
PHYSICAL REVIEW B 104, 224414 (2021)

Intrinsic staggered spin-orbit torque for the electrical control of antiferromagnets:
Application to CrI3
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Spin-orbit torque enables the electrical control of the orientation of ferromagnets’ or antiferromagnets’ order
parameter. In this work we consider antiferromagnets in which the magnetic sublattices are connected by
inversion+time-reversal symmetry, and in which the exchange and anisotropy energies are similar in magnitude.
We identify the staggered dampinglike spin-orbit torque as the key mechanism for electrical excitation of
the Néel vector for this case. To illustrate this scenario, we examine the two-dimensional van der Waals
antiferromagnetic bilayer CrI3, in the n-doped regime. Using a combination of first-principles calculations of
the spin-orbit torque and an analysis of the ensuing spin dynamics, we show that the deterministic electrical
switching of the Néel vector is the result of dampinglike spin-orbit torque which is staggered on the magnetic
sublattices.
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I. INTRODUCTION

Spin-orbit torque is a mechanism for electrically switching
thin-film magnets, and has the potential to enable scalable
magnetic random access memory and devices for next-
generation computing [1]. The effect occurs in magnetically
ordered systems that lack inversion symmetry, such as heavy
metal–ferromagnet bilayers [2,3], when a dc current or an
electric field is applied. Spin-orbit torque can be decomposed
into a component that is even under time reversal, which is
also known as the “dampinglike” torque, and a component that
is odd under time reversal, known as the “fieldlike” torque [4].
Knowledge of the dominant component of spin-orbit torque
can help to identify the microscopic source of the torque and
assist in optimizing the effect [5].

In addition to switching ferromagnets, spin-orbit torque
has been shown to switch antiferromagnets [6–14]. Antifer-
romagnets are of particular interest due to their insensitivity
to stray magnetic fields and the fast timescales of their ex-
citations [1,10,13]. It was shown [8] that spin-orbit torque
is present in bulk antiferromagnets in which inversion sym-
metry is locally broken on individual magnetic sublattices,
while the crystal lattice retains global inversion symmetry.
More precisely, in antiferromagnets that are invariant under
the combined operations of inversion and time reversal, the
spin-orbit torques acting on the magnetic sublattices can reori-
ent the antiferromagnetic Néel vector L [8,9]. For previously
studied materials with this symmetry, such as CuMnAs and
Mn2Au, the magnetic exchange energy is much larger than
other energy scales, and the mechanism for switching is a
uniform fieldlike torque present on both magnetic sublattices
[8,9].

In this work we focus on a different mechanism for the
electrical excitation of the Néel order: a staggered damping-
like torque. This torque competes directly with the exchange
torque and has therefore been neglected in previous studies,
where the exchange torque dominates. However, there are sev-
eral materials in which the exchange and anisotropy energies
are comparable. Examples of such materials include MnPSe3

[15,16], and chromium trihalides [17]. We focus on bilayer
CrI3 [18] and show that the staggered dampinglike torque can
play the dominant role in the spin-orbit torque switching.

This paper is organized as follows: In Sec. II, we present
a stability analysis of antiferromagnetic spin dynamics for
different configurations of spin-orbit torque. We show that
staggered dampinglike torque efficiently excites antiferro-
magnet dynamics when the exchange and anisotropy energies
are comparable. To illustrate this behavior, we consider a
specific example of bilayer CrI3. In Sec. III, we examine the
symmetry properties of CrI3 and show that the magnetic dy-
namics occur within a subspace of magnetic configurations. In
Sec. IV, we present first-principles calculations of spin-orbit
torques in CrI3. In Sec. V, we plug these microscopically
computed spin-orbit torques the into Landau-Lifshitz-Gilbert
equation to numerically demonstrate electrical switching n-
doped CrI3 via staggered dampinglike torque. In Sec. VI, we
discuss the experimental implications of our main findings.

II. SPIN-ORBIT TORQUE IN COLLINEAR
ANTIFERROMAGNETS

We first consider the spin dynamics of antiferromagneti-
cally coupled spins with various forms of spin-orbit torques.
The time evolution of the spin orientations m̂A,B is described
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TABLE I. Table of four possible configurations of spin-orbit torques on two magnetic sublattices. Note that we assume staggered
magnetization mB = −mA.

T A T B

Staggered dampinglike T even
stagg mA × (p̂ × mA ) −T even

stagg mB × (p̂ × mB)

Uniform fieldlike T odd
uni mA × p̂ −T odd

uni mB × p̂

Uniform dampinglike T even
uni mA × (p̂ × mA ) T even

uni mB × (p̂ × mB)

Staggered fieldlike T odd
staggmA × p̂ T odd

staggmB × p̂

by the coupled set of Landau-Lifshitz-Gilbert (LLG) equa-
tions [6,19,20]:

dm̂A,B

dt
= m̂A,B ×

(
γ

m

δE

δm̂A,B
+ α

dm̂A,B

dt

)
+ T A,B, (1)

where m is the magnitude of the magnetic moment (assumed
equal on both sublattices), γ is the absolute value of the
gyromagnetic ratio, and α is the Gilbert damping parame-
ter. The energy E is comprised of an easy-axis anisotropy
(along ẑ) and Heisenberg exchange coupling: E (m̂A, m̂B) =
− 1

2 mHA[(m̂A · ẑ)2 + (m̂B · ẑ)2] + mHE (m̂A · m̂B), where HA

and HE are the effective magnetic fields from anisotropy
and exchange, respectively. T A,B is the spin-orbit torque
on the A,B sublattice. As mentioned earlier, the torque is
classified as either even or odd under time reversal, and we
additionally distinguish between torques which are equal or
opposite in sign on the two sublattices (denoted “uni”form or
“stagg”ered). These combinations result in four independent
contributions to the spin-orbit torque summarized in Table II.

Note that we assume the conventional lowest-order form
of spin-orbit torques and p̂ is the direction determined by
the geometry, as we discuss in more detail in Sec. III. For
now we note that the spin-orbit torque vanishes when m̂A,B

is aligned to p̂. Symmetry dictates which spin-orbit torque
terms are present. For materials with inversion+time-reversal
symmetry, such as CuMnAs, the odd and even torques are
uniform and staggered, respectively. For materials with global
inversion symmetry breaking, the odd and even torques are
staggered and uniform, respectively [11]. These relations
between the system symmetry and spin-orbit torque config-
uration apply when the magnetic sublattices are staggered. As
the spin-orbit torque drives the spins out of the staggered con-
figuration, symmetries are broken and the form of spin-orbit
torque is no longer constrained to the forms given in Table I.
However we can still perform the standard stability analysis
of Eq. (1) at the fixed point where two magnetic sublattices
are staggered and along the easy axis.

We consider each spin-orbit torque term individually and
find the critical torque for inducing an instability. The math-
ematical details are given in Appendix A and the final results
are summarized in Table II. The critical thresholds of time-
reversal even torques include a small factor of α, so that,
provided HE is not too large, this torque may more easily
excite Néel order dynamics. Identifying the potentially key
role of the staggered dampinglike torque is a primary message
of this work. To illustrate an example in which this torque
dominates the electrical excitation of an antiferromagnet, we

next analyze the spin-orbit torque response of n-doped CrI3 in
detail.

III. SPIN DYNAMICS IN CrI3: SYMMETRY
CONSIDERATIONS

In this section we analyze the constraints on the magnetic
dynamics imposed by the symmetries of CrI3. The motiva-
tion for this is to reduce the degrees of freedom required to
describe the system. In general, a description of antiferro-
magnets with moderate to weak exchange energy requires 4
degrees of freedom, an orientation (θ, φ) for each spin. This
is in contrast to antiferromagnets in the large exchange limit,
where the two-dimensional Néel vector orientation is approxi-
mately sufficient to describe the system. The four-dimensional
space of a general antiferromagnet is considerably more dif-
ficult to treat analytically. However, we will show that the
symmetry of CrI3 enables a reduction of phase space to two
dimensions.

CrI3 is a recently discovered two-dimensional van der
Waals magnetic material [18,21,22]. There is intense recent
interest in this material due to its unique and potentially useful
properties, including the tunability and control of its magnetic
state through gating and doping [23–27] and its spin-filtering
effects [28–30]. In the bilayer form of this semiconducting
material, the two magnetic CrI3 layers are antiferromagnet-
ically coupled and the ground-state Néel vector is oriented
perpendicular to the plane [18] (see Fig. 1). From the structure
shown in Fig. 1(b), it is clear that bilayer CrI3 shares some
characteristics with previously mentioned antiferromagnets,
such as CuMnAs: Inversion symmetry is locally broken on
the magnetic sublattices (denoted A and B), while in the
purely antiferromagnetic state, the bilayer is invariant under
the combined operations of inversion plus time reversal. The
exchange and anisotropy effective fields are similar in magni-
tude: HA ≈ 1.77 T, HE ≈ 0.76 T, and α ≈ 0.04 [31], so that,
based on Table II, the staggered dampinglike torque can be
expected to play the dominant role in switching.

TABLE II. Expressions for the critical spin-orbit torque for dif-
ferent types of spin-orbit torque (dampinglike and fieldlike) and
torque configurations (staggered and uniform).

Staggered Uniform

Even (dampinglike) α(HE + HA) α
√

HA(HA + 2HE )

Odd (fieldlike)
√

HA(HA + 2HE ) HA
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FIG. 1. (a) Shows a top-down view of one layer of CrI3. The
second layer (not shown) is displaced along the x direction by a
nearest-neighbor distance. (b) Side view of CrI3. Note a lack of
symmetry with respect to x → −x. Other symmetries depend on the
spin configuration: for a purely antiferromagnetic state, the system
is invariant under inversion+time reversal. For a state with canting
in the y direction, the system has a twofold-rotational symmetry
about the y axis. (c) Spin configurations on magnetic sublattices A
and B considered in this work, with finite canting in the y direction.
(d) Mixed representation of system spin in N̂ = (Lx, My, Lz ) space,
showing the spin-orbit torque switching trajectory of N̂ for applied
electric field in the y direction.

We next discuss the symmetry of CrI3 which enables the
degrees of freedom to be reduced from (m̂A, m̂B) to a single
orientation. We consider an applied electric field along the y
axis and spin configurations that are staggered in (x, z) and
uniform in y: mA

x/z = −mB
x/z and mA

y = mB
y . In this case, the

system retains twofold-rotation symmetry about the y axis
(see Fig. 1). Any torque on the spins (including exchange
and anisotropy) is therefore symmetry constrained to satisfy
T A

x/z = −T B
x/z and T A

y = T B
y . The x and z components of the

spins then remain staggered and the y components remain
uniform. The trajectory of the spins is thus symmetry confined
to the subspace (Lx, My, Lz ) ≡ 1

2 (mA
x − mB

x , mA
y + mB

y , mA
z −

mB
z ). This motivates the definition of a “mixed” order param-

eter [32]:

N ≡ (Lx, My, Lz ). (2)

Equation (1) leads to the following equation of motion for N̂:

dN̂
dt

= N̂ ×
(

γ

m

δE

δN̂
+ α

dN̂
dt

)
+ T odd(N̂ × p̂)

+ T even[N̂ × (p̂ × N̂)], (3)

where the energy is comprised of the easy-axis anisotropy
along ẑ and an effective hard-axis anisotropy along ŷ, which
encodes the magnetic exchange:

E (N̂) = − 1
2 mHA(N̂ · ẑ)2 + mHE (N̂ · ŷ)2. (4)

We emphasize that the spin-orbit torque terms in Eq. (3)
are staggered for the x, z components and uniform for the y
component. We compute these torques microscopically in the
next section, where we find the angular dependence is more
complex than the form given in Eq. (3). Nevertheless, the
conclusions based on this simple form of spin-orbit torque are
applicable to the results obtained with first-principles calcula-
tions.

We have verified that fluctuations away from the N sub-
space do not alter the steady-state dynamics [33]. One
important feature of this system which enables this simpli-
fication is that the easy-axis anisotropy is perpendicular to
the axis of twofold-rotation symmetry. If this were not the
case, then the ground-state Néel vector would be aligned to
the twofold-rotation axis, and canting of the moments would
destroy the twofold-rotational symmetry.

The simple form of the time evolution of N̂ allows for
an intuitive description of the dynamics. In the next section
we show that p̂ has a standard x component, and a z com-
ponent due to additional mirror plane symmetry breaking
in CrI3. For p̂ = (px, 0, pz ), we again perform a stability
analysis detailed in Appendix B. Note that this case differs
slightly from the analysis presented earlier because p̂ is not
aligned with the easy axis, however, the conclusion is the
same. The fixed points to lowest order in spin-orbit torque are
N̂ = (−T odd px

γ HA
,± T even px

γ (2HE +HA ) ,±1). The instability threshold to
switch between fixed points is

|T even pz| > γα(HE + HA). (5)

A typical switching trajectory is shown in Fig. 1(d): the spin-
orbit torque drives N̂ from north pole to the fixed point close
to south pole.

IV. MICROSOPIC CALCULATIONS OF SPIN-ORBIT
TORQUES IN CrI3

Having established the relevant degrees of freedom for the
spin configuration in CrI3 as N, we next present microscopic
calculations of the spin-orbit torque per applied electric field,
a quantity known as the “torkance,” as a function of N̂. The
procedure for this calculation is well established [34,35], and
we briefly provide a description here and refer the reader to
the Appendix C for more technical details. We first obtain the
Hamiltonian in a localized atomic orbital basis using a combi-
nation of QUANTUM ESPRESSO [36] and WANNIER90 [37]. We
then utilize linear response theory to compute the torkance on
each magnetic sublattice. We denote the jth component of the
torkance on atoms A, B in response to an electric field along
the i direction with τA,B

i j . The even and odd components of the
torkance are given by

(
τA,B

i j

)even = 2e Im
∑

n,m �=n

fn

(
∂H
∂ki

)
n,m

(
T A,B

j

)
m,n

(Em − En)2 + η2
, (6)

(
τA

i j

)odd = −e
∑

n

1

2η

∂ fn

∂En

(
∂H

∂ki

)
n,n

(
T A,B

j

)
n,n

. (7)

The sum in Eqs. (6) and (7) is over eigenstates |ψn〉 of the
k-dependent Hamiltonian Hk, where k is the Bloch wave
vector and the eigenstate label n includes k and band index.
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(a) (b)

FIG. 2. Angular dependence of the dampinglike (a) and fieldlike
(b) torkance on the N̂ direction (θ, φ) for one layer of bilayer CrI3 un-
der an external electric field along the ŷ direction at Fermi level μ =
50 meV above the conduction band minimum. The arrow (color) on
the sphere indicates the direction (magnitude) of the torkance at the
given N direction. We use kBT = 3 meV, η = 25 meV.

(O)n,m = 〈ψn|O|ψm〉 is the matrix element of the operator O,
and fn = (e(En−μ)/kBT + 1)−1 is the equilibrium Fermi-Dirac
distribution function. μ is the Fermi level, η is the broadening
parameter, and e is the electron charge. The atom-resolved
torque operator is T A,B = i

2h̄ {[S,�], PA,B}, where S is the
spin operator, � is the spin-dependent exchange-correlation
potential, and PA (B) is the projection operator onto the orbitals
centered on atomic site A (B). To compute the torque as
a function of N̂, we manually rotate the spins on A and B
sublattices.

Figure 2 shows the N̂ dependence of the torkance with
(a) and (b) showing the dampinglike (time-reversal even)
and fieldlike (time-reversal odd) torkance, respectively. The
fixed points of both dampinglike and fieldlike torkance lie
in the Lx-Lz plane, away from the Lz = 0 equator. This is
an important feature and is a consequence of the lack of
mirror symmetry with respect to the yz plane. This posi-
tion of the fixed point ensures that the spin-orbit torque
drives N̂ to a point in the northern or southern hemisphere;
after the spin-orbit torque is removed, N̂ then relaxes to
the nearest easy axis along +ẑ or −ẑ. Previous studies on
systems with similar in-plane mirror symmetry breaking,
such as WTe2-Py heterostructures [35,38–40], have verified
that this symmetry breaking results in a spin-orbit torque
that drives the magnetic order parameter to a point away
from the equator. Exploiting this property has emerged as
an approach for deterministically switching perpendicularly
magnetized thin films with spin-orbit torque, and we show
here that this also enables switching of the perpendicular Néel
vector.

We note that the N̂ dependence of the torkance is quite
complex, deviating substantially from the simple, lowest-
order form used in the analysis of the previous section.
In Appendix D, we provide the full symmetry-allowed
expansion of the torkance and quantify the substantial con-
tribution from higher-order terms. We additionally find that
the fixed points for even and odd torkance are different.
These features of the microscopically computed torkance
have important consequences for the details of the dynamics
of N̂ under spin-orbit torque, which we show in the next
section.

We next consider the torkance versus Fermi level for
N̂ along ẑ and x̂ directions, shown in Figs. 3(a) and 3(b),

(b) (a) 

FIG. 3. Torkance as a function of chemical potential relative to
the conduction band edge. The applied electric field is in the ŷ direc-
tion. The N̂ vector is in ẑ (a) and x̂ (b). Red and blue lines represent
staggered time-reversal even torkance and uniform time-reversal odd
torque, respectively. The torkance for Fermi energies in the valence
band is substantially smaller and not shown here.

respectively. Both even and odd components are peaked
for Fermi energies near the conduction band minimum.
For N̂ = ẑ, the even torkance is approximately 1 ea0/h̄
(a0 ≈ 0.0529 nm is the Bohr radius) at 0.1 eV above the
conduction band minimum, which is larger than the even
torkance in the ferromagnetic Pt/Co bilayer (≈0.6 ea0/h̄)
[34]. This large magnitude is due to band crossings in
the conduction band from p orbitals of the heavy iodine
atoms (Appendix C). For N̂ = x̂, the even torkance mag-
nitude is around 0.4 ea0/h̄. The even torkance for this N̂
configuration is solely a consequence of the in-plane mirror
symmetry breaking. This value is notably larger than the
corresponding torkance derived from in-plane mirror sym-
metry breaking in the ferromagnetic 1T ′-WTe2/Co bilayer
(≈0.1 ea0/h̄) [35]. Note that the maximum torkance oc-
curs at Fermi levels for which electrostatic doping might
lead to a transition to a ferromagnetic ground state [24,25].
Nevertheless, appreciable spin-orbit torques are accessible
at lower Fermi energies where antiferromagnetic order is
retained.

V. SPIN DYNAMICS IN CrI3: NUMERICAL RESULTS

Given the significant deviation of the N̂ dependence of the
microscopically computed spin-orbit torque from the simple
form of Eq. (3), it is worthwhile to compute the spin dynamics
with the ab initio spin-orbit torque (Fig. 2) as input into the
coupled LLG equations [Eq. (1)]. N̂ is parametrized by spher-
ical coordinates (θ, φ), and we use a bilinear interpolation of
a dense 80 × 80 mesh of spin-orbit torque obtained from first
principles to obtain the full N̂ dependence.

Figure 4 shows the spin-orbit torque driven dynamics. We
find that the spin-orbit torque can either induce switching
or induce steady-state oscillations of N̂. Figure 4(a) shows
that for an applied electric field E = −2.3 V/μm, the spin-
orbit torque switches the Néel order Lz from the north pole
to the southern hemisphere within 100 ps and generates a
finite in-plane magnetization My. Note that the input spin-
orbit torque terms include both dampinglike and fieldlike
torques (Fig. 2). However, dampinglike torque only has to
compete with the product of anisotropy plus exchange and
the small damping factor (Table II). We expect damping-
like would play a more important role when the magnitudes
of dampinglike and fieldlike torque are comparable. Indeed,
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(ps) (ps)(c) (d)

E (V/µm) E (V/µm)

(GHz)

(a) E=-2.3 V/µm (b) E=3 V/µm

FIG. 4. Magnetization dynamics under spin-orbit torque, for applied electric field in the ŷ direction. (a), (b) Show the Néel and
magnetization vector components as a function of time with applied electric field strength −1.2 and −3.5 V/μm, respectively. The initial
configuration is Lz = 1. Red, black, and blue lines represent the dynamics of Lx , My, and Lz, respectively. (c), (d) Show the final steady state
of N̂ as a function of applied field with starting point at the Lz = ±1, respectively. The spread in the y coordinate indicates the oscillation
amplitude, and the color of the spread represents the oscillation frequency.

by separately turning off the fieldlike (odd) or dampinglike
(even) contributions to the spin-orbit torque, we find that
the switching of Lz originates from the dampinglike torque,
while the fieldlike torque helps to accelerate the switching
dynamics and reduce the switching E -field threshold. Fig-
ure 4(b) shows an oscillating steady state for E = 3 V/μm,
with a frequency of approximately 80 GHz. We find that both
dampinglike and fieldlike torque are required to induce
steady-state oscillation.

We summarize the final steady states as a function of the
applied field E for two initial magnetization configurations
Lz = +1 and Lz = −1 in Figs. 4(c) and 4(d), respectively. The
switching of the Néel vector occurs at approximately |E | =
2 V/μm. This threshold compares well with the estimate
provided by Eq. (5). Reaching the larger-scale oscillations
at large applied E will rely on the material to sustain
large power dissipation, which depends in turn on factors
such as the carrier mobility. The flatness of the conduc-
tion bands implies a low mobility, as seen experimentally
[41], which should enable larger applied electric fields. Fig-
ures 4(c) and 4(d) demonstrate hysteretic switching of the
Néel vector, and are related by mirror symmetry about
the xz plane.

Before we conclude, we include additional plots of final
steady states at different Fermi levels summarized in Fig. 5.
Both switching and oscillating behaviors can be observed at
various chemical potentials and electric-field strengths. The

chemical potential can be tuned by perpendicular gate voltage
in principle and Fig. 5 indicates bilayer CrI3 can have tun-
able functions by controlling both in-plane and out-of-plane
fields. Recent experiments [25] also demonstrate a magnetic
phase transition from an antiferromagnet ground state to a
ferromagnetic state under electron doping. We ignore this
transition to compute the torque at higher electron densities in
the antiferromagnetic state, for the sake of gaining an under-
standing of how this electronic structure influences the torque.
A comprehensive study of the ground-state transitions along
with their spin-orbit torque responses is beyond the scope of
this work.

VI. DISCUSSION

The experimental detection of the Néel vector reversal
is challenging. For bilayer CrI3, out-of-plane magnetic-
optical Kerr effect (MOKE) imaging has previously been
used to discriminate between Lz = +1 and Lz = −1 [24],
and transport effects such as nonlinear anisotropic mag-
netoresistance can also detect N [14]. We also note that
the moderate exchange energy leads to the development
of a substantial steady-state in-plane magnetization of the
driven system, which may be detected experimentally with
in-plane MOKE.

Aside from the particulars of CrI3, in this work we show
generally that antiferromagnets in the weak to moderate
exchange coupling regime exhibit different behaviors from
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E (V/µm) E (V/µm)

(a) eV (b) eV

(c) eV (d) eV
(GHz)

(GHz)(GHz)

(GHz)

FIG. 5. Final steady state of N̂ as a function of applied field with starting point at the Lz = +1 for various chemical potentials, respectively.
The spread in the y coordinate indicates the oscillation amplitude, and the color of the spread represents the oscillation frequency.

their more commonly studied large HE counterparts. The
switching criteria for these antiferromagnets is reduced by
a factor of magnetic damping, offering potentially easier
routes to electrical manipulation. Continued progress in the
field of van der Waals antiferromagnets should provide fur-
ther opportunities for unique modes of electrical control of
these materials.
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APPENDIX A: GENERAL STABILITY ANALYSIS

The dynamics of two coupled spins A and B are described the set of Landau-Lifshitz-Gilbert (LLG) equations [6,19,20]:

dm̂A

dt
− αm̂A × dm̂A

dt
= −γ HA(m̂A × ẑ)(m̂A · ẑ) + γ HE (m̂A × m̂B) + T A,

dm̂B

dt
− αm̂B × dm̂B

dt
= −γ HA(m̂B × ẑ)(m̂B · ẑ) + γ HE (m̂B × m̂A) + T B, (A1)

where γ is the absolute value of the electron gyromagnetic ratio, HA is the magnetic anisotropy field strength, ẑ is the
magnetic easy axis, HE is the antiferromagnetic exchange field, α is the damping parameter, and T (A,B) is the spin-orbit
torque on the (A, B) sublattice. It is convenient to work in spherical coordinates, where the magnetization vector is given
by m̂ = (sin θ cos φ, sin θ sin φ, cos θ ). The torque is always perpendicular to the magnetization, so that it can be expressed in
terms of the eθ , eφ components, where eθ ≡ (cos θ cos φ, cos θ sin φ,− sin θ ) and eφ ≡ (− sin φ, cos φ, 0). The matrix form of
Eq. (1) is ⎛

⎜⎜⎜⎝
φ̇A

θ̇A

φ̇B

θ̇B

⎞
⎟⎟⎟⎠ = 1

1 + α2

⎛
⎜⎜⎜⎝

1
sin θA

α
sin θA 0 0

−α 1 0 0

0 0 1
sin θB

α
sin θB

0 0 −α 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

T A
φ

T A
θ

T B
φ

T B
θ

⎞
⎟⎟⎟⎠, (A2)

where T φ,θ
A,B is obtained by projecting the right-hand side of Eq. (1) to the eφ,θ directions on the A and B sublattices.
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The fixed points and their stability are determined by the set of torque expressions � = (T A
φ , T A

θ , T B
φ , T B

φ ). A fixed points
satisfies � = 0, and its stability is determined by the eigenvalues of the dynamic matrix D [43]. D is given by the product of
the matrix given on the right-hand side of Eq. (A2) and the Jacobian matrix derived from � evaluated at the fixed point. A fixed
point goes from stable to unstable as the real part of its eigenvalue goes from negative to positive.

We consider how collinear antiferromagnets become unstable against different types of spin-orbit torques. We can decompose
the current-induced spin-orbit torques to four distinct contributions depending on the time-reversal symmetry and whether the
torques on two sublattices are uniform or opposite shown in the Table I. We assume the conventional lowest-order form of
spin-orbit torque, as shown in Table I. As discussed in the main text, the direction p̂ is determined by the system symmetry.
Depending on the relative sign of constant prefactor T even,odd on two sublattices, spin-orbit torques on two sublattices are either
uniform or staggered.

In the following analysis, we take the easy axis to be y and p = y. This is for the convenience of avoiding the singular
spherical coordinates near the north and south poles. The fixed points we evaluate are Ly = ±1, or θA = θB = π/2, φA =
−φB = ±π/2. Note that it is necessary to evaluate the full 4 × 4 Jacobian matrix derived from Eq. (A2). We consider the four
different configurations of spin-orbit torque (even and odd, staggered and uniform) individually below.

1. Staggered dampinglike torque. The dynamic matrix D up to the linear order of Gilbert damping α at Ly = +1 is

D =

⎛
⎜⎜⎜⎝

−α(HE + HA) − T even HE + HA − αT even αHE HE

−(HE + HA) + αT even −α(HE + HA) − T even HE −αHE

αHE HE −α(HE + HA) − T even HE + HA − αT even

HE −αHE −(HE + HA) + αT even −α(HE + HA) − T even

⎞
⎟⎟⎟⎠. (A3)

We obtain the eigenvalues of the dynamic matrix D as

λ = −T even − α(HE + HA) ±
√

−2HE HA − H2
A + 2(HE + HA)T evenα + H2

Eα2 − T even2α2. (A4)

The square root is an imaginary number since HA, HE are positive numbers. The real part of λ becomes positive when T even <

−α(HE + HA). This instability threshold has the advantage that a small damping factor can help reduce the required electrical
field or current. However, it is difficult to achieve in the limit of very large exchange coupling strength.

2. Uniform fieldlike torque. The dynamic matrix evaluated at Ly = 1 is

D =

⎛
⎜⎜⎜⎝

−α(HE + HA − T odd ) HE + HA − T odd αHE HE

−(HE + HA) + T odd −α(HE + HA − T odd ) HE −αHE

αHE HE −α(HE + HA − T odd ) HE + HA − T odd

HE −αHE −(HE + HA) + T odd −α(HE + HA − T odd )

⎞
⎟⎟⎟⎠. (A5)

The eigenvalues of the resulting dynamic matrix are

λ = −α(HE + HA − T odd ) ±
√

H2
E + H2

Eα2 − (HE + HA − T odd )2. (A6)

Note that both eigenvalues are doubly degenerate. The condition of having positive real part of one eigenvalue (with positive
square root) is T odd > HA. In other words, T odd is competing with the easy-axis anisotropy by reducing the effective anisotropy
field. This mechanism has the advantage that a large exchange field does not affect its effectiveness.

3. Uniform dampinglike torque. The dynamic matrix evaluated at Ly = 1 is

D =

⎛
⎜⎜⎜⎝

−α(HE + HA) − T even HE + HA − αT even αHE HE

−(HE + HA) + αT even −α(HE + HA) − T even HE −αHE

αHE HE −α(HE + HA) + T even HE + HA + αT even

HE −αHE −(HE + HA) − αT even −α(HE + HA) + T even

⎞
⎟⎟⎟⎠. (A7)

This matrix does not have analytic solutions. However, we can obtain approximate eigenvalues by assuming T even is proportional
to α and then dropping terms αT even (because we expand every term up to first order of small damping factor α). Then analytic
eigenvalues up to the first order of α are

λ = −α(HE + HA) ±
√

±2i|T even|(HE + HA) − 2HE HA − H2
A + T even2. (A8)

The condition of having positive real part of eigenvalues up to the first order of α is then |T even| > α
√

HA(HA + 2HE ). This
threshold has the advantage of reducing threshold by the damping factor. The realization of this torque requires global inversion
symmetry breaking, such as found in heterostructures composed of antiferromagnets and heavy metals.
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4. Staggered fieldlike torque. The dynamic matrix evaluated at Ly = 1 is

D =

⎛
⎜⎜⎜⎝

−α(HE + HA − T odd ) HE + HA − T odd αHE HE

−(HE + HA) + T odd −α(HE + HA − T odd ) HE −αHE

αHE HE −α(HE + HA + T odd ) HE + HA + T odd

HE −αHE −(HE + HA + T odd ) −α(HE + HA + T odd )

⎞
⎟⎟⎟⎠. (A9)

The analytic eigenvalue solutions are not available for this case. However, we numerically find the instability threshold to be
|T odd| >

√
HA(HA + 2HE ).

These four cases are the simplest four ways to manipulate and control the antiferromagnetic order with spin-orbit torques.
Depending on the relative parameters, different mechanisms can be favored to switch the order Néel vector. For example, uniform
fieldlike torque or uniform dampinglike torque can be favored when HE 
 HA while staggered dampinglike torque can be
favored when α(HA + HE ) is much smaller than other thresholds.

APPENDIX B: ANALYSIS OF THE N SUBSPACE

As discussed in the main text, the twofold-rotational
symmetry about the y direction constrains the spins to the
subspace spanned by N = (Lx, My, Lz ). Due to the lack of
mirror symmetry about the yz plane, the lowest-order field-
like and dampinglike torque have the forms of T oddm̂ × p
and T evenm̂ × (p × m̂), respectively, where p = (px, 0, pz ).
Twofold-rotational symmetry about the y axis leads to the
following relation between any torque on A and B sublattices:

T A
y = T B

y , (B1)

T A
x,z = −T B

x,z, (B2)

where torque T includes every term on the right-hand side
of Eq. (1), i.e., anisotropy, exchange, and spin-orbit torque.
The anisotropy field gives rise to the stable initial state
(Lx, My, Lz ) = (0, 0,±1) and we are interested in the con-
dition where the spin-orbit torque drives the system away
from the equilibrium state. To avoid the singular spherical
coordinates near these points, we perform an index permuta-
tion (x, y, z) → (z, x, y), so that the magnetic subspace is now
labeled by (Mx, Ly, Lz ).

In the subspace of (Mx, Ly, Lz ), θB = π − θA, φB = −φA.
We can verify that the torque in Eq. (A2) is staggered, so the
4 × 4 matrix form of LLG equation becomes two identical
2 × 2 matrices:(

φ̇A

θ̇A

)
= 1

1 + α2

( 1
sin θA

α
sin θA

−α 1

)(
T A

φ

T A
θ

)
, (B3)

(−φ̇A

−θ̇A

)
= 1

1 + α2

( 1
sin θA

α
sin θA

−α 1

)(−T A
φ

−T A
θ

)
. (B4)

Now we can drop the sublattice subscript and the equilibrium
state is obtained by solving the equations (Tφ, Tθ ) = 0. We
can find solutions to this set of nonlinear equations with the
ansatz θ = π/2 + a, φ = π/2 + b where a, b � 1 by assum-
ing small spin-orbit torque terms. By expanding all terms up
to the first order of spin-orbit torques, we find

a = T odd pz

γ HA
, b = − T even pz

γ (2HE + HA)
. (B5)

This equilibrium corresponds to the magnetization configura-
tion (Mx, Ly, Lz ) = ( T even pz

γ (2HE +HA ) , 1,−T odd pz

HA
).

The dynamic matrix D up to the linear order of α, a, b, and
the spin-orbit torque terms is

D =
(−T even py − α(2HE + HA) HA − T odd py

−2HE − HA + T odd py −T even py − HAα

)
.

(B6)
The two eigenvalues are

λ = −T even py − (HE + HA)α

± i

[√
HA(2HE + HA) − T odd pyHE√

HA(2HE + HA)

]
. (B7)

The switching condition is then pyT even < −α(HE + HA).
This analysis reveals the key ingredients of staggered damp-
inglike torque: the torque component along the direction
perpendicular to the easy axis drives the net magnetization
along the direction perpendicular to both torque direction
and easy-axis direction while the torque component along the
direction parallel to the easy axis switches the Néel order
from one hemisphere to the other. Comparing to the fieldlike
torque, the dampinglike torque only needs to compete with
the total strength of exchange and anisotropy field multiplying
a small Gilbert damping factor. The staggered dampinglike
torque is therefore more favored to drive the AFM system
when the exchange and anisotropy field have the same order
of magnitude.

APPENDIX C: FIRST-PRINCIPLES DETAILS

We use QUANTUM ESPRESSO [36] to compute the elec-
tronic structure of bilayer CrI3. We adopt the experimental
unit-cell parameters [31] of bilayer CrI3 (space group C2/m):
a = 0.6904 nm, b = 1.1899 nm, c = 0.7008 nm, and β =
108.74 deg. In the QUANTUM ESPRESSO implementation, we
use the pseudopotentials from PSLIBRARY [44] generated with
a scalar relativistic calculation using projector augmented-
wave method [45] and Perdew-Burke-Ernzerhof exchange
correlations [46]. We utilize a 7 × 12 × 1 Monkhorst-Pack
mesh [47], 1360 eV cutoff energy, 1.36 × 10−3 eV total
energy convergence threshold, and 0.08 eV/nm force con-
vergence threshold. We add a Hubbard onsite energy U =
3 eV on Cr atoms [48]. We next utilize WANNIER90 [37]
to obtain the Hamiltonian in an atomic basis. We project
plane-wave solutions onto atomic s, d orbitals of Cr atoms,
p orbitals of I atoms. We then symmetrize the Wannier-type
tight-binding Hamiltonian using TBMODELS [49] since the
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FIG. 6. Band structure of bilayer CrI3 along the −M(− 1
2 , 0, 0), G(0, 0, 0), M( 1

2 , 0, 0), K ( 1
2 , 1

2 , 0) line in k space and the projected density
of states. In the band structure, red dots represent bands obtained from final tight-binding Hamiltonian while black lines represent the bands
obtained from plane-wave basis. The red, blue, and the black lines represent the iodine atoms, Cr atoms, and total atoms contribution to the
local density of states, respectively. Note that up spins and down spins are degenerate because of the PT symmetry and we do not include
spin-orbit coupling in these plots.

presence of slight asymmetry in the tight-binding Hamiltonian
results in symmetry-disallowed torque, and we remove small
spin-dependent hopping terms. The final symmetrized tight-
binding band structures match those obtained with plane-wave
methods. We add onsite spin-orbit coupling terms αL · S,
where L and S are the orbital angular momentum and spin
operators, respectively. We use α = [90, 580] meV for Cr and
I [50]. Adding spin-orbit coupling “by hand” in this manner
requires that Wannier orbitals are not localized in order to
ensure their forms are spherical harmonics consistent with the
standard representation of L. We adopt this approach because
it is technically easier to achieve a good Wannier projection of
a collinear magnetized Hamiltonian, and the onsite spin-orbit
coupling approximation yields accurate results (see Fig. 6 to
see a comparison of band structure obtained with QUANTUM

ESPRESSO and Wannier orbitals). We use a dense k mesh of
400 × 232 to evaluate the torkance, given by Eqs. (5) and
(6) of the main text. In the implementation of Eqs. (5) and
(6), we adopt the approximation [51] that Wannier orbitals
are perfectly localized on atomic sites and spin matrix is half
of Pauli matrix in the space spanned by Wannier orbitals.
We use a constant broadening parameter η = 25 meV for the
results presented. The corresponding constant electron mo-
mentum relaxation time τ = h̄/2η = 13 fs. Since the critical
Néel temperature of bilayer CrI3 is around 40 K, we adopt a
low temperature kBT = 3 meV.

APPENDIX D: SYMMETRY-CONSTRAINED FORMS
OF SPIN-ORBIT TORQUE

In this Appendix we provide the symmetry-constrained
forms of the spin-orbit torque and fit the ab initio results to
these forms. In each layer of CrI3, we only have one mirror
plane xz. The time-reversal even and odd torkances under the
applied field in the y direction are described by the symmetry-

constrained expansion using a combination of trigonometric
functions [52]:

τeven =
∑
m,n

{
Aeven

mn cos(2mθ ) sin[(2n + 1)φ]

+ Beven
mn sin(2mθ ) sin(2nφ)

}
eφ

(a) (b)

(c) (d)

FIG. 7. Azimuthal angle (φ) dependence of even and odd
torkances at μ = 0.05 eV when θ = π/2. Red and blue circles
denote torkance at the eθ and eφ direction, respectively. Dashed
lines show the fitted results based on the symmetry-constrained
form (D1) up to n = 10. The fitted even and odd torkances are
τeven = (0.32 sin φ + 0.03 sin 3φ − 0.05 sin 5φ)eφ + (−0.17 + 0.1
cos 2φ − 0.25 cos 4φ + 0.02 cos 6φ + 0.02 cos 8φ) eθ , τodd =
(0.38 − 0.53 cos 2φ + 0.17 cos 4φ − 0.13 cos 6φ) eφ + ( − 1.0
sin φ + 0.6 sin 3φ − 0.5 sin 5φ + 0.3 sin 7φ)eθ . a0 is the Bohr
radius.
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FIG. 8. Angular dependence of the dampinglike (a) and fieldlike (b) torkance on the Néel order direction (θ, φ) for one layer of bilayer
CrI3 under an external electric field along the ŷ direction at Fermi level μ = 0.06 eV. The arrow (color) on the sphere indicates the direction
(magnitude) of the torkance under the given magnetization direction. We use kBT = 3 meV, η = 30 meV in the calculations. a0 is the Bohr
radius.

+ {
Ceven

mn cos[(2m + 1)θ ] cos[(2n + 1)φ]

+ Deven
mn sin[(2m + 1)θ ] cos(2nφ)

}
eθ , (D1)

τodd =
∑
m,n

{
Aodd

mn cos[(2m + 1)θ ] cos[(2n + 1)φ]

+ Bodd
mn sin[(2m + 1)θ ] cos(2nφ)

}
eφ

+ {
Codd

mn cos(2mθ ) sin[(2n + 1)φ]

+ Dodd
mn sin(2mθ ) sin(2nφ)

}
eθ , (D2)

where m(n) = 0, 1, 2, . . . . Note that coefficients A, B,C, D
are related since we need to ensure that the torque is inde-
pendent of angle φ when θ = 0, π . We can immediately find
that the conventional dampinglike and fieldlike forms of the
torkance correspond to the lowest-order contributions:

τeven = Aeven
00 sin φeφ − Aeven

00 cos θ cos φeθ + Deven
00 sin θeθ

= τ evenm × [m × (px, 0, pz )], (D3)

τodd = Aodd
00 cos θ cos φeφ + Aodd

00 sin φeθ + Bodd
00 sin θeφ

= τ oddm × (px, 0, pz ). (D4)

The coefficients constraint Ceven,odd
00 = ∓Aeven,odd

00 comes
from the additional requirement that the torque must be in-
dependent of angle φ at the pole:

τeven(θ → 0) = (−Aeven
00 sin2 φ + Ceven

00 cos2 φ,

× Aeven
00 sin φ cos φ + Ceven

00 sin φ cos φ, 0
)
,

(D5)

τodd(θ → 0) = (−Aodd
00 sin φ cos φ + Codd

00 sin φ cos φ,

× Aodd
00 cos2 φ + Codd

00 sin2 φ, 0
)
. (D6)

The unconventional symmetry direction (px, 0, pz ) is a
consequence of the absence of mirror symmetry in both
xy and yz planes. Figure 7 clearly shows the substantial
higher-order contributions to both even and odd torkances.
These higher-order terms complicate the global torque
sphere described in the main text. Note that we can
also obtain the angular dependence of spin-orbit torque
using a basis composed of orthogonal vector spherical
harmonics [42] which takes care of the vector form
automatically.

APPENDIX E: SPIN-ORBIT TORQUE IN
THE PURE NÉEL SPACE

Here we present our first-principle results of spin-orbit
torque in the pure Néel space, i.e., m̂A = −m̂B. In this
case, the invariance under inversion+time reversal relates the
torkance on the magnetic sublattices: the time-reversal even
(dampinglike) torque is staggered while the time-reversal odd
(fieldlike) torque is uniform. Figure 8 summarizes our nu-
merical results for μ = 60 meV above the conduction band
edge. The results show similar features compared to the
torkance in N space shown in the main text, with fixed points
in the xz plane. However, knowledge of the torkances in
L space is not sufficient for determining the spin dynam-
ics since the anisotropy term immediately drives the system
out of the pure Néel space. Note that the Néel space
state is the same as the N-space state at the z and x
axes.
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