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Dimensional reduction in quantum spin-1
2 system on a 1

7-depleted triangular lattice
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We study the magnetism of a quantum spin- 1
2 antiferromagnet on a maple-leaf lattice which is obtained

by regularly depleting 1
7 of the sites of a triangular lattice. Although the interactions are set to be spatially

isotropic, the ground state shows a stripe Néel order and the temperature dependence of magnetic susceptibility
follows that of the one-dimensional XXZ model with a finite spin gap. We examine the nature of frustration
by mapping the low-energy degenerate manifold of states to the fully packed loop-string model on a dual
cluster-depleted honeycomb lattice, finding that the order-by-disorder due to quantum fluctuation characteristic
of highly frustrated magnets is responsible for the emergent stripes. The excited magnons split into two spinons
and propagate in the one-dimensional direction along the stripe, which is reminiscent of the XXZ or Ising
model in one dimension. Unlike most of the previously studied dimensional-reduction effects, our case is purely
spontaneous as the interactions of the Hamiltonian retain a two-dimensional structure.
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I. INTRODUCTION

Highly frustrated magnets exhibit nearly degenerate low-
energy states as a consequence of competition between
different local interactions that cannot be simultaneously sat-
isfied. For such cases, the standard magnetic orderings are
strongly suppressed and the system either remains disordered
down to the lowest temperature or experiences exquisite sen-
sitivity to degeneracy-breaking perturbations. Once a large
degeneracy is resolved, some unexpected orders may emerge,
which is commonly referred to as “order-by-disorder” [1].
Whether the order-by-disorder is achieved or not depends
on the degree of frustration which is often determined by a
lattice geometry. A classical example is a face-centered-cubic
vector antiferromagnet which shows collinear or noncollinear
orderings due to perturbations [2,3]. By contrast, in a classical
pyrochlore antiferromagnet an extremely strong frustration
does not even allow for an order-by-disorder and the sys-
tem keeps a highly disordered character referred to as spin
ice [4,5]. In quantum magnets, quantum fluctuations may play
a role in degeneracy-breaking perturbation, and via order-by-
disorder, a supersolid phase appears in a triangular lattice
XXZ model [6–8]. The Heisenberg triangular lattice antifer-
romagnet with larger quantum fluctuation turned out to have
a 120◦ Néel-ordered ground state [9–11], although in the
early stage an interplay of large quantum fluctuation and large
frustration is expected to produce a resonating valence bond
liquid [12,13]. Finally, for a more highly frustrated kagome
lattice, a quantum mechanical disordered spin liquid is real-
ized at zero temperature [14–17].

Although the concept of geometrical frustration and the
order-by-disorder have existed for years and had been a source
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of abundant magnetic and nonmagnetic phases of matter, we
still lack enough clues to understand the degree of frustration
and to control them. This is because the platform is limited to
a few lattice structures including kagome, pyrochlore, trian-
gular, and checkerboard lattices and their variants.

The geometries of the above-mentioned frustrated two-
dimensional lattices are interrelated; the kagome lattice can be
realized by regularly depleting 1

4 of the sites of the triangular
lattice. The effect of gradually weakening the interactions of
the depleted sites with their surroundings is examined both for
the ground state and for the thermodynamic quantities [18,19].
The finite-temperature double-peak specific heat and the vari-
ance of susceptibility obtained by the exact diagonalization
(ED) on a small cluster indicates that the low-energy prop-
erties of the two models may be smoothly interpolated [19].
However, a more precise analysis of the excitation spectra
showed that even though the Néel order is suppressed when
the interaction ratio between the depleted and the regular
bonds is less than 1

5 , the full depletion limit of the triangular
lattice antiferromagnet does not continue to the kagome lattice
ones [18]. These works indicate that the frustration effect
depends very sensitively on the geometry of the lattice and
is not easy to understand.

Here, we find another order-by-disorder phenomenon, a
dimensional-reduction effect, in a maple-leaf lattice antifer-
romagnet. The reduction of three-dimensionality of layered
systems to effectively two dimensions is previously reported
both in theories and in experiments [20–23], which is at-
tributed to the competing frustrated interlayer interactions.
In two-dimensional systems, a one-dimensional spinon-like
continuum excitation is observed in a metal-organic square
lattice antiferromagnet [24] as well as in the triangular lattice
magnet [25,26]. The spinon excitation in two-dimensional
antiferromagnets shares the same concept as fractional
charges [27] or, equivalently, fractons in frustrated elec-
tronic systems. However, in these systems, the dimensional
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FIG. 1. The relationship between triangular lattice, maple-leaf
lattice, and kagome lattice and definition of exchange interaction
constants. Five exchange constants of a maple-leaf lattice and the
unit cell (shaded) including six sites are shown.

reduction is encoded in the Hamiltonian; it is induced by
weakening the strength of the frustrated interaction associated
with the reduced dimensionality, e.g., interlayer coupling or
interchain coupling. By contrast, in the present system, the
spontaneous reduction of dimensionality occurs for a purely
two-dimensional geometry of interactions. We discuss this
context more precisely in Sec. V.

A maple-leaf lattice is a family of geometrically frustrated
lattices based on a triangular unit as shown in Fig. 1. It can be
obtained by periodically depleting 1

7 of the sites of a triangular
lattice, and is located in the diagram in between the triangular
and kagome lattices. Experimental realizations of maple-leaf
structure are reported both in natural minerals [28–30] and in
man-made crystals [31–34]. In theory, the ED study shows
that the ground state of the Heisenberg antiferromagnet on
the maple-leaf lattice with spatially uniform interactions hosts
a six-sublattice long-range order similar to the one found in
the classical counterpart [35,36]. However, this long-range
order may disappear when one chooses Jd in Fig. 1 from
a uniform J and increases it up to Jd/J > 1.45 [37]. These
results indicate that this lattice provides another rich platform
to make a comparative study of the role of geometry and the
degree of frustration.

Recently, a new family member of the maple-leaf lat-
tice called bluebellite [Cu6I6O3(OH)10Cl] has been found to
show a particular magnetic susceptibility that almost perfectly
matches the Bonner-Fisher curve [38] of a purely one-
dimensional S = 1

2 Heisenberg antiferromagnet [34]. A sim-
ilar Bonner-Fisher-like magnetic susceptibility is observed in
a S = 3

2 maple-leaf lattice antiferromagnet, Na2Mn3O7 [39].
These results may suggest that there is an inherent nature in
the maple-leaf lattice that spontaneously reduces the dimen-
sionality.

In this paper, we study the interplay of frustration and
quantum fluctuation for this 1

7 -depleted triangular lattice.
In Sec. II we consider an antiferromagnetic Ising model
and clarify the nature and the degree of frustration of the
lattice. In Sec. III we perform an ED study and show
that the ground state is a symmetry-broken stripe phase.
In Sec. IV we examine the temperature dependence of

susceptibility by varying the interaction parameters. We find
that the low-energy magnetic excitation shows a similar fea-
ture to that of the one-dimensional spin- 1

2 XXZ model having
a spin-gapped antiferromagnetically ordered ground state. By
further introducing an interlayer coupling to our model, the
temperature-dependent profile of our susceptibility is modi-
fied to the one that resembles the Bonner-Fisher curve, except
at a very low temperature region where our susceptibility
shows an exponential decrease due to the spin gap.

II. MODEL

A. Maple-leaf lattice Heisenberg model

We consider a spin- 1
2 Heisenberg model on the maple-leaf

lattice with nearest-neighbor interactions whose Hamiltonian
is given as

H =
∑

〈i, j〉
Ji, jSi · S j, (1)

where Si is a spin- 1
2 operator on site i and the summation is

taken over all 〈i, j〉 pairs of neighboring sites. The Heisenberg
model is the isotropic limit of the XXZ model given as

H =
∑

〈i, j〉
Jxy

i, j

(
Sx

i Sx
j + Sy

i Sy
j

) + Jz
i, jS

z
i Sz

j, (2)

where Sα
i is the α = x, y, and z component of spin, and the

Jxy
i, j = Jz

i, j case corresponds to Eq. (1). In the following, the
Jxy

i, j and Jz
i, j terms are often separately examined. Since this

maple-leaf lattice belongs to space group R3, the Heisen-
berg spin exchange interaction Ji, j consists of five species,
Jt1, Jt2, Jd , Jh1, Jh2, whose spatial arrangement is shown in
Fig. 1(a). Experimentally, in bluebellite the structural analysis
and the information on the alignment of d orbitals which carry
spin- 1

2 suggests that the sign and amplitude of these inter-
actions are Jt2 � Jd � Jt1 � Jh1 � 0 � Jh2. In contrast, for
simplicity and to clarify the intrinsic nature of the geometry
of the lattice, we set Jt1 = Jt2 = Jd = J, Jh1 = −Jh2 = Jh and
vary Jh/J as a parameter in the main part of the calculation.
We denote the total number of sites as N and the number of
unit cells as Ncell, where N = 6Ncell for the maple-leaf lattice
and N = 7Ncell for the corresponding triangular lattice.

B. Ising limit

We first examine the nature of frustration of the maple-leaf
lattice through the comparison with the triangular lattice. To
this end, consider an Ising model which is the classical limit
of the Heisenberg model, where the quantum fluctuation due
to spin exchange is neglected by taking Jxy

i, j = 0 in Eq. (2).
Let us recall that the ground state of an antiferromag-

netic Ising model on a uniform triangular lattice with Jz
i j =

J > 0 consists of massive numbers of states which alto-
gether contribute to the residual entropy amounting to S =
0.323kBN [40]. The local constraint of Ising spins that belong
to this degenerate ground state is to have either two-up one-
down spins or two-down one-up spin on a triangle; the state is
called UUD/DDU, whose Ising energy is Eising = −NJ/4.

To see how the lattice geometry changes the low-energy
structure of the model, we gradually vary the strength of
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FIG. 2. Ising energy Eising = 〈Hising〉/Ncell per unit cell for the
lowest few levels in the S(tot)

z = 0 sector obtained for 18-site cluster
by varying the geometry of the lattice. Here, we introduce Jmaple

which are the six bonds inside the hexagon depleted in constructing
the maple-leaf structure from a triangular lattice. (a) Jmaple varied
by fixing J = Jt1 = Jt2 = Jd = 1 (antiferromagnetic); (b) 1 � Jh1 =
Jh2 � 0 (antiferromagnetic) varied by taking Jmaple = 0, where Jh1 =
Jh2 = 0 on the right-hand side has the structure consisting of triangles
connected with each other by a single bond Jd . (c) Jh1 = −Jh2 � 0
around the hexagon consisting of antiferromagnetic and ferromag-
netic bonds is varied which is the structure we mainly focus on. For
all panels, the solid lines correspond to the UUD/DDU states and the
broken lines are the states with UUD/DDU partially violated. The
constraint parameter Fc is examined, where Fc = −1 corresponds to
the nonfrustrated case and Fc ∼ 0 to the highly frustrated limit.

Jmaple, which are the six bonds inside the hexagon to be
depleted, where Jmaple = 0 corresponds to the full 1

7 deple-
tion of the triangular lattice. As shown in Fig. 2(a) the
UUD/DDU states split into several levels with equal en-
ergy spacings, Eising = −J (N/4 − n) − Jmaplen, where n =
0, 1, . . . , N/7, while the energy of the lowest level remains
unchanged.

For a 1
7 -depleted structure at Jmaple = 0 we can further

decrease the strength of bonds around the depleted hexagon
as Jh1 = Jh2 = 1 to 0, as shown in Fig. 2(b), where all the
UUD/DDU levels vary linearly as Eising = −J (N/24 + n) +
Jh(2n − N/4) where n = 0, 1, . . . , N/6, and all the UUD lev-
els cross at Jh1 = Jh2 = 0.5J which has a comparably large
degeneracy with the original triangular lattice. Finally, in
Fig. 2(c) we introduce the alternating ferromagnetic and an-
tiferromagnetic bonds along the hexagon and increase their
amplitude, finding that all the UUD/DDU levels remain un-
changed. The higher energy levels shown in broken lines are
the non-UUD states; namely their UUD/DDU structure is par-
tially broken. With increasing ±Jh, they descend and overtake
the perfect UUD/DDU at Jh1 = −Jh2 � 0.5. The parameter
used in Fig. 2(c) is the one we mainly focus on.

The frustration generated by the competition between dif-
ferent exchange interactions usually leads to large classical
ground state degeneracies. In the present case, the upper
bound of the degeneracy of the lowest-energy UUD/DDU

manifold for Jh1 = Jh2(>0.5) is roughly evaluated as 2N/6

with a corresponding residual entropy of S = 0.116kBN , and
for Jh1 = −Jh2 as 6N/6 with S = 0.299kBN , which are ex-
plained as follows. In the former antiferromagnetic Jh, the
lowest-energy UUD/DDU states satisfy the condition that the
spins align in a staggard manner along the hexagons to max-
imally gain Jh. For each hexagon, one can prepare two such
states, which give 2N/6. However, among them, those giving
UUU or DDD configurations to Jt1 or Jt2 triangles should
be excluded. For three adjacent hexagons, 2 states among 23

are excluded, while for four adjacent hexagons, again 2 states
among 24 are excluded, which means that the lower bound
of degeneracy is still as large as 2N/6(3/4)N/6 leading to the
massive residual entropy.

In the latter case, the local constraint for the lowest-energy
UUD/DDU states is to have both sides of spins on the Jd

bond align antiparallel. Therefore, once the UUD/DDU spin
configurations on N/6 different Jt1 triangles are determined,
the spin configurations on all Jt2 triangles, namely all the
other spins, are automatically determined through Jd bonds.
Among them, those giving UUU/DDD to the Jt2 triangle
should be excluded. For three adjacent Jt1 triangles, among
63 UUD/DDU states the ones that give UUU/DDD on Jt2

enclosed by these three is 54. Therefore, the lower bound of
degeneracy is 6N/6(162/216)N/6. Notice that for both cases,
the lowest UUD/DDU manifold includes the state outside the
UUD/DDU manifold of the triangular lattice, and the former
is not the subspace of the latter, as we discuss shortly.

Another quantitative measure of frustration given by La-
corre [41] is the constraint function Fc = −E0/Eb where E0

is the ground state energy and Eb = −∑
〈i, j〉 |Jz

i j |(Sz
i Sz

j )max.
When Fc = −1 all the local bond energies are optimized
simultaneously and there is no frustration, whereas Fc ∼ 0
means that the competition of local interaction leads prac-
tically to no energy gain. As shown in the lower panels of
Figs. 2(a)–2(c), Fc first decreases and becomes less frustrated
in depleting Jmaple. With tuning the sign and values of Jh, it
becomes as frustrated as the original triangular lattice Ising
model, e.g., when Jh1 = −Jh2 = J or Jh1 = Jh2 = J/2.

To give an intuitive understanding of the above-mentioned
behavior of low-energy levels, we introduce a dual-lattice de-
scription of the model. Figure 3(a) shows a honeycomb lattice
which is a dual lattice of the triangular lattice. One can map
the UUD/DDU states of a triangular lattice to the fully packed
loop-covering states on a honeycomb lattice in the following
manner; when the neighboring two spins on a triangular lat-
tice are antiparallel, the edge of the dual lattice in between
these spins is filled by a bold red bond. Since each triangle
has two antiparallel pairs of spins, there is a local constraint
that each honeycomb site is connected to two red bonds, and
resultantly these red bonds always form a closed loop while
never crossing each other [see Fig. 3(b)]. By counting the total
length of the loops the Ising energy is obtained, which takes
a maximum, i.e., 2N , for the UUD state. A fully packed loop
model is spanned by the restricted Hilbert space consisting
only of these loop states and serves as a low-energy effective
model of strongly correlated quantum spin and charge systems
on a triangular and kagome lattices [42].

Depleting 1
7 sites from the triangular lattice modifies the

nature of loops on its dual lattice. Figure 3(c) shows the dual
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triangular lattice maple-leaf lattice

(d)

-6 bonds -5 bonds -4 bonds -4 bonds -3 bonds

sink

FIG. 3. (a) Relationship between the triangular lattice (gray lines) and its dual lattice (blue lines). Red bold bonds are placed on the
honeycomb bond which crosses the up-down pairs of spins on the triangular lattice. (b) One of the examples of the UUD/DDU structures on
a triangular lattice described by the fully packed loop model on a honeycomb lattice. (c) Correspondence of the maple-leaf lattice and its dual
lattice, a honeycomb lattice with sinks. The two right panels are the example of the loop-string model on the honeycomb lattice with sinks and
the corresponding UUD state of the maple-leaf lattice. (d) All the UUD/DDU patterns on the hexagonal unit around the depleted site. Broken
bonds are part of the loops to be depleted, where the number of these bonds is distributed between −6 and −3.

lattice of the maple-leaf lattice, where the honeycomb lattice
is modified such that the hexagons of the honeycomb lattice
surrounding the depleted triangular sites are erased. We call
this vacant unit hexagon a “sink.” Since the center triangular
site is depleted, the hexagonal bonds surrounding the sink
are never filled by loops or bonds. Then, some of the fully
packed loops of a honeycomb lattice that crossed the sink can
no longer form a closed loop, and their open edges enter the
sink. We call this description a fully packed loop-string state,
whose example is shown in the right panel of Fig. 3(c). Due
to this modification, the total lengths of the loops and strings
are not necessarily the same although they all describe the
UUD/DDU state of the maple-leaf lattice. Namely, the length
of the loop and string varies according to the number of loop
bonds that belonged to the sink and are lost by depletion. This
splits the originally degenerate ground state manifold of the
triangular lattice model into equally spaced hierarchial energy
levels (see Fig. 2). As shown in Fig. 3(d), the number of
depleted red broken bonds is between 3 and 6. Each depleted
bond carries 0.25Jmaple and the energy level spacing amounts
to 0.5Jmaple per six-site unit cell (see Fig. 1).

In a maple-leaf lattice, the Ising energy further changes by
varying the bond strength along the hexagon Jh1 = ±Jh2 > 0
while keeping Jt1 = Jt2 = Jd = J . For each sink, an even
number of strings enter which we denote as 2d with d =
0, 1, 2, 3. The bonds lost by depletion are shown in broken
lines in Fig. 3(d). Their number is given as 6 − d , and the
2d bonds carry ±Jh/4 instead of −J/4. When all the bonds
are antiferromagnetic as Jh2 = Jh > 0, the Ising energy for
each level in Fig. 2(b) measured from the classical Ising
energy on the triangular lattice is given as Eising = ∑

i(6 −
2di )J/4 + (−Jh + J )(di − 3

2 ) and depends on Jh. However,
when half of the bonds on the hexagon are ferromagnetic
as Jh2 = −Jh < 0, the contributions from the hexagons are
canceled out and we find a Jh-independent profile of energy

Eising = ∑
i(6 − 2di )J/4 + J (di − 3

2 ) in Fig. 2(c); as shown in
Fig. 4(a) we need to assign different colors to six bonds that
may cross the edges of the sink, which contribute to the Ising
energy as ±Jh. Then, for all five different configurations of
strings entering the sink shown in Fig. 4(b) the numbers of
green and red colored bonds are always equal, which is the
reason for the cancellation.

We finally mention that there are other non-negligible
states that belong to the UUD/DDU states of the maple-leaf
lattice but do not continue to the UUD/DDU states of the

-6 bonds -5 bonds -4 bonds -4 bonds -3 bonds

or

non-UUD triangular lattice
UUD maple-leaf lattice

FIG. 4. (a) Assigning two different colors to the edges leading to
the sinks. Red and green lines denote the antiferromagnetic Jh and
ferromagnetic −Jh. (b) Five UUD/DDU patterns on the hexagonal
unit around the depleted site with d = 0, 1, 2, 3, where 2d is the
number of edges of loops that enter the sink. Broken lines are part
of the loops inside the sink that disappear due to depletion, which
amount to 6 − d . (c) UUD/DDU states on the maple-leaf lattice
which were originally a non-UUD/DDU state of the triangular lat-
tice. Inside the hexagon, we have UUU or DDD triangles.
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triangular lattice. One example is shown in Fig. 4(c). The
three up spins and three down spins form neighbors around
the hexagon of a triangular lattice whose center spin is to be
depleted. In this case, two triangles inside the hexagon are
either UUU or DDD, regardless of the orientation of the center
spins. However, these triangles are wiped out by the depletion.
Therefore, the UUD states of the maple-leaf lattice are not
the subspace of the UUD states of the triangular lattice. We
show in Appendix A that the Ising energy of such additional
UUD/DDU states on a maple-leaf lattice also remains un-
changed in varying Jh1 = −Jh2.

III. GROUND STATE

In this section, we numerically analyze the Heisenberg
Hamiltonian Eq. (1) and show that the unique stripe ground
state is possibly formed by the order-by-disorder effect from
the lowest UUD/DDU states of the Ising limit of the maple-
leaf lattice we discussed in the previous section.

A. Exact diagonalization

We first perform an exact diagonalization (ED) for N = 18
clusters with periodic boundary conditions [see Fig. 4(a)] and
obtain the ground state of the maple-leaf lattice. As we see
shortly, the extended magnetic unit cell has 18 sites, and
the larger sizes available N = 24, 30 do not match this unit.
This mismatch artificially destabilizes some of the magnetic
structures, which we want to avoid. Choosing N = 18 enables
the full classification of basis states which is convenient to
examine their stability in an unbiased manner. We additionally
examined the N = 24 ground state in parallel and confirmed
that the major conclusions obtained for N = 18 do not change
which we explain in the final part of this section. To under-
stand the magnetic property of the ground state we calculate
the correlation function and obtain a structural factor,

C(k) = 1

N

N∑

i, j=1

eiri j k〈SiS j〉. (3)

We first show in Fig. 5(b) the correlation functions, 〈S1S j〉,
in a bubble chart, where the area of the bubble indicates the
strength of the correlation. A stripe pattern develops along
15-17-(1-)2-3-5-6-15 for all values of 0 < Jh/J < 1, and 9-
(8-)18-17-2-12-11-9 for Jh/J ≈ 1. The correlation between
site 1 and site 17 is the most prominent but becomes weaker
by increasing Jh/J , and at Jh > J/2 the inequivalence of the
magnitude of the correlation between sites becomes smaller.
This tendency is consistent with the Ising energy diagram
of Fig. 2(c) where at Jh > J/2 the non-UUD excited states
become the lowest.

Figure 5(c) shows the structural factor in Eq. (3), where the
k points are the discretized reciprocal points for the N = 18
cluster. The k points inside the Brillouin zone can be classified
into five groups, depending on the symmetry of the system.
One finds that the peak at k = (2π/7, 10

√
3π/21) shown

with a red bullet which originates mainly from the stripe-type
correlation dominates the ground state. This tendency lasts up
to kBT/J � 0.5 (for the details of the calculation, see the next
section), which is the peak position of the susceptibility we

(a)

(b)

(c)

kx

ky

y

x0

60

50

40

30

20

10

0

54321

stripe

windmill

FIG. 5. (a) Maple-leaf lattice and 18-site finite-size cluster with
periodic boundary conditions. (b) Spin-spin correlation functions,
〈S1Sj〉, between site 1 and site j of a ground state for several choices
of Jh/J obtained by ED. The area of each circle is proportional to the
magnitude of 〈S1Sj〉, with red/purple ones being positive/negative
(ferromagnetic/antiferromagnetic). (c) Spin structural factor C(k) in
Eq. (3) calculated for N = 18 cluster. The k points inside the Bril-
louin zone of the maple-leaf lattice are shown in different symbols
which are classified into five groups based on R3 space group. We
have k = (4n − m)/21(1, −1/

√
3) + (5n − 4m)/21(0, 2/

√
3) with

representative data points as (n, m) = (1, 1) for stripe (red bullet),
(0, ±1) (yellow star), (0, ±2) (green pentagon), and (±1, ∓3) for
windmill type (blue diamond). The temperature dependence of C(k)
is obtained by taking an average of over 50 realizations of the TPQ
state (see Sec. IV for details).

see shortly. The same tendency is observed for other values of
Jh/J .

To understand the underlying mechanism for the devel-
opment of one-dimensional-like correlation, we examine the
type of basis that has a major contribution to the ground
state wave function, |GS〉 = ∑

l cl |l〉. It is spanned by the
total-Sz = 0 space, {|l〉} of l = 1, . . . , NCN/2, which are the
classical Ising spin configuration we discussed earlier. Sev-
eral series of states |l〉 having large weights wl = |cl |2 are
extracted; we select totally 102 basis states in descending
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(e)
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(g)

FIG. 6. (a)–(g) Representative configuration of spins belonging to UUD/DDU-1 states that give major contribution (large wl ) to the ground
state wave function. (a) Stripe and (b) windmill states are the most symmetric ones. Panel (h) shows the relationships between states (a)–(g);
states (c) and (d) can be obtained from (a) by periodically exchanging the nearest-neighbor up and down spins on green and red bonds,
respectively. States (e) and (f) can be obtained from (b) in the same manner. In panel (i) we plot the actual weights wl of states (a)–(g) as
functions of Jh/J when Jh1 = −Jh2 = Jh. At Jh/J = 1 there appear some non-UUD configurations having larger wl than the (b), (e), (f), and
(g) states.

order of wl , which are classified into seven groups of states.
Their representative configurations are shown in Figs. 6(a)–
6(g). Within each group, the states are related by the ±2π/3
rotational and spin inversion symmetries (not shown). The
stripe pattern (a) is one-dimensional and the windmill pattern
(b) is a regular two-dimensional UUD/DDU configuration.
The relationships between these seven groups of states are
summarized in Fig. 6(h); types (c) and (d) can be obtained
from type (a) by exchanging one nearest-neighbor pair of
spins per 18 sites periodically, which are marked by green
and red bonds. Types (e) and (f) can be obtained from type
(b), and finally type (g) with the lowest symmetry can be
obtained from types (c), (d), (e), and (f) by the same process.
In this sense, types (c) and (d) are similar to (a) and are called
the stripe type, and (e) and (f) are similar to (b) and are the
windmill type.

The weights wl of states (a)–(g) as functions of Jh/J are
shown in Fig. 6(i). The relationships between them are un-
derstood as follows: for Jh/J = 0, (a) stripe and (b) windmill
have the same weight, and (c), (d), (e), (f), and (g) have
the same weight as well. By introducing Jh, the stripe (a)
and its analogs (c) and (d) dominate the ground state which
continues for 0 � Jh/J � 1. The second highest contributing
configuration is (b) for 0 < Jh/J � 0.37, but it is overtaken by
the stripe type (c) and (d) for larger Jh. At Jh/J = 1, although

the stripes (a), (c), and (d) continue to have the largest wl , the
other non-UUD types of spin configurations suddenly become
dominant compared to (b) and other windmill types of states.

In viewing this characteristic feature of the ground state by
restarting from the classical Ising limit, even though we intro-
duce the quantum fluctuation effect, the Jxy

i, j term in Eq. (2),
the major contribution to the ground state is still a series of
UUD/DDU states for all values of 0 � Jh/J � 1. In fact, the
states (a)–(g) in Fig. 6 all belong to the lowest UUD manifold
of states called UUD/DDU-1 of Fig. 2(c) with Eising/J =
−5N/24. At Jh/J � 1

2 , the other non-UUD states have the
lowest Ising energy, whereas in the Heisenberg model, the full
UUD/DDU states overwhelm the non-UUD states due to the
energy gain from the quantum fluctuations.

B. Energy gain

To understand the reason why the stripe ground state is
realized, we examine the effect of quantum fluctuations on the
Ising UUD states. We start from the Ising model and introduce
Hxy = Jxy

i, j (S
+
i S−

j + S−
i S+

j )/2 by setting Jxy
i, j much smaller than

the Ising interaction Jz
i, j in Eq. (2). We first rewrite the

UUD/DDU configurations in Figs. 6(a)–6(g) using the loop-
string model on the dual lattice as shown in Figs. 7(a)–7(g).
As mentioned earlier, the UUD/DDU structures correspond to
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FIG. 7. (a)–(g) Bond configurations on the dual lattice corresponding to (a)–(g) in Fig. 6. Edges shown in yellow/green lines (Jd ) are
always occupied with bonds in these manifolds, and spin exchange around a yellow line yields another UUD configuration having the same
classical energy while that around a green line does not. (h) All the yellow/green bonds in (a)–(g) are shown here in the same colored bonds.
A bond configuration can be determined by identifying bond tilings on the edges connected to the vertices (orange dots) in this manifold.
(i) Energy gain at the second order of Hxy where all the processes of going into other manifolds from UUD/DDU-1 and coming back are
considered.

the fully packed states of loops and strings. Since the length
of the loop string is the number of pairs of neighboring up
and down spins, the fully packed loop-string states are max-
imally flippable overall and may gain Eq = 〈Hxy〉/Ncell the
most compared to other classical Ising states. In this context,
the ones in Figs. 7(a)–7(g) have an equivalent length of loops
and may equally contribute to the ground state. However, in
reality, the way Hxy works differs between these seven groups
of states.

We focus on UUD/DDU-1 and operate one of the Hxy

terms to this manifold. If we obtain a state that again be-
longs to UUD/DDU-1, this term mixes the states within the
UUD/DDU-1 manifold at the first order of Jxy

i, j . If a term
in Hxy transforms the UUD/DDU-1 to the state outside this
manifold, by operating a proper Hxy term again, we may
come back to the UUD/DDU-1 state; this process serves as
a second-order perturbation.

We first consider the first-order perturbation. The right
panel (inset) of Fig. 7 shows the exchange process of antipar-
allel spins between a pair of nearest-neighbor sites 〈i, j〉 and
a pair of hexagons on the dual lattice surrounding the two
spins. The center vertical bond shared by the 〈i, j〉 hexagons
remains unchanged, whereas occupation of bonds on the other
four edges of each hexagon is converted from unoccupied to
occupied or vise versa. This is because if the spin on the ith
site flips upside-down, the ferromagnetic neighbor becomes
an antiferromagnetic one and vise versa.

In Figs. 7(a)–7(g), we classify the colors of occupied bonds
that belong to loop or string into red, yellow, and green. The
yellow and green bonds are the Jd bonds.

The UUD/DDU-1 are characterized as those having all
these yellow and green bonds to be occupied. When we flip
the spins on yellow bonds, the number of occupied bonds,
namely the number of red bonds associated with this process,
remains unchanged, and the UUD/DDU-1 state stays within
the UUD/DDU-1 manifold. Therefore, we call this yellow
bond a flippable bond (see Appendix B). The two structures,
stripe (a) and windmill (b), have the maximum number of
yellow bonds amounting to 2

3 of the flippable bonds while
other structures only have 4

9 of them. This means that stripe
and windmill states gain the energy the most at the first-order
perturbation by maximally mixing with other UUD/DDU-1
states.

As for the green bond, the spin exchange will transform
the UUD/DDU-1 state to the non-UUD/DDU states outside
the manifold. In Fig. 7(i), we evaluate the second-order per-
turbation energy gain by starting from the windmill or stripe
state, operating Hxy twice and summing up the energy gain
from each process where we set Jxy

i, j = Ji, j for simplicity.
When Jh/J > 0, the stripe state becomes more stable than
the windmill state. Flipping the spins on the red bond also
transforms the UUD/DDU-1 state outside the manifold and
can be treated the same as the green bond.

To be precise, the way Hxy mixes the low-energy states is
more complicated including not only the UUD/DDU-1 but
other UUD/DDUs and the non-UUD/DDU state. Still, the
above discussion gives an overall intuitive understanding that
the stripe order appears due to the quantum order-by-disorder
effect from the classical degenerate UUD/DDU-1 manifold
of states.
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Bonner-FisherBonner-Fisher
Curie-Weiss

FIG. 8. (a) Uniform magnetic susceptibility χ for several choices of Jh1 = −Jh2 = Jh with Jt1 = Jt2 = Jd ≡ J = 1. (b) χ obtained for
N = 24 and 30 with Jt2 = Jd = 1, Jh1 = −Jh2 = 0.1, and Jt1 = 0.3. Inset shows the magnified χ at low temperature. Broken green line is
(�/kBT )

1
2 e−�/kBT for � = 0.588. (c) χ for several choices of Jt1/J with Jt2 = Jd = 1 and Jh1 = −Jh2 = 0.1J . The solid bold line is the

Curie-Weiss susceptibility χcw = Jcw/4kB(T − �) with Jcw = 0.928, � = −0.396, whose values are obtained by fitting χ for Jt1 = 0.1J .
Broken lines in both panels (a) and (c) are the Bonner-Fisher susceptibility whose parameter J1d is adjusted to fit to the susceptibility of the
maple-leaf lattice for each parameter.

We finally mention that the N = 24 cluster, which is larger
than the N = 18 we adopted, does not accommodate the wind-
mill and stripe types of structures. However, in calculating
the ground state for N = 24 we find that the overall tendency
obtained for N = 18 remains unchanged; the UUD/DDU-1
manifold dominates the ground state, and the largest contri-
bution to the ground state is the irregular stripe even though
the shape of the stripe is modified due to the mismatch of the
shape of the cluster.

IV. FINITE TEMPERATURE

The ground state of this model possibly breaks the transla-
tional symmetry of the original lattice, and forms a stripe-type
Néel order. To understand the relevance of this ground state
with the characteristic behavior of the magnetic susceptibil-
ity resembling those of the one-dimensional Bonner-Fisher
curve, we calculate the finite-temperature properties of the
model. Here, we apply a thermal pure quantum (TPQ)
method using N = 18, 24, and 30 clusters. Similarly to
finite-temperature ED methods [43–45], this method gives
thermodynamic quantities at finite N by few sample aver-
ages [46]. Starting from the high-temperature random state
prepared based on the Haar measure, |0〉 = ∑

i Cj | j〉, where
Cj is a random complex coefficient and {| j〉} is the Fock space
of a finite-size lattice, and successively operating the Hamil-
tonian (l − H/N ) shifted by a constant l , a series of states
|k〉 = (l − H/N )k|0〉 that represent the thermal equilibrium at
different temperatures are obtained. By using these series of
states, we obtain a magnetic susceptibility. We took more than
30 sampling averages for N = 24 while for N = 30, which is
the size large enough to represent the thermal state without
random average, we used a single calculation.

A. Magnetic susceptibility

First we set Jt1 = Jt2 = Jd = J , Jh1 = −Jh2 = Jh, as we did
for the ground state. A uniform magnetic susceptibility χ of a
N = 24 cluster for various choices of Jh is shown in Fig. 8(a).

At low temperature, we find χ ∝ (�/kBT )
1
2 e−�/kBT basically

for all choices of Jh/J , which indicates a spin-gapped ground
state. For a finite-cluster calculation, a fictitious spin gap of
order � ∼ 1/

√
N often appears as an artifact of finite-size

effect. To examine whether the observed gapped behavior is
an intrinsic property of the model, we compare the result
of the N = 30 cluster with N = 18, 24 ones in Fig. 8(b).
The magnitude of the spin gap extracted by fitting χ at low
temperature yields � ∼ 0.507 (N = 24) and 0.588 (N = 30),
which increases with N . For the temperatures above the peak
position, the difference of χ between the two system sizes is
almost negligible. From these results, one can judge that the
spin gap is finite.

Although several experimental measurements on the
maple-leaf materials suggest that the measured χ follows
a Bonner-Fisher curve characteristic of a gapless one-
dimensional Heisenberg antiferromagnet, our result with a
spin-gapped ground state does not conform to such corre-
spondence. In Fig. 8(a), we plot the Bonner-Fisher curve
by adjusting its Heisenberg interaction J1d to fit the high-
temperature (kBT > 1.5J) tail of χ to the ones of the
maple-leaf lattice. For all cases, χ of the two models do not
agree at kBT � J . In fact, χ develops toward lower temper-
atures than the Bonner-Fisher ones with the higher peaks at
lower temperatures. Such development of peak is the char-
acteristic feature of the two-dimensional highly frustrated
antiferromagnet, e.g., a kagome lattice one [47].

To show that this conclusion is not due to our specific
choices of parameters, we examine overall variations of pa-
rameters of the model. Particularly, we investigate the small
Jh/J region, where the two χ ’s have relatively better cor-
respondence. Figure 8(c) shows the case where one of the
triangular units Jt1 is varied while other parameters are fixed
to Jt2 = Jd = J , Jh1 = −Jh2 = Jh = 0.1J . Note that the prop-
erties of an Ising energy diagram and ground state described
in Secs. II and III hold for these choices of parameters.
Again although we properly adjusted J1d for the Bonner-
Fisher plot, the two models do not give a consistent χ in
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FIG. 9. Magnetic susceptibility with Jt2 = Jd = 1, Jt1 = 0.3, and
Jh1 = −Jh2 = 0.1 compared with the magnetic susceptibility of XXZ
model with J1d

z /J1d
xy = 2.25, where � = 0.581.

its amplitude. However, the peak positions becomes closer to
each other by decreasing the parameter down to Jt1/J ∼ 0.1.
As a reference we also show the Curie-Weiss susceptibility
χcw = Jcw/4kB(T − �) with Jcw = 0.928, � = −0.396 for
the same spin density as the maple-leaf lattice to compare with
other χ .

B. One-dimensional magnon propagation and the XXZ model

The spin gap and the enhancement of χ indicate that the
low-energy effective model of the maple-leaf lattice is not a
uniform antiferromagnetic Heisenberg chain. However, there
is another model, an XXZ model, that has a finite spin gap and
enhanced susceptibility, the absence of a finite-temperature
phase transition, and the symmetry-breaking long-range Néel-
ordered ground state. All these features do not contradict the
results we obtained for the present system.

We thus compare the susceptibility of the one-dimensional
antiferromagnetic XXZ model,

H1d =
∑

i

J1d
xy

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

) + J1d
z Sz

i Sz
i+1, (4)

where besides J1d
xy one can adjust J1d

z > J1d
xy to fit the suscep-

tibility as well as the spin gap. The temperature dependence
of χ is obtained by a size-free calculation using a sine-square
deformation combined with the TPQ method [47] which gives
χ of the thermodynamic limit.

As shown in Fig. 9(a), the profile of χ with smaller Jt1/J
can be fitted well with the magnetic susceptibility of the one-
dimensional XXZ model for all temperature regions. Here, we
obtain J1d

xy = 0.465, J1d
z /J1d

xy = 2.25, and � = 0.581 for the
XXZ model [see Fig. 9(b)] which is the exact solution of a
spin gap of Eq. (4) that gives the best fitting.

To understand the origin of the coincidence between χ ’s
of the two models, we examine a single magnon excitation of
the maple-leaf lattice. For simplicity, we consider a classical
stripe UUD/DDU-1 configuration which gives a dominant
contribution to the ground state of the Heisenberg model.
Figure 10(a) shows the example of how the excited magnons
propagate by the spin-exchange process, Hxy. To identify the
location of magnons we use a pair of shaded plaquettes con-
sisting of four triangles extending in the upper-right direction.

excitation

excitation

weakened

FIG. 10. (a) Example of magnon excitation from a stripe. A
red bullet marked with a circle denotes the location of the ex-
cited spin, and the adjacent two shaded plaquettes are a magnon
that separates into two spinons. When Hxy is operated, the up and
down pairs of spins on a green bond marked with oval are ex-
changed and a spinon (shaded plaquette) hops to the upper right by
one lattice spacing. These spin exchanges do not change the Ising
energy. Bonds gaining/losing energy are shown in orange/purple
lines. (b) Schematic illustration for the spinon propagation rules.
Blue open circle indicates the spins that rarely contribute to the
spin-exchange process (fixed spin) since a finite Ising energy loss
occurs. Propagation in the direction across the red lines is energeti-
cally disadvantageous, and the direction that keeps the Ising energy
unchanged is restricted to those along the gray lines. (c) Path marked
with star denotes the exceptional propagation of spinon through ex-
changing orange and red spins, which appears only when the magnon
is excited on a particular site marked with a circle. Weakening Jt1

from the left panel to the right weakens the connection through
starred path and strengthens the one-dimensionality.

When the system is in the UUD/DDU state such plaquettes
are magnetically neutral (unshaded) since we always have
even numbers of up and down spins. By flipping a down spin
to up, the two plaquettes sharing that site are magnetized as
UUUD, which host one magnon. Unlike the standard Ising
models, the spin exchange that keeps Eising unchanged takes
place, not at the neighboring bonds of the excited magnon
site, but at the next-nearest neighbor; i.e., it is the neighboring
bond of the shaded plaquette. By the exchange of two spins
marked with ovals in Fig. 10(a), one of the plaquettes hops to
the upper right by two lattice spacings. The same operation
will propagate the plaquettes in the upper-right or lower-left
direction along the stripe. Since the two plaquettes share one
magnon, and since this propagation separates two plaquettes
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freely along the one-dimensional direction at the first-order
level of Hxy, each shaded plaquette is regarded as a spinon. In
the one-dimensional antiferromagnetic XXZ model or Ising
model, a similar spinon excitation is observed above the spin
gap, and this would explain the resemblance of χ between the
two models.

The one-dimensionality of this spinon propagation is con-
firmed as follows. There is a relatively larger energy cost
of flipping the spins marked with the blue open symbols in
Fig. 10(b); its Ising energy gain with its surroundings amounts
to −(Jd + 2Jt1)/4 or −(Jd + 2Jt2)/4, larger than for the other
spins −Jd/4 that join the spinon propagation. Accordingly,
the exchange of spins marked with solid and open blue circles
has a large energy loss of (Jt1 + Jt2)/2, and works as a spatial
barrier. There are two barriers per depleted hexagon, which
restricts the propagation of magnons to a one-dimensional
direction in the gray line.

There is an exceptional case that may slightly allow the
two-dimensional propagation; in Fig. 10(c) the path marked
with the star had an energy barrier in the stripe UUD state
but once a magnon is excited on a particular site indicated
by an arrow, the energy barrier is lost and the magnon can
propagate by exchanging spins on the orange and pink bonds.
However, the energy barrier is lost only for the limited choices
of excitation, and the overall nature of the magnon propaga-
tion is regarded as one-dimensional. A smaller Jt1/J weakens
the connection through the starred path because Jt1 is respon-
sible for the energy gain due to the exchange of spins on
the orange bond. Consequently, the smaller Jt1/J strength-
ens the one-dimensionality of the propagation pathway. This
may explain the reason why our magnetic susceptibility with
smaller Jt1 gives better correspondence to the ones for the
one-dimensional XXZ model.

As can be understood from the similarities of the nature
of the magnetic excitations, the dimensional reduction is ex-
pected only for the magnetic properties of the system. We
examine the specific heat of the two models for the same
parameters in Appendix D, and find that the nonmagnetic part
of the low-energy excitations differs between the two models.
By contrast, the onset of the magnetization curve of the maple-
leaf lattice (see Appendix D) shows a criticality reminiscent
of the gapped 1D spin system, which is another sign of the
dimensional-reduction effect. The parameter range that the
dimensional reduction is observed is limited to the case of
small Jh1 = −Jh2. For all antiferromagnetic Jh1 = Jh2 > 0,
the system recovers a two-dimensional Néel ordering (see
Appendix E).

C. Three-dimensionality due to interlayer coupling

In the previous subsection, we figured out that the suscep-
tibility of the maple-leaf lattice can be fitted well throughout
the whole temperature range by the one-dimensional XXZ
model with appropriate choices of the ratio of Jz/Jxy as well
as Jxy that also reproduces a finite spin gap of the ground state.
Compared to the Bonner-Fisher curve for the one-dimensional
Heisenberg model, these susceptibilities show large enhance-
ment toward low temperature with higher peaks.

On the other hand, the experimental observation indicates
that for bluebellite the susceptibility shows almost perfect

0.15
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0
43210

RPA ( 0.4177)
1DHeisenberg ( 0.78)

FIG. 11. Magnetic susceptibility χ3d with Jt2 = Jd = 1, Jh1 =
−Jh2 = 0.1, and Jt1 = 0.30 considering interplanar interaction J ′ =
−0.4177 with RPA. Broken line is the Bonner-Fisher curve of a
one-dimensional Heisenberg model.

coincidence with the Bonner-Fisher curve down to tempera-
tures just below the peak position [34]. In further lowering the
temperature, there occurs a phase transition in experiments to
the Néel-ordered state due to the three-dimensionality of the
material, which masks the intrinsic low-temperature property
of the purely two-dimensional magnet.

Here, we examine whether our XXZ-like susceptibility
may reproduce the Bonner-Fisher curve except at tempera-
tures lower than the spin gap. We take account of a layered
structure of the maple-leaf lattices stacked in the z direction
and deal with the interplanar interaction J⊥ using the random
phase approximation (RPA). The three-dimensional suscepti-
bility χ3d described using the intralayer χ2d is given as

χ3d = χ2d

1 + 2J⊥χ2d
. (5)

We adopted several choices of interlayer interaction J⊥. As
shown in Fig. 11, for a ferromagnetic interplanar interaction
J⊥ < 0 using χ2d of the maple-leaf lattice with Jt1 < 0.3,
χ3d shows good agreement with the Bonner-Fisher curve at
0.5 � kBT/J , including the peak. This is because a strong
magnetic fluctuation characteristic of the frustrated lattice at
low temperature is suppressed by the three-dimensionality.
Such agreement can be found for parameters Jt/J � 0.3 with
a proper choice of J⊥.

V. SUMMARY AND DISCUSSION

We examined the ground-state and finite-temperature mag-
netic properties of the spin- 1

2 maple-leaf lattice, which is the
1
7 -depleted triangular lattice with spatially modified interac-
tion strength. Although the maple-leaf lattice structure with
five independent exchange interactions may seem rather com-
plicated, the intrinsic nature of the model can be understood
by considering the Ising model and examining the nature of
the low-energy states. We find that the degree of frustration
is seemingly weakened from the triangular lattice by the
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depletion; the originally highly degenerate UUD/DDU states
are divided into a few manifolds of states with relatively
smaller degeneracies. However, this degeneracy is still large
enough to contribute to a finite residual entropy. By varying
the exchange interactions systematically, we examined the
degree of frustration measured by the constraint parameter.
The frustration is not much different from that of the triangular
lattice and may become comparably strong depending on the
choices of parameters.

The ground state of the maple-leaf lattice Heisenberg
model turned out to be a possibly translational-symmetry-
broken stripe state. This state emerges from order-by-disorder.
Starting from the lowest UUD/DDU manifold of states in
the Ising limit, the quantum fluctuations in the spin-exchange
term mix them. Based on the analysis of spin patterns, we
found that the stripe-pattern UUD/DDU state gains the quan-
tum fluctuation energy the most and is selected as a ground
state.

When a single magnon is excited from the stripe ground
state, it splits into two spinons, each propagating along the
one-dimensional path formed by the stripe. Because of the
one-dimensional alignment of spins, there arises an energy
barrier between the sinks (depleted sites), which hinders the
spinons to hop to the other neighboring one-dimensional path.
The presence of a spin gap indicates that the Ising energy loss
of exciting a single magnon is larger than the kinetic energy
gain from such restricted motion of spinons. This kind of
spinon excitation is very similar to the spin- 1

2 one-dimensional
antiferromagnetic XXZ model with a large spin gap. The
magnetic susceptibility of a maple-leaf lattice can be well
fitted with the susceptibility of this XXZ antiferromagnet.

Since the original maple-leaf lattice is a two-dimensional
system, the observed one-dimensional magnetic property is
regarded as a dimensional-reduction phenomenon. Similar di-
mensional reduction is observed previously in an anisotropic
triangular lattice where one bond direction among the three
has a stronger interaction than the other two; for a Heisen-
berg antiferromagnet, the low-energy spectrum is composed
of an incoherent continuum indicating the spinon-like propa-
gation [26]. It explained the spectrum of the inelastic neutron
scattering in Cs2CuCl4 [25]. Also for spinless fermions, the
fractionalization of excited charges is observed, which is the
analog of spinons of magnets and has recently been referred
to as “fractons.” The fractionalized excitation gives a similar
continuum in the one-particle excited spectrum [27]. For a
wider class of materials, the stacked layered magnets often
have interlayer interactions that connect one site with more
than two. These frustrated interactions cancel out and the
interlayer correlation is suppressed, which is observed in the
critical exponent of BaCuSi2O6 near the quantum critical
point [20,21]. In a cubic antiferromagnet called pharma-
cosiderite [23], based on an octahedron, each inter-octahedra
interaction consists of six bonds which are frustrated, and
the reduction of dimensionality from three to two and even
to one dimension is observed in neutron experiments. If
the interlayer interactions in three dimensions and the inter-
chain interaction in two-dimensions are practically weaker
than the intralayer or intrachain ones, the dimensional reduc-
tion is encoded in the system. The frustration among weak
interlayer/interchain interactions plays a secondary role.

In that context, the intrinsic difference of our maple-leaf
lattice from most of the above examples except pharma-
cosiderite is that the original lattice structure and the Hamil-
tonian are spatially isotropic and purely two-dimensional.
The parameter region in which we find the phenomena is
restricted to a small but finite range of Jh1 = −Jh2 and Jt1

(see Appendix E for details); namely, the bond interaction
Ji j is not spatially uniform. However, the system retains the
symmetry of the original lattice and is invariant under the C3

rotation, and there is no reason to favor a one-dimensionality
in the geometry of Ji j itself. The dimensional reduction of
the magnetic excitation occurs spontaneously due to a strong
frustration effect.

We finally presented the scenario that the experimentally
observed Bonner-Fisher-like susceptibility may not neces-
sarily be a coincidence. The enhanced susceptibility due to
the strong fluctuation is characteristic of the frustrated mag-
netism. By introducing a three-dimensionality, namely, the
interlayer magnetic exchange interaction, the enhancement
can be suppressed, and the peak height becomes closer to the
Bonner-Fisher curve. Experimentally, only the temperature
region down to slightly below the peak was the target range
that the Bonner-Fisher fitting functioned. The peak tempera-
ture is typically kBT � J and since χ behaves closer to the
Curie-Weiss-type ones at kBT � 2J , the characteristic feature
of magnetism manifests only in the peak temperature, peak
height, and the behavior just below the peak. Therefore, it
is more likely that even though the dimensional reduction
indeed takes place in the material, the recovery of three-
dimensionality at temperatures below kBT � J due to weak
but finite interlayer coupling will push χ to a more realistic
phase. Below that temperature the phase transitions induced
by the three-dimensionality is observed in bluebellite.

To clarify more intrinsically how the nature of frustration
changes by the depletion remains a future issue. The present
study shows that the depleted series of frustrated magnets
can be a good platform to interpolate many different types
of frustrated lattices and fill the black parameter space to be
examined in theories as well as in experiments.
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APPENDIX A: GENERAL PROOF OF Jh INDEPENDENCE
OF UUD/DDU STATES WHEN Jh1 = −Jh2 = Jh

In this section, we give proof to support the discussion in
Sec. III that the energy values of all UUD/DDU states are
independent of Jh in the case of Jh1 = −Jh2 = Jh. Notice that
all UUD/DDU states in the maple-leaf lattice are mapped
one-to-one to a fully packed loop-string configuration on its
dual lattice. Then, one only needs to prove in the fully packed
loop-string state that the number of loop-bonds on a dual
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FIG. 12. Label of the dual lattice by A and B. All edges going
into sinks from Jh sides are connected to A vertices and those going
into sinks from −Jh are connected to B vertices.

lattice going into a sink crossing the Jh edge of the hexagon
of the maple-leaf lattice is equal to the number of loop bonds
crossing the (−Jh) edge. Let us label the vertices on the dual
lattice by “A” and “B” as shown in Fig. 12.

In a fully packed loop-string state, the number of bonds
connected to A vertices is equal to that to B vertices since the
number of bonds connected to each vertex is the same between
the two. This means that the number of bonds going into a sink
from A vertices and that from B vertices are the same; this is
because the bond not going into a sink always connects an A
vertex and a B vertex and does not affect the balance between
the numbers of bonds connected to A and B. Since all edges
going into sinks through Jh are connected to A vertices and
those going into sinks through −Jh are connected B vertices,
our statement is proved.

APPENDIX B: EFFECT OF Hxy ON
THE UUD-1 STRIPE STATE

We show in Fig. 13 how the spin configuration of the UUD-
1 stripe in panel (a) changes by flipping the yellow bond to the
other UUD-1 state in panel (b). When flipping the green bond
in panel (a) the non-UUD state in panel (c) is realized. The
corresponding loop-string configuration on the honeycomb
lattice with sink is shown in the lower panels. Notice that the
UUD/DDU triangles are not equivalent in their Ising energy

FIG. 13. Example of configuration of spins on a maple lattice
and the corresponding loops and strings on a honeycomb lattice with
sinks in (a) UUD-1 stripe state, (b) when flipping a yellow bond from
panel (a), and (c) flipping a green bond from panel (a).
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FIG. 14. Comparison of magnetic susceptibility of one-
dimensional antiferromagnetic Heisenberg model, Bonner-Fisher
plot, one-dimensional antiferromagnetic XXZ model for several
choices of J1d

z /J1d
xy with J1d

xy = J , and Curie plot J/4kBT .

unlike the triangular lattice antiferromagnet. This is because
the UUD structure does not necessarily optimize the energy
of each triangle locally; there are positive and negative ±Jh

which can be smaller in amplitude than J .

APPENDIX C: COMPARISON OF MAGNETIC
SUSCEPTIBILITIES OF SEVERAL MODELS

The comparison of magnetic susceptibilities of several
models is shown in Fig. 14. The magnetic susceptibility of
the one-dimensional Heisenberg model is obtained from exact
solution using the quantum transfer matrix method [48] and
its result is numerically evaluated within a negligibly small
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0.2

0
43210

(a)

0
0 1 2 3 4

(b)

0.5

Maple-leaf

1D-XXZ

Maple-leaf 
1D-XXZ 0.465 2.25

0.3 0.1

FIG. 15. (a) Specific heat per site c/kB calculated using TPQ and
sine-square deformation. The parameters of the maple-leaf Heisen-
berg model and 1D XXZ model are the same as Fig. 9. (b) Entropy
density for the data in panel (a).
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FIG. 16. Magnetization curve obtained for (a) (Jh, Jt1) = (0.1, 0.3), (b) (0.1,1.0), and (c) (1.0,1.0). The stepwise data in solid lines are
from the exact diagonalization on N = 18 and 24 clusters and the data points on curves are obtained using the kernel regression method. Panel
(d) shows the energy e(m) of N = 18 and 24 corresponding to panel (a) as a function of magnetization density m = 〈sz〉/N , and the three lines
are the results of the kernel regression given independently for regions separated by the 1

3 and 2
3 plateaus. We take the mirror for the data below

and above the plateaus following Ref. [50].

error. The Bonner-Fisher curve [38] which was originally
deterimined by the finite-size scaling to the finite-cluster ED
results obeys

χBF = 0.25 + 0.14995x + 0.30094x2

kBT (1 + 1.9862x + 0.68854x2 + 6.0626x3)
,

with x = J1d/2kBT . One finds that the Bonner-Fisher curve
deviates from the exact solution at kBT/J � 0.4. The logarith-
mic drop of χ takes place at extremely low temperature below
the data obtained, which requires a more accurate numerical
integration in Ref. [48]. The Curie plot is given by χC =
1/4kBT . The magnetic susceptibility of the one-dimensional
XXZ model is obtained for J1d

z /J1d
xy = 2.25 (the same as in

Fig. 9) by a size-free calculation using a sine-square deforma-
tion combined with the TPQ method [47].

APPENDIX D: OTHER PHYSICAL QUANTITIES

The dimensional-reduction effect appears in the magnetic
properties of the system. To clarify this point, we show in
Fig. 15(a) the specific heat per site c/kB of the maple-leaf
lattice Heisenberg model with Jt1 = 0.3 and Jh = 0.1 which
are the same parameters as in Fig. 9. Here, we compare this
with the result of the 1D XXZ model. For the 1D XXZ model,
we used the TPQ combined with a sine-square deforma-
tion [47] and extracted the center energy bond to evaluate the
energy. The specific heat is obtained by the derivative of the
energy. The N = 20 and 24 results agree within the accuracy
of O(10−3) with basically negligible size effect characteristic
of the sine-square deformation [49]. The horizontal axis is
scaled as J1d

xy = 0.465 in the same manner as Fig. 9; the peak
positions of the c/kB of the two models agree very well, while
above the peak temperature, there are extra contributions for
the maple-leaf lattice.

The difference may come from the nonmagnetic contri-
bution to the specific heat. The nonmagnetic lowest-energy
excitation of the XXZ model exists below the spin gap, but
for the maple-leaf lattice, the lowest-energy excitation is the
magnetic one. As we saw in Fig. 5(c), the stripe order-
ing is weakened above the peak temperature, and the other

UUD/DDU-1 and non-UUD states may appear. These extra
contributions would explain the difference. The entropy ob-
tained by integrating c/T is given in Fig. 15(b) which supports
that below the spin gap ∼0.5J the nonmagnetic contributions
appear only for the XXZ model.

Figure 16 shows the magnetization curve of the system,
where we plot the stepwise structure obtained by the exact
diagonalization for N = 18 and 24 clusters and the curve
obtained by applying a kernel regression method [50,51] to
these data. Here, we chose the data below and above the 1

3
plateaus separately. For Jt1 = 0.3 we also have a 2

3 plateau for
Jh = 0 ∼ 1, to which we applied the same treatment. Using
the discrete energy levels e(m) from ED as a function of mag-
netization density m, a continuous function e(m) is obtained
for each region. Since the value h = ∂e(m)/∂m at m = 1

6
differs for those obtained based on the data at m < 1

6 and
m > 1

6 we find the 1
3 plateau. For Jh/J = 0.1 and Jt1 = 0.3

the onset of the curve reminds us of a square-root critical
behavior, m ∝ |h − hc|1/δ , with δ = 2 characteristic of a one-
dimensional spin-gapped system [52]. However, for Jh/J = 1
it becomes close to δ ∼ 1 as expected for two-dimensional
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1.0 0.8 0.6 0.4 0.2 0.0

stripe
windmill
staggered

1 1stripe
120
Neel

(a)

(b)

staggered UUD/DDU

0windmill

FIG. 17. (a) Weights wl for three major contributions for the
fully antiferromagnetic Jh1 = Jh2 = Jh are shown. The staggered
state has the antiferromagnetic correlation along the hexagon, and
appears only for this fully antiferromagnetic case. (b) The overall
phase diagram obtained by varying Jh1 = ±Jh2.
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quantum magnets [53]. These results also support the dimen-
sional reduction of the system observed for small Jh/J .

APPENDIX E: ANTIFERROMAGNETIC CASE Jh1 = Jh2 > 0

We examine the case where all the interactions are anti-
ferromagnetic. Figure 17(a) shows the weight of the ground
state wave function wl for N = 18. The stripe, windmill, and
staggered type configurations show the major contribution.

The parameter range corresponds to Fig. 2(b). The staggered
state shown in the right panel is the one not found for the
Jh1 = −Jh2 case, and shows the antiferromagnetic correlation
around the hexagon. This state and the windmill state are
spatially isotropic with a purely two-dimensional character,
and the staggered state contribute to the 120◦ Néel order
reported earlier [35,36]. The overall phase diagram is shown
in Fig. 17(b). The stripe and the dimensional reduction are
expected for small and mixed Jh1 = −Jh2 regions.
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