting Û�0

g

for �g, we obtain that i(Û�0
g )′ = [ĤJ + Ĥm]Û�0

g . Applying

that, by definition, i Û ′ = Ĥm Û , we obtain ĤJ = Û Ĥ0
J Û−1.

We derive ĤJ applying this expression, which results in the
operator ĤJ having the same form as Ĥ0

J in Eq. (A3), but with
different functions νa and γa:

νa = Re (Ya), γa = Im (Ya), Ya = [ÛA′]a/[ÛA]a, (A4)

where [ÛA′]a is the ath element of the spinor obtained
by the action of the operator Û on A′, which is the time
derivative of the spinor A. [ÛA]a is the ath element of
the spinor obtained by the action of the operator Û on
the spinor A. Applying that PaP∗

b = (〈N̂ab+〉 + i〈N̂ab−〉)/2 =
〈�g|N̂ab+ + iN̂ab−|�g〉/2, the effective magnetic operator can
be written as

ĤJ = −
n∑
a

γaN̂a

+ 1

2

n∑
a,b

(νa − νb)(〈N̂ab−〉N̂ab+ − 〈N̂ab+〉N̂ab−). (A5)

2. Commutator with the effective magnetic operator

In this section, we derive the expectation value of the
commutator −i〈[N̂ab±, ĤJ ]〉. We divide the operator ĤJ into
its diagonal, Hd , and off-diagonal part, Hn, and derive the
expectation values of the commutators −i〈[N̂ab±, Hd ]〉 and
−i〈[N̂ab±, Hn]〉 separately.

The cdth matrix element of the commutator of [N̂ab±, Hd ]
is

(N̂ab±Ĥd − Ĥd N̂ab±)cd = (N̂ab±)cd [(Ĥd )dd − (Ĥd )cc], (A6)

where we designate the cdth matrix element of an operator Ô
as (Ô)cd . Thus [N̂ab±, Ĥd ] = ±i(γa − γb)N̂ab∓.
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Let us now commute N̂ab± with the off-diagonal part
Ĥn and determine the expectation value of the commutator
−i〈[N̂ab±, Ĥn]〉. We consider the elements of the commutator
Ĉab± = [N̂ab±, Ĥn]. We find that (Ĉab±)cd = 0 if neither c nor
d are not equal a or b. The elements in other cases are

(Ĉab±)ac = (N̂ab±)ab(Ĥn)bc,

(Ĉab±)ca = −(N̂ab±)ba(Ĥn)cb,

(Ĉab±)bc = (N̂ab±)ba(Ĥn)ac,

(Ĉab±)cb = −(N̂ab±)ab(Ĥn)ca. (A7)

The expectation value 〈Ĉab±〉 = 〈�g|Ĉab±|�g〉 is given by∑
cd P∗

c PdĈab±
cd , which is equal to i[−2(

∑
i |Pi|2νi ) + (νa +

νb)](PaP∗
b ± iP∗

a Pb) as follows from Eq. (A7). Applying that
|Pa|2 = 〈�g|N̂a|�g〉 and (PaP∗

b ± iP∗
a Pb) = 〈N̂ab±〉, we obtain

the relation

−i〈[N̂ab±, ĤJ ]〉 =
(

−2
∑

k

νk〈N̂k〉 + νa + νb

)
〈N̂ab±〉

± (γa − γb)〈N̂ab∓〉. (A8)

APPENDIX B: SPIN-ORBIT COUPLING AND ZEEMAN
INTERACTION

In order to obtain the wave functions and the splitting of the
2p state in the presence of the spin-orbit coupling and Zeeman
interaction, one has to diagonalize the following integral is

Ĥm = −B

2
(2Ŝx + L̂x ) − λL · S. (B1)

This Hamitonian has six eigenvectors and eigenenergies for
the 2p state. Thus 2p state is split energetically into six states
with energies εk± = ε2p,k± + Ek± , k = 1, 2, or 3. The indices
k± correspond to the indices j in Sec. III A. Ek± are the
solutions of the equations

E3
k± ± B

2
E2

k± −
(

3λ2

4
± Bλ

2
+ B2

2

)
Ek±

+
(

−λ3

4
+ λB2

4
∓ 3λ2B

8

)
= 0. (B2)

The corresponding wave functions are, if λ 
= 0 and B 
= 0,

�
2p
k± = αk±

(|Lz = 1, Sz = 1/2〉 ± |Lz = −1, Sz = −1/2〉)
+ βk±

(|Lz = 1, Sz = −1/2〉 ± |Lz = −1, Sz = 1/2〉)
+ γk±

(|Lz = 0, Sz = 1/2〉 ± |Lz = 1, Sz = −1/2〉),
(B3)

where αk± = B(5λ/8 − 3Ek±/4)/[Nk± (Ek± + λ/2)],
βk± = (Ek± + B/4 − λ/2)/Nk± , and γk± = (Ek± − 3λ/2 −
B/2)/(

√
2Nk± ) and Nk± is the normalization factor, which

provides |αk±|2 + |βk±|2 + |γk±|2 = 1.
The dipole matrix elements for a transition from the s state

with the wave function |Lz = 0, Sz = 1/2〉 to the states k±,
d↑k± , are proportional to αk± for the left-circularly polarized
light. The dipole matrix elements for a transition from the
s state with the wave function |Lz = 0, Sz = −1/2〉 to the

states k±, d↓k± , are proportional to βk± for the left-circularly
polarized light.

If λ = 0 and B 
= 0, then α1± = β1± = 1/(2
√

2), α2± =
−β2± = 1/2, α3± = β3± = 1/(2

√
2). Thus, if λ = 0, but

B 
= 0, no rotation is possible, since |d↑k±|2 = |d↓k±|2 [see
Eq. (20)].

APPENDIX C: ANTIFERROMAGNETIC SYSTEM

1. Ground and excited states

In Sec. IV A, we consider the following light field-free
magnetic Hamiltonians acting on the sublattices 1 and 2,
correspondingly,

Ĥ(1)
m =Jex(Jx2Ĵx1 + Jy2Ĵy1 + Jz2Ĵz1) + �z(x)

(
3Ĵ2

z1(x1) − Ĵ2
1

)
,

(C1)

Ĥ(2)
m =Jex(Jx1Ĵx2 + Jy1Ĵy2 + Jz1Ĵz2) + �z(x)

(
3Ĵ2

z2(x2) − Ĵ2
2

)
.

(C2)

The sign of the crystal field constants �z and �x are chosen
in such a way that the alignment of magnetic vectors of the
sublattices along the x axis is energetically preferable. Due to
the exchange interaction, the state with the lowest energy cor-
responds to the magnetic vectors having the largest possible
amplitude and being opposite to each other: Jx1 = −Jx2. Thus
the effective magnetic Hamiltonians before the action of light
can be represented as

Ĥ(1)
m(eff) = �z(x)

(
3Ĵ2

z1(x1) − Ĵ2
1

) + J0Ĵx1,

Ĥ(2)
m(eff) = �z(x)

(
3Ĵ2

z2(x2) − Ĵ2
2

) + J0Ĵx2, (C3)

J0 = JexJx1 = −JexJx2.
The ground state spinors, corresponding to the follow-

ing expectation values of total angular momentum operator
Jx1 = −Jx2, Jx1 > 0, Jy1 = Jy2 = Jz1 = Jz2 = 0, must ful-
fill the conditions 〈� (1)

0 |Ĵx1|� (1)
0 〉 = −〈� (2)

0 |Ĵx2|� (2)
0 〉 and

〈� (1,2)
0 |Ĵy1,y2|� (1,2)

0 〉 = 〈� (1,2)
0 |Ĵz1,z2|� (1,2)

0 〉 = 0, where

Ĵx1,x2 =

⎛⎜⎜⎜⎝
0

√
3

2 0 0√
3

2 0 1 0

0 1 0
√

3
2

0 0
√

3
2 0

⎞⎟⎟⎟⎠, (C4)

Ĵy1,y2 =

⎛⎜⎜⎜⎝
0 − i

√
3

2 0 0
i
√

3
2 0 −i 0

0 i 0 − i
√

3
2

0 0 i
√

3
2 0

⎞⎟⎟⎟⎠, (C5)

Ĵz1,z2 =

⎛⎜⎜⎝
3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2

⎞⎟⎟⎠. (C6)

The spinors, which fulfill these conditions, have the following
form:

�
(1)
0 =

⎛⎜⎝c
d
d
c

⎞⎟⎠, �
(2)
0 =

⎛⎜⎝ c
−d
d
−c

⎞⎟⎠, (C7)
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Im(c) = Im(d ) = 0, c > 0, d > 0.

In the case of the crystal field Ĥcrx, the effective
Hamiltonians are diagonal in the basis with the quantization
axis along the x axis. Thus the ground state state vectors
are the eigenvectors of the Ĵx1,x2 operators. The ground state
spinors correspond to the expectation values Jx1 = 3/2 and
Jx2 = −3/2 with c = 1/(2

√
2), d = √

3/(2
√

2).
The situation is more complicated in the case of Ĥcrz. The

effective Hamiltonian is not diagonal in a basis with neither
x nor z quantization axes. The spinors depend on the crystal
field and the exchange interaction, and must be found numeri-
cally. If �z 
= 0, then the expectation values have lower values
Jx1 < 3/2 and Jx2 > −3/2, and the crystal field Ĥcrz leads to
a partial quenching of the magnetic moment.

2. Time-dependent factors of the effective magnetic operator

In this section, we calculate the functions ν (1,2)
a and γ (1,2)

a
and show that they are equal for both systems. These functions
are defined as ν (1,2)

a = Re(Y (1,2)
a ), γ (1,2)

a = Im(Y (1,2)
a ), where

Ya = [Û (1,2)A(1,2)′]a/[Û (1,2)A(1,2)]a. The spinors A(1,2) are de-
fined by Eq. (8). Û is the time evolution operator defined by
i Û (1,2)′ = Ĥ(1,2)

m Û (1,2).
According to Eqs. (5), (6) and (8) the ath elements of A1,2

is A(1,2)
a = 1 − C (1,2)

a /P(1,2)
0a , if P(1,2)

0a 
= 0, otherwise, A(1,2)
a =

0. Here, P(1,2)
0a = Pa(0)(1,2), C (1,2)

a is the a-th element of the
vector obtained by the action of the operator in squared brack-
ets on the initial spinor

C (1,2) =
[∫ t

−∞
dt ′ (Û (1,2))−1V̂ Û (1,2)

×
∫ t ′

−∞
dt ′′(Û (1,2))−1V̂ Û

]
�

(1,2)
0 . (C8)

Since the action of the exchange interaction on the excited
state is ignored, the time evolution operator, which acts on
spinor of the excited state, can be written simply as an operator
Ûe(t ) = e−iĤcrz(crx)t . It is equal for the both systems 1 and 2.
The crystal field operator, Ĥcrz, acting on the excited state
characterized by the term J = 5/2, is represented by

Ĥcrz = �ze

(
3Ĵ2

z1 − 35

4

)
(C9)

= �ze

⎛⎜⎜⎜⎜⎜⎝
10 0 0 0 0 0
0 −2 0 0 0 0
0 0 −8 0 0
0 0 0 −8 0 0
0 0 0 0 −2 0
0 0 0 0 0 10

⎞⎟⎟⎟⎟⎟⎠.

Thus the crystal field leads for both systems to the splitting
of the excited state J = 5/2 into the following three doubly
degenerate states with the corresponding energies εex1,2,3

|Jz1(z2) = ±5/2〉, εex1 = εex + 10�ze,

|Jz1(z2) = ±3/2〉, εex2 = εex − 2�ze, (C10)

|Jz1(z2) = ±1/2〉, εex3 = εex − 8�ze,

where εex = 2 eV is the energy of the excited state in the
absence of the crystal field.

The crystal field operator, Ĥcrx, acting on the excited state
characterized by the term J = 5/2, is represented by

Ĥcrx = �xe

(
3Ĵ2

x1 − 35

4

)
(C11)

= �xe

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−5 0 3
√

10
2 0 0 0

0 1 0 9
√

2
2 0 0

3
√

10
2 0 4 0 9

√
2

2

0 9
√

2
2 0 4 0 3

√
10

2

0 0 9
√

2
2 0 1 0

0 0 0 3
√

10
2 0 −5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The crystal field leads for both systems to the splitting of the
excited state J = 5/2 into the following three doubly degen-
erate states with the corresponding energies εex1,2,3

|Jx1(x2) = ±1/2〉, εex1 = εex − 8�xe,

|Jx1(x2) = ±3/2〉, εex2 = εex − 2�xe,

|Jx1(x2) = ±5/2〉, εex3 = εex + 10�xe. (C12)

Let us examine the selection rules for the transitions from
the ground state |g〉 to the excited state |ex〉 for an excitation
by left-circularly polarized light. A dipole matrix element of
a transition from a state with a total angular momentum J and
projection Jz = m to a state with J + 1 and Jz = m + 1 is [62]

〈J + 1 m + 1|r+|J m〉

= −
√

(J + m + 1)(J + m + 2)

(J + 1)(2J + 1)(2J + 3)
〈J + 1|r|J〉, (C13)

where r+ = (x + iy)/
√

2. Thus the action of the operator V̂ on
the ground state and excited state can be represented as V̂ =
iEd0F (t )D̂ and V̂ = iEd∗

0 F (t )D̂T , correspondingly, where

D̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
√

2
3 0 0 0

0 −
√

1
5 0 0

0 0 −
√

1
10 0

0 0 0 −
√

1
30

0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (C14)

F (t ) = p(t/T ) cos(ω0t ), and d0 is a reduced dipole matrix el-
ement: d0 = 〈ex, J = 5/2|r|g, J = 3/2〉. d0 = 1 a.u. is taken
for simplicity. Therefore the vectors C (1,2) can be written as

C (1,2) = E2|d0|2
[∫ t

−∞
dt ′F (t ′) [Û (1,2)]−1(t ′)

× D̂T Ûe(t ′)
∫ t ′

−∞
dt ′F (t ′′)′Ûe(t ′′)D̂ Û (1,2)(t ′′)

]⎛⎜⎝ c
±d
d
±c

⎞⎟⎠,

(C15)

As discussed in Sec. IV C, Jx1,y1 = −Jx2,y2 and Jz1 = Jz2

during and after the action of light. Applying these relations
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and investigating the relations of ν (1,2)
a and γ (1,2)

a to the spinors
C (1,2), we obtain that ν (1)

a = ν (2)
a and γ (1)

a = γ (2)
a .

3. Equations of motion

We solve differential equations for the expectation values

m12± =
√

3

2

[〈
� (1)

g

∣∣N̂ (1)
12±

∣∣� (1)
g

〉 + 〈
� (2)

g

∣∣N̂ (2)
12±

∣∣� (2)
g

〉]
,

l12± =
√

3

2

[〈
� (1)

g

∣∣N̂ (1)
12±

∣∣� (1)
g

〉 − 〈
� (2)

g

∣∣N̂ (2)
12±

∣∣� (2)
g

〉]
,

m13± =
√

3

2
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� (1)

g

∣∣N̂ (1)
13±

∣∣� (1)
g

〉 + 〈
� (2)

g

∣∣N̂ (2)
13±

∣∣� (2)
g

〉]
,

l13± =
√

3

2

[〈
� (1)

g

∣∣N̂ (1)
13±

∣∣� (1)
g
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� (2)

g
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g

〉]
,
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2
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∣∣� (2)
g
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,
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2
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g
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g
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g
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,
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,
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,
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, (C16)

where a is 1, 2, 3, or 4. The initial values of mab±(0) and
lab±(0) are given by substituting � (1,2)

g (0) = �
(1)
0 . We obtain

that m12±(0) = 0, m23±(0) = 0, m34±(0) = 0, m14±(0) = 0,
l13±(0) = 0, l24±(0) = 0, and la(0) = 0 for a = 1, . . . , 4 and
these variables remain zero at any time. Applying that la(0) =
0, the equations of motion can be written as

m′
ab± =

(
−

∑
k

νkmk + νa + νb

)
mab±

± (γa − γb)mab∓ − i〈[m̂ab±, Ĥm]〉, (C17)

l ′
ab± =

(
−

∑
k

νkmk + νa + νb

)
lab±

± (γa − γb)lab∓ − i〈[l̂ab±, Ĥm]〉. (C18)

The relations m12±(t ) = 0, m23±(t ) = 0 and m34±(t ) = 0 lead
to Mx = My = 0, and la(0) = 0 for a = 1, . . . , 4 leads to
Lz = 0. Thus Ĥm can be represented as

Ĥm = Jex

2

(−LxL̂x − LyL̂y + MzM̂z
) + Ĥcrz(crx),

Ĥcrz(crx) = 3�

(
M̂2

z(x) + L̂2
z(x)

2
+ Ĵ2

1 + Ĵ2
2

3

)
. (C19)

Table II shows the time derivatives of all involved vari-
ables mab± and lab± and corresponding expressions for
−i〈[m̂ab±, Ô]〉 and −i〈[l̂ab±, Ô]〉, where Ô denotes the oper-
ators entering Ĥm: L̂x, L̂y, M̂z, (M̂2

z + L̂2
z )/2, and −(M̂2

x +
L̂2

x )/2. For instance, it follows from Eqs. (C18) and Table II
that, in the case of Ĥcr = Ĥcrz,

l ′
12+ =

(
−

4∑
a=1

νama + ν1 + ν2

)
l12+ + (γ1 − γ2)l12

− Jex

2

[
Lxm13− + Ly

(
3

2
m1 − 3

2
m2 − m13+

)
+ Mzl12−

]
− 6�l12−. (C20)
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