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We study the effect of anisotropy of spin-S impurities on an antiferromagnetic SU(2) Heisenberg chain. The
magnetic impurities are assumed to have an XXZ-type anisotropic exchange with their neighboring sites. First,
using density-matrix renormalization group technique, we examine spin-spin correlation function, instability of
Néel order, and local spin susceptibility in the presence of a single spin-S impurity. Based on the results, we find
that the types of spin-S impurities are classified into two groups: (i) nonmagnetic and S = 1 impurities enhance
only short-range antiferromagnetic correlation and (ii) S = 1

2 and S > 1 impurities can, in contrast, stabilize a
long-range Néel order in the disordered SU(2) Heisenberg chain. Then, we focus on the case of S = 1

2 impurity
as a representative of (ii) and investigate the evolution of some experimentally observable quantities such as
magnetization, specific heat, and magnetic susceptibility, as a function of concentration and XXZ anisotropy
strength of the impurity. We confirm that the Néel order is induced in the bulk spin chain in the presence of
finite amount of easy-axis XXZ S = 1

2 impurities. Furthermore, we recover some of the aforementioned features
using cluster mean-field theory, which allows us to present results on experimentally accessible quantities at
finite temperatures. Interestingly, in the presence of uniform magnetic field, the total magnetization exhibits a
pseudogap behavior for low values of applied field. We also discuss the dependence of NMR spectrum on various
XXZ impurities and identify that the spin state of Co impurity in SrCu0.99Co0.01O2 is S = 3

2 .

DOI: 10.1103/PhysRevB.104.224407

I. INTRODUCTION

It is well known that the presence of impurities in solids
can lead to quantitative changes in their properties. For exam-
ple, a disordered metal is expected to have higher resistivity
compared to a defect-free metal [1], transition temperature
to superconducting order can be altered by the presence of
impurities [2], etc. However, in some cases, the presence
of impurities can even modify the qualitative behavior of
the system. For instance, metals can turn into insulators
due to disorder-induced phenomenon known as Anderson lo-
calization [3,4]. Such a qualitative change of behavior can
also occur in magnets. A famous example is the disorder-
induced change in the order of phase transitions [5]. Defects
in magnetic materials can modify not only the ground-state
properties, but also the excitation spectrum [6]. Substitution
of a magnetic ion by a different ion with the same or dif-
ferent spin, or a magnetic ion coupled to random spin in
a lattice, corresponds to the presence of defects [7]. Low-
dimensional systems are very sensitive to disorder and often
display dramatic effects in the presence of impurities due to
interplay between quantum effects, strong correlations, and
disorder [8].

Some observations of impurity-induced effects in spin sys-
tems are emergence of S = 1

2 degrees of freedom at the edges,

*Present address: Institute for Theoretical Solid State Physics, IFW
Dresden, 01069 Dresden, Germany.

which occurs when Cu is doped in a Haldane material [9].
A low concentration of nonmagnetic impurities induces a
long-range magnetic order in spin-Peierls material CuGeO3

[10,11]. Similar observations have been made for a two-leg
spin- 1

2 ladder compound SrCu2O3, where doping of as low as
1% Zn (Simp = 0) results in antiferromagnetic (AFM) behav-
ior; we denote the magnitude of impurity spin by Simp and a
nonmagnetic impurity is expressed as Simp = 0. Furthermore,
it was shown that corresponding Néel temperature can be
increased with increase in concentration of impurities [12].
Several experimental studies have been performed on spin- 1

2
materials Sr2CuO3 and SrCuO2, which are considered good
realizations of one-dimensional (1D) Heisenberg model [13].

Experimental investigations, on the other hand, reveal an
enhancement of long-range order on the introduction of Zn2+

(Simp = 0) in SrCuO2 (zigzag chain) and Sr2CuO3 (linear
chain) [14]. Whereas, substitution of Simp = 1 impurity in
a spin- 1

2 Heisenberg chain is known to result in a Kondo
singlet where the impurity spin is Kondo screened by the
two neighboring spins of the chain. Similar to nonmagnetic
substitution, formation of singlets at Simp = 1 impurity site
disrupts the translational invariance of the chain, breaking it
into finite lengths. This leads to confinement of spinons and
results in emergence of a spin gap in low-lying excitations.
This has been confirmed experimentally for low concen-
tration of Ni (Simp = 1) doping in SrCuO2, where sizable
spin pseudogap appears as a consequence of impurities [15].
While experimental results reveal that doping of Simp = 0, 1
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in spin chain materials suppresses long-range magnetic or-
dering temperature [16]. Investigations of replacing a spin- 1

2
magnetic ion (Cu2+) with another spin- 1

2 ion (Co2+) in spin
chain material SrCuO2 reveal that the bulk behavior switches
from Heisenberg to Ising type. Due to this, Ising-type (or
XXZ-type) anisotropy-induced magnetic ordering tempera-
ture is enhanced; however, the gapless nature of the spin
excitations is not disturbed. Similar behaviors of Néel-type
ordering appear in Co-based spin- 1

2 Ising chain compounds
BaCo2V2O8 [17] and SrCo2V2O8 [18]. However, in the Co-
doped SrCuO2, the spin-lattice relaxation rates T −1

1 do not
obey the gaplike decrease, and the possibility of Co2+ acting
as a spin- 3

2 ion has also been suggested [19].
Theoretical efforts using field theory, renormalization

arguments [7,20], and numerical methods like quantum
Monte Carlo [21,22] have been successfully employed to
investigate properties of low-dimensional materials when
doped with magnetic (specifically Simp = 1) and nonmag-
netic impurities. Field-theoretical and numerical studies using
density-matrix renormalization group (DMRG) of isotropic
spin- 1

2 impurity coupled to spin- 1
2 chain expects the impu-

rity spin to be over-screened in analogy to Kondo effect
[20,23,24]. However, experimental results with Simp = 1

2 em-
bedded in the chain stress the importance of anisotropic
effects. Also, very few studies have been carried out on the
effect of magnetic impurity with Simp > 1.

In this paper, motivated by the above situation, we con-
sider the spin- 1

2 AFM Heisenberg chain doped with XXZ-type
anisotropic spin-S impurities using DMRG technique and
cluster mean-field theory (CMFT) approach. Based on the
ground-state properties in the presence of a single spin-S
impurity, we find that the types of spin-S impurities are clas-
sified into two groups: (i) nonmagntic and S = 1 impurities
enhance only short-range antiferromagnetic correlation and
(ii) S = 1

2 and S > 1 impurities can, in contrast, stabilize a
long-range Néel order in the disordered SU(2) Heisenberg
chain. Then, we focus on the case of S = 1

2 impurity as a
representative of (ii) in the latter part of this paper. We thus
confirm that the Néel order is induced in the bulk spin chain in
the presence of finite amount of easy-axis XXZ S = 1

2 impuri-
ties and the corresponding staggered magnetization increases
with increasing the impurity density as well as the anisotropy
strength. Interestingly, in presence of uniform magnetic field,
total magnetization exhibits a pseudogap behavior for low
values of applied field. We also show that some of the above
features can be obtained using CMFT. This allows us to
discuss the finite-temperature behavior of the model in the
context of real materials, where the spin chains are typically
weakly coupled to each other and finite-temperature phase
transitions are possible.

The remainder of the paper is organized as follows: In
Sec. II, we explain the spin- 1

2 AFM Heisenberg model doped
with XXZ-type anisotropic spin-S impurities and describe the
numerical methods applied. In Sec. III, we examine the effect
of spin-S XXZ impurities on the ground-state properties. In
Sec. IV, the temperature dependence of specific heat and
spin susceptibility as functions of the impurity density and
the anisotropy strength is discussed. Section V provides a
summary and conclusions.

FIG. 1. (a) A schematic view of spin- 1
2 Heisenberg chain with

an internal nonmagnetic (vacancy) or spin-S impurity (filled circle).
The exchange interaction on the undoped chain is spin isotropic
(solid line) and that between the magnetic impurity and its neigh-
boring sites can be of the XXZ type. In (b), two impurities sit on
adjacent sites.

II. MODEL AND METHOD

A. Impurity-doped spin- 1
2 Heisenberg chain

We consider a spin- 1
2 AFM Heisenberg chain and replace a

finite number of sites with spin-S impurities. The impurities
are assumed to have an XXZ-type easy-axis anisotropy on
the interaction links with their neighbors. The Hamiltonian
reads as

H =
∑
i/∈imp

[
1

2
(S+

i S−
i+1 + S−

i S+
i+1) + Sz

i Sz
i+1

]

+
∑
j∈imp

[
1

2
(S−

j−1 + S−
j+1)S+

imp, j + H.c.

+ �imp
(
Sz

j−1 + Sz
j+1

)
Sz

imp, j

]
, (1)

where Si is spin- 1
2 operator at nonimpurity site i, Simp, j is spin-

S operator at impurity site j, and �imp is the XXZ anisotropy
of the interaction between the impurity and neighboring sites.
We assume that the undoped chain is spin isotropic [see
Fig. 1(a)]. The interaction between adjacent impurities is also
XXZ anisotropic with �imp [see Fig. 1(b)]. The impurity
density nimp is defined as the ratio of Nimp/Nc, where Nimp

is number of impurities embedded in the chain consisting of
Nc spins. Note that, in the limit of nimp = 1 for Simp = 1

2 , the
Hamiltonian is reduced to a spin- 1

2 Heisenberg chain with the
uniform XXZ anisotropy �imp.

For a given set of Nimp and Nc, the positions of impurities
are randomly distributed. Then, setting the length of nonim-
purity chain between two impurities to be l , the distribution
function of existing probability is given by

P(l ) = nimp exp

[
− nimp√

1 − nimp
l

]
. (2)

The mean length of nonimpurity chain is l̄ = (1 − nimp)/nimp.

B. Density-matrix renormalization group

To examine the ground-state properties of impurity-doped
chain, we employ the DMRG technique, which is a powerful
numerical method for various 1D quantum systems [25]. Al-
though the DMRG is basically restricted to the ground-state
calculations, very long chains with order of a few thousand
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sites can be studied with high accuracy. Hence, a good real-
ization of randomly distributed impurities close to the bulk
limit is possible. We keep up to m = 6000 density-matrix
eigenstates in the renormalization procedure. In this way, the
discarded weight is less than 1×10−13. However, the DMRG
wave function frequently tends to get trapped in a “false” (or
metastable) ground state when we study disordered systems.
Thus, we need to pay special attention to the convergence of
calculation, for example, by such actions as confirming the
unchanged convergence even with different initial conditions.
Either open or periodic boundary condition is chosen, depend-
ing on the calculated quantities.

C. Cluster mean-field technique

We also utilize CMFT to study the Hamiltonian with spin- 1
2

XXZ impurities on 1D isotropic SU(2) cluster. The CMFT is
an extension of a single-site Weiss mean-field (MF) theory,
where instead of a single site we consider a cluster comprising
of Nc spins. For 1D system, the edge spins S1 and SNc couple
to neighboring cluster via standard mean-field decoupling.
Since there are numerous ways in which impurity sites can
be distributed, we average observables over various random
configurations Nav for a fixed number of impure sites. The
edge spins are forced to remain pure in a random configuration
to avoid explicit dependence of anisotropy due to the MF
decoupling. As a result, the impurity density nimp can reach
a maximum of (Nc − 2)/Nc. We present results computed for
a cluster of 10 spins (unless specified otherwise). Calculations
are also performed for larger cluster sizes for scaling analysis.

The CMFT enables us to study phase transition in
thermodynamic properties within a given cluster size. Al-
though the Mermin-Wagner theorem rigorously forbids finite-
temperature phase transition associated with a spontaneous
symmetry breaking in pure 1D systems due to thermal and
quantum fluctuations, we may argue that any symmetry-
breaking MF-type treatment of quantum systems should
provide a finite-temperature phase transition. However, this
becomes physically relevant for real systems where the 1D
spin chains are typically weakly coupled with neighboring
chains and finite transition temperatures are experimentally
observed. The transition temperatures may well be low if
partial inclusion of quantum fluctuations is achieved by, e.g.,
the CMFT as in the present case. Most importantly, the depen-
dence of transition temperatures on the strength of anisotropy
and concentration of impurities as obtained via CMFT can
provide direct experimentally measurable consequences of
such impurity doping.

III. GROUND-STATE PROPERTIES

A. Influence of single impurity on spin-spin correlations

We begin by investigating the effects of single XXZ spin-S
impurity on a spin- 1

2 Heisenberg chain, a good representation
of very low concentration of magnetic impurities in a real
material. To do so, we first calculate the distance dependence
of spin-spin correlation functions from the impurity. Since
an AFM Heisenberg chain is considered, we need to focus
mainly on the staggered spin-spin correlation function, which

FIG. 2. (a), (b) DMRG results for the staggered spin-spin corre-
lation Cs(1, r) with nonmagnetic impurity and Cs(2, r) with Simp = 1
impurity. Inset in (a): structure of two spin-singlet pairs around the
Simp = 1 impurity. (c), (d) Log-log plots of Cs(1, r) with Simp > 1
impurities. In each plot the spin-spin correlation of the bulk SU(2)
Heisenberg chain is shown as a reference.

is defined as

Cs(i, j) = (−1)|i− j|〈Sz
i Sz

j

〉
, (3)

where 〈O〉 denotes expectation value of operator O in the
ground state. A site next to impurity is indexed by “1.”

1. Nonmagnetic impurity

In the case of nonmagnetic impurity (Simp = 0), i.e, va-
cancy, an enhancement of short-range staggered spin-spin
correlations near the impurity has been theoretically sug-
gested [26,27]. We here confirm it and also see the long-range
spin-spin correlation from the impurity. Since the original spin
chain is simply cut by a nonmagnetic impurity, no correla-
tions exist between spins on both sides of the nonmagnetic
impurity. Therefore, we only need to study an open chain.
In Fig. 2(a), the short-range behavior of staggered spin-spin
correlation function Cs(1, r) for Simp = 0 is compared to that
of a bulk SU(2) Heisenberg chain without impurity. We see
that the AFM correlation between site at 1 and 2 is signifi-
cantly increased from Cs(1, 2) = 0.1456 for the bulk chain to
Cs(1, 2) = 0.2172 for Simp = 0 impurity. These values agree
perfectly to those from the Bethe-ansatz analysis [28]. Fur-
thermore, such an enhancement of Cs(1, r) is seen at certain
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distances (r � 10) especially for even r. This is consistent
with the previous numerical study [27]. Then, we explore
what happens in the correlation at large distances. Figure 2(b)
shows log-log plots of Cs(1, r) as a function of distance from
the Simp = 0 impurity. It is confirmed that the staggered oscil-
lations are maintained indefinitely because Cs(1, r) exhibits
an asymptotic behavior with keeping its positive value. The
decay rate is ∝r−1.5. On the other hand, as is well known,
the spin-spin correlation of the bulk SU(2) Heisenberg chain
decays as ∝r−1 [see Fig. 2(b)]. The decay of Cs(1, r) for
nonmagnetic impurity is obviously faster than that for the bulk
chain. In short, the short-range staggered spin-spin correlation
is indeed enhanced by nonmagnetic impurity but the long-
range correlation is rather suppressed.

2. Magnetic impurity with �imp = 1

We then examine the effect of magnetic impurity. Unlike
the case of nonmagnetic impurity, the spins on both sides
of magnetic impurity are still correlated. Hence, only the
replacement of open-chain ends by magnetic impurities is
not adequate to evaluate the effect of the magnetic impurity.
Therefore, we shall proceed as follows: We prepare an open
long SU(2) Heisenberg chain with length 2000–4000 and
replace the 500th site from one end by a magnetic impurity;
and then, calculate the correlation Cs(1, r + 1) with setting the
501th site as i = 1, where the distance r is counted towards
another chain end. In this way, the Friedel oscillations arising
from the open ends can be negligibly small around the impu-
rity at 500th site. We have also confirmed that the results are
unchanged even if the position of magnetic impurity is shifted
by a few sites from 500th site. First, we restrict ourselves to
the case of �imp = 1.

Interestingly, the results for Simp = 1 impurity are even
quantitatively similar to those for nonmagnetic impurity. As
seen in Fig. 2(a), the staggered spin-spin correlation is signifi-
cantly enhanced around the Simp = 1 impurity, e.g., Cs(2, 3) =
0.1933 in contrast to Cs(1, 2) = 0.1456 for the bulk chain.
Note that we look at Cs(2, j) instead of Cs(1, j) in the Simp =
1 case. This can be explained as follows: The Simp = 1 impu-
rity is fractionalized into two spin 1

2 ’s and each of them forms
a spin singlet with the neighboring spin- 1

2 site. Accordingly,
the Simp = 1 impurity and the neighboring two spin 1

2 ’s are
screened, and the three sites may behave like a nonmagnetic
impurity [see the inset of Fig. 2(a)]. Therefore, in the physical
sense it is more reasonable to see not Cs(1, j) but Cs(2, j) in
the Simp = 1 case. Thus, we find that the values of Cs(2, j) for
Simp = 1 impurity are almost equivalent to those of Cs(1, j)
for nonmagnetic impurity at short distance. Furthermore, it is
surprising that the asymptotic behavior of Cs(2, j) for Simp =
1 impurity is ∝r−1.5 as that of Cs(1, j) for nonmagnetic impu-
rity [see Fig. 2(b)]. It seems that the influence of nonmagnetic
and Simp = 1 impurities on the spin-spin correlations is almost
identical even in the quantitative sense, although it would be
a natural consequence of the fact that an Simp = 1 impurity
behaves like a nonmagnetic impurity. This also implies that
the valence bond formations of the Simp = 1 impurity and its
neighboring sites are quite robust.

Moreover, the staggered spin-spin correlation in the
presence of higher-S magnetic impurities (Simp > 1) is inves-

tigated. In Figs. 2(c) and 2(d), we plot DMRG results for
Cs(1, j) with Simp > 1 impurities, where the correlation of the
bulk SU(2) Heisenberg chain is also shown as a reference data.
Note that when the SU(2) Heisenberg chain is doped with a
spin-isotropic (�imp = 1) Simp > 1 impurity, the ground state
is degenerate in the Sz

tot = 0, 1, . . . , Simp − 1
2 sectors for odd

Simp and in the Sz
tot = 1

2 , 3
2 , . . . , Simp − 1

2 sectors for even Simp.
Accordingly, the results for the ground state in the lowest
Sz

tot sector for each Simp impurity are plotted in Fig. 2(c)
and those in the higher Sz

tot sectors are plotted in Fig. 2(d).
We find that the short-range staggered spin-spin correlation
is decreased with increasing the magnitude of Simp. It may
be naturally expected because the AFM fluctuations around
higher Simp impurity are suppressed due to weaker quantum
fluctuations closer to the classical limit. However, the decay
rate of spin-spin correlation for any Simp impurity seems to
be comparable to that of the bulk chain, i.e., ∝r−1 at short
distance (r � 100). We then see an uncommon behavior at
larger distance; Cs(1, j) approaches that of the bulk chain at
intermediate distance (100 � r � 1000) and returns to exhibit
Cs(1, j) ∝ r−1 again at large distance (r � 1000). Although
we have confirmed that this uncommon behavior is not an
artifact due to finite-size effects by studying several chains
with lengths L = 2000–4000, the reason why that is so is
currently unclear.

In summary, the influence of single impurity on spin-spin
correlation is classified broadly into two kinds: (i) Simp = 0,
1 with an enhancement of short-range staggered correlation
and its decay as Cs(1, r + 1) ∝ r−1.5, and (ii) Simp > 1 with a
suppression of short-range staggered correlation and its decay
as Cs(1, r + 1) ∝ r−1.

3. Magnetic impurity with �imp �= 1

Next, we examine how the staggered spin-spin correla-
tion is affected by the XXZ anisotropy (�imp) of exchange
interaction at magnetic impurity. Figure 3(a) shows DMRG
result for Cs(1, r) at several values of �imp with Simp = 1

2
impurity, where the result at �imp = 1 is equivalent to that of
the bulk SU(2) Heisenberg chain. Since, as discussed below
in Sec. III B, the AFM fluctuations around the impurity are
sensitive to �imp, one may expect a large dependence of
Cs(1, r) on �imp. However, in fact, the short-range Cs(1, r)
is hardly affected by �imp and the asymptotic behavior is
only slightly changed as Cs(1, j) ∝ r−1.05 at �imp = 0 and
Cs(1, j) ∝ r−0.95 at �imp = 2. As shown in Fig. 3(b), DMRG
results for the �imp dependence of Cs(2, r) with the Simp = 1
impurity exhibit qualitatively similar behaviors to those in the
case of Simp = 1

2 impurity. Although the short-range Cs(2, r)
is only slightly larger for larger �imp, the decay rate at large
distance is almost independent of �imp, i.e., Cs(2, r) ∝ r−1.5.
This implies that an Simp = 1 impurity behaves like a nonmag-
netic impurity for any �imp. This is another evidence to prove
that the valence-bond picture depicted in the inset of Fig. 2(a)
is still a good approximation.

Interestingly, as shown in Figs. 3(c)–3(f), the �imp depen-
dence of staggered spin-spin correlation functions Cs(1, r)
look similar for any Simp > 1 impurities. Their qualitative
trends are also similar to those for the Simp = 1

2 impu-
rity; however, the effect of �imp seems to be much more
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FIG. 3. Log-log plots of the staggered spin-spin correlation func-
tion Cs(1, r) for (a) Simp = 1

2 , (b) Simp = 1, (c) Simp = 3
2 , (d) Simp = 2,

(e) Simp = 5
2 , and (f) Simp = 3 impurities at several �imp values. Note

that the case of �imp = 1.0 in (a) is equivalent to the bulk chain.

pronounced. Basically, the decay of Cs(1, r) as a function of r
is faster (slower) for smaller (larger) �imp. The only exception
is that there seems to exist a finite �imp which gives the fastest
decay of Cs(1, r) for the Simp = 3

2 and 5
2 impurities. Note that,

for Simp > 1 impurities, the DMRG results for all Sz
tot sectors

giving degenerate ground states are shown.

B. Instability of Néel order with impurities

In the previous subsection, the development of staggered
spin-spin correlation on one side of an XXZ magnetic impu-
rity is discussed. Nothing about correlation between spins on
both sides of the XXZ magnetic impurity has so far been con-
sidered. For example, we know that a nonmagnetic impurity
enhances the staggered oscillations on each side of the im-
purity. However, since the nonmagnetic impurity completely
cuts the original SU(2) Heisenberg chain, no correlations exist
between the separated chains. One could interpret this to mean
that the intrinsic quasi-long-range Néel order in the SU(2)
Heisenberg chain is broken by the doping of nonmagnetic
impurity. Therefore, we may say that nonmagnetic impurity
gives a negative contribution to the stabilization of long-range
Néel order.

FIG. 4. (a)–(c) Expectation values of the z component of local
spin 〈Sz

i 〉 in a 200-site SU(2) Heisenberg open chain with an XXZ
impurity at the center. (d) �imp dependence of (−1)i〈Sz

i 〉 around the
XXZ impurity.

We then investigate how the quasi-long-range Néel order
of the SU(2) Heisenberg chain is developed by an XXZ mag-
netic impurity. We start with an Simp = 1

2 impurity, where the
case of �imp = 1 corresponds to no impurity. As a reference
state, we prepare quasistaggered order in a 200-site SU(2)
Heisenberg open chain, where the z component of edge spins
is fixed at 〈Sz

1〉 = − 1
2 and 〈Sz

200〉 = 1
2 in order to control the

staggered phase of 〈Sz
i 〉. The spatial distribution of 〈Sz

i 〉 in the
reference state, i.e., without impurity, is shown in Fig. 4(a).
The staggered oscillation of 〈Sz

i 〉 is created as a consequence
of the Friedel oscillation from both chain ends. Despite the
decay of |〈Sz

i 〉| with ∼1/r near the both ends [29,30], the
amplitude of |〈Sz

i 〉| is almost uniform around the center of
200-site chain so that the effect of XXZ magnetic impurity
can be clearly demonstrated by replacing the central (i = 100)
site with the impurity.

It is generally known that the spin- 1
2 XXZ

Heisenberg chain has a long-range Néel order with an
easy-axis anisotropy [31–33] and a power-law decay of
spin-spin correlation 〈Sz

i Sz
i+r〉 ∼ 1/rη (η > 1) with an easy-

plane anisotropy [34,35]. By analogy with this fact, one may
naively expect that the Néel stability is enhanced (suppressed)
by an XXZ impurity with �imp > 1 (�imp < 1). In fact, this
speculation is confirmed by the enhancement (suppression)
of amplitude of 〈Sz

i 〉 around the XXZ magnetic impurity with
�imp = 2 (�imp = 0) as demonstrated in Figs. 4(b) and 4(c).
Accordingly, a finite doping of XXZ magnetic impurities
with �imp > 1 onto an SU(2) Heisenberg chain stabilizes a
long-range Néel order since the undoped chain is critical. If
we define staggered magnetization, as an order parameter of
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FIG. 5. �imp dependence of staggered z component of local spin
around the XXZ magnetic impurity for (a) Simp = 0, (b) Simp = 1,
(c) Simp = 3

2 , (d) Simp = 2, (e) Simp = 5
2 , and (f) Simp = 3.

the Néel state, by

mz
st = 1

Nc

Nc∑
1

∣∣(−1)i
〈
Sz

i

〉∣∣, (4)

mz
st > 0 should be achieved for any finite density of XXZ im-

purities with �imp > 1 in the thermodynamic limit. For nimp =
0 or �imp � 1, we find mz

st = 0 due to lack of long-range Nèel
order. Details are discussed in Sec. III D. Furthermore, inter-
estingly, the XXZ impurities with �imp > 1 would similarly
stabilize a long-range Néel order even if the undoped chain is
an XXZ Heisenberg chain with easy-plane anisotropy because
of the power-law decay of spin-spin correlation in the absence
of impurity. To summarize the effect of spin- 1

2 XXZ impurity
on 〈Sz

i 〉, we plot (−1)i〈Sz
i 〉 as a function of i for several �imp

values in Fig. 4(d). We find that the increase or decrease of
amplitude of 〈Sz

i 〉 at the XXZ impurity is roughly proportional
to �imp − 1.

So, what happens if an SU(2) Heisenberg chain is doped
with XXZ impurity other than Simp = 1

2 ? To tell the conclu-
sion first, the effects of Simp > 1 impurities are qualitatively
similar to those in the Simp = 1

2 case, whereas the nonmagnetic
and Simp = 1 impurities lead to different behaviors. As done in
the case of Simp = 1

2 impurity, we examine the change of 〈Sz
i 〉

when the central site of 200-site quasi-long-range staggered
order is replaced by a nonmagnetic or an XXZ magnetic
impurity. Figure 5(a) shows DMRG result for (−1)i〈Sz

i 〉 in the
case of nonmagnetic impurity. The original staggered oscilla-
tion is suppressed around the nonmagnetic impurity because
the chain is cut off by the impurity. As expected, a similar
behavior is observed in the case of Simp = 1 impurity. As seen

in Fig. 5(b), the staggered oscillation is suppressed around
the Simp = 1 impurity even with large easy-axis anisotropy
� = 2. This would be a natural consequence of the fact that an
Simp = 1 XXZ impurity for any �imp acts like a nonmagnetic
impurity, as discussed above. Therefore, we conclude that
nonmagnetic and Simp = 1 impurities only give a negative
contribution for the stability of Néel order, namely, mz

st =
0 is always obtained when an SU(2) Heisenberg chain is
doped with whatever amount of nonmagnetic and Simp = 1
impurities.

On the other hand, we find that the original staggered
oscillation can be enhanced by Simp > 1 impurities if �imp

is larger than a certain value �imp,c. The results are shown
in Figs. 5(c)–5(f). The overall features are similar to those in
the case of Simp = 1

2 impurity. Nevertheless, it is interesting to
see that the staggered oscillation is enhanced by the Simp > 1
impurities even with isotropic interaction �imp = 1 unlike
in the case of Simp = 1

2 impurity. This may be because the
higher Simp impurity has a larger Ising anisotropy, due to its
classical nature, than the Simp = 1

2 impurity. The critical val-
ues are estimated as �imp,c = 0.918, 0.997, 0.994, and 0.998
for Simp = 3

2 , 2, 5
2 , and 3 impurities, respectively. Thus, we

confirm that a long-range Néel order can be stabilized once
an SU(2) Heisenberg chain is doped by Simp > 1 impurities
with � � 1.

C. Local spin susceptibility

By studying the local spin susceptibility we can give a
theoretical prediction for measured NMR spectra [26,36]. The
local spin susceptibility is defined as

χi(T ) = 1

T

∑
j

〈
Sz

i Sz
j

〉
, (5)

where T is temperature. Since both the numerator and denom-
inator vanish in the limit of T → 0, we need to transform this,
so that we may calculate χi(T = 0). Following Ref. [27], the
local spin susceptibility at low temperature is redefined as

χi ≈
∑

j

〈
φS

∣∣Sz
i Sz

j

∣∣φS
〉 = S

〈
φS

∣∣Sz
i

∣∣φS
〉
, (6)

where |φS〉 is the first excited state in the energy spectrum with
the z component of total spin S > 0. Typically, S is 1 and 1

2 for
a system with an even and odd number of sites, respectively.
The local spin susceptibility is a symmetric function under re-
flections with respect to the center of open system sandwiched
by impurities. Since we find only staggered oscillations of Sz

i
in the all cases, χi can be divided into a “uniform” compo-
nent χu

i and “staggered” component χ a
i using the definition

χi = χu
i − (−1)iχ a

i . The uniform and staggered components
are practically obtained as χu

i = χi/2 + (χi−1 + χi+1)/4 and
χ a

i = −(−1)i(χi − χu
i ), respectively.

In Figs. 6(a) and 6(b), DMRG results for the uniform
and staggered components of local spin susceptibility using
simple open chains with 49 and 50 sites are shown. The open
chains are regarded as chain segments created by doping of
nonmagnetic impuritues into an SU(2) Heisenberg chain. The
staggered component χ a

i is forced to be symmetric for odd L
and antisymmetric for even L as a consequence of finite-size
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FIG. 6. Uniform and staggered components of the local suscep-
tibility χi for (a) Simp = 0, (b) Simp = 1, (c) Simp = 3

2 , (d) Simp = 2,
(e) Simp = 5

2 , and (f) Simp = 3, obtained with spin- 1
2 chain segments

with 49 (left panel) and 50 sites (right panel).

effect. As consistent with Ref. [27], the maximum position of
χ a

i is distant as much as possible from the chain ends. This
is also consistent with the prediction that χ a

i simply increases
as a function of distance from the nonmagnetic impurity for a
semi-infinite chain [26].

Let us then consider the case of magnetic impurity. We first
focus on the cases of �imp = 1. For this, we need to prepare
SU(2) chain segment with impurities at both ends. We here
create such a chain segment by replacing two opposite sites on
an SU(2) periodic chain with two magnetic impurities. Specif-
ically, periodic SU(2) chains with 100 and 102 sites are used
to configure chain segments with 49 and 50 sites, respectively.
Figures 6(c) and 6(d) show DMRG results for χu

i and χ a
i in

the case of Simp = 1 impurity. As might be expected from the
above discussions, they are even quantitatively similar to those
in the case of nonmagnetic impurity. This is another evidence
to prove that an Simp = 1 impurity behaves like a nonmagnetic

FIG. 7. �imp dependence of staggered component of the local
susceptibility χi for (a) Simp = 1, (b) Simp = 3

2 , (c) Simp = 2, and
(d) Simp = 5

2 impurities. The system length is L = 49.

impurity. On the other hand, the local spin susceptibility for
Simp > 1 impurities exhibits substantially different features
as shown in Figs. 6(e)–6(j). The results for χu

i and χ a
i in

the cases of Simp = 3
2 , 2, and 5

2 impurities look qualitatively
similar. For both system sizes, χ a

i has a maximum value near
the magnetic impurities. To illustrate the spin state around
the magnetic impurity, as an example, let us consider the
three-spin Heisenberg problem; an S = 3

2 with two adjacent
S = 1

2 ’s. The dominant configuration of the ground state in
the Sz = 1

2 sector is expressed as

ψ ≈
∣∣∣∣1

2
,−1

2

〉
⊗

∣∣∣∣3

2
,

3

2

〉
⊗

∣∣∣∣1

2
,−1

2

〉
. (7)

Since the S = 1
2 states tend to localize at the Simp = 3

2 impu-
rity, it leads to the maximum value of |χ a

i | near the Simp = 3
2

impurity. Nevertheless, χ a
i for L = 49 reduces to a finite satu-

rated value with the distance from the Simp = 3
2 impurity. This

means that the localization of S = 1
2 states near the Simp > 1

impurities is not very strong. These trends are also seen in
the case of Simp > 0 impurities. The exact solution of three-
spin Heisenberg problem for Simp > 0 impurities is given in
Appendix A.

We further investigate the �imp dependence of χ a
i .

Figure 7(a) shows DMRG results for χ a
i at several �imp values

in the case of Simp = 1 impurity. The overall trends almost
remain unchanged with �imp although χ a

i is broadly enhanced
(suppressed) with increasing (decreasing) �imp. This may be
naively expected from the fact that Simp = 1 impurity behaves
like nonmagnetic impurity for any �imp. On the other hand,
as shown in Figs. 7(b)–7(d), χ a

i for Simp > 1 impurities is
significantly affected by �imp. With increasing �imp, χ a

i near
the magnetic impurity is markedly enhanced and it becomes
very small at the middle of chain. This is interpreted to mean
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FIG. 8. �imp dependence of NMR spectra for (a) Simp = 0, (b),
(c) Simp = 1, (d)–(f) Simp = 1

2 , (g)–(i) Simp = 3
2 , (j)–(l) Simp = 2,

and (m)–(o) Simp = 5
2 impurities. A Lorentzian broadening 0.01 is

introduced.

that the S = 1
2 states are strongly localized near the Simp > 1

impurity because the state denoted by Eq. (7) becomes pro-
gressively more dominant for larger �imp. While at small
�imp < 1 the localization of S = 1

2 states near the magnetic
impurity is weakened (also see Appendix A), χ a

i has its max-
imum at the middle of chain like in the cases of nonmagnetic
and Simp = 1 impurities. This effect is most pronounced in
the case of Simp = 2. Incidentally, in the case of Simp = 1

2
impurity, the local spin susceptibility is always very small for
0 < �imp < 5 and thus |χ a

i | � 0.01.
Once the staggered component of the local susceptibility

is calculated, it would be interesting to see its amplitude
distribution, which can be detected as a broadening of the
NMR spectra [26,36]. A Lorentzian broadening 0.01 is in-
troduced to obtain the NMR spectra. Figures 8(a)–8(c) show
the NMR spectra for nonmagnetic and Simp = 1 impurities. In
these cases, we find a two-peak structure, where the distance
between peaks roughly corresponds to an amplitude of χi

because the maximum position of χ a
i moves away from the

impurities due to the delocalized character of spinon excita-
tion. For the Simp = 1

2 impurity, as shown in Figs. 8(d)–8(f),
the NMR spectra always consist of a single sharp peak be-
cause of |χ a

i | � 0.01 for any �imp.
Based on the results for χ a

i , a strong dependence of NMR
spectra on �imp is expected for Simp > 1 impurities. The
NMR spectra for Simp = 3

2 , 2, and 5
2 impurities are shown

in Figs. 8(g)–8(o). The results in these three cases are qual-

itatively similar: At �imp = 1 the NMR spectra for L = 50
exhibit a broad peak centered at zero, reflecting a weak local-
ization of the S = 1

2 states near the magnetic impurities. At
�imp = 2 the localization of S = 1

2 states near the magnetic
impurities is strongly enhanced and the NMR spectra become
much broader. At �imp = 0 the NMR spectra show a rather
narrow peak because the amplitude of χ a

i is very small like in
the case of Simp = 1

2 impurity.
We then analyze the experimental NMR spectra of the

Co-doped SrCuO2 compound SrCu0.99Co0.01O2 [19]. A very
broad peak with a central small dip was experimentally ob-
served at low temperature. A remaining issue is that the spin
state of Co ion, which is either S = 3

2 or 1
2 , has not been

identified up to now. We could find an answer to this question,
although the results for L = 49 and 50 may reveal typical
features of ∼2% doping and we need to take an average
over L using Eq. (2) with nimp = 0.01 for quantitative anal-
ysis. We argue that the low-temperature broad NMR spectra
SrCu0.99Co0.01O2 can be explained only when the spin state of
Co ion is assumed to be S = 3

2 and the spin anisotropy to be
�imp > 1.

D. Staggered magnetization with finite impurity doping

Let us then investigate the staggered magnetization mz
st,

defined by Eq. (4), as functions of the XXZ anisotropy �imp

and impurity density nimp. As mentioned above, the effect
of magnetic impurity on the stability of Néel order in the
SU(2) Heisenberg chain can be classified broadly into two
types: One is nonmagnetic and Simp = 1 impurities which
simply suppress the Néel stability and the other is Simp = 1

2
and Simp > 1 impurities which encourage the development of
long-range Néel order if �imp � 1. Thus, it would be reason-
able to consider the case of Simp = 1

2 as a representative of the
latter although there may be quantitative differences from the
case of Simp > 1. Therefore, we focus on the case of Simp = 1

2
impurity hereafter.

When an SU(2) Heisenberg chain is doped with an Simp =
1
2 impurity with �imp > 1, a staggered oscillation of 〈Sz

i 〉 may
be induced as a Friedel oscillation from the impurity. The
amplitude of this Friedel oscillation decays as 〈Sz

r〉 ∼ 1/rη

since it mimics the decay of spin-spin correlation function
of the SU(2) Heisenberg chain [37]. The value of η can be
estimated to be ∼1 from the slope of Cs(1, r) in Fig. 3(a). This
means that, if the SU(2) chain is doped with more than one
impurity, the staggered oscillation reaches the next impurity
with maintaining its amplitude of the order of Cs(1, 1)/l̄ ≈
0.2nimp/(1 − nimp). As shown in Fig. 4(d), this staggered os-
cillation is further enhanced at the next impurity. Therefore,
mz

st > 0 is naively expected as long as nimp > 0 and �imp > 1.
In other words, the presence of finite amount of XXZ im-
purities with �imp > 1 induces a long-range Néel order in
the doped SU(2) Heisenberg chain. In order to numerically
confirm it, we calculate mz

st for various sets of �imp and nimp

using DMRG method. We study open chains with length
Nc = 40–800. For a given length Nc, the value of mz

st is
obtained by averaging over 10 000/Nc samples, and then a
finite-size scaling analysis to the thermodynamic limit Nc →
∞ is performed. In Fig. 9(a), the obtained values of mz

st are
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FIG. 9. Variation of staggered magnetization mst
z with impurity

density nimp for different values of anisotropy (�imp) with using
(a) DMRG and (b) CMFT approaches. (c) CMFT results for mst

z as
a function of �imp at fixed values of nimp. In (b) and (c), the solid
and dashed lines correspond to the CMFT results for Nc = 10 and
12, respectively.

plotted as a function of nimp for several values of �imp. We
find that mz

st is always finite for nimp > 0 and �imp > 1. The
qualitative trend of mz

st vs nimp is common for any �imp(> 1);
it is small at low nimp, increases rapidly at some intermediate
nimp, and saturates to a value at high nimp. The saturation value
agrees perfectly with spontaneous magnetization of the XXZ
Heisenberg chain [32,33]. For a fixed nimp(> 0), mz

st increases
with increasing �imp. This is a natural consequence of the
fact that the amplitude of induced staggered oscillation is
larger for larger �imp. It is interesting that the largest slope
of ∂mz

st/∂nimp is given by smaller nimp for larger �imp.

We also estimate mz
st using CMFT, which may provide a

crosscheck for the above DMRG results. The ground state of
an AFM spin chain as obtained by CMFT is a mixed state
forming valence bonds on alternate sites in the presence of
very small yet finite (less than 10% of the spin magnitude)
staggered magnetization. The presence of an impurity intro-
duces �imp in the bonds connecting the impurity. In Fig. 9(b),
we show the CMFT results for variation of mz

st with nimp for
Nc = 10 (solid lines), and 12 (dashed lines) averaged over
20 random configurations. For a particular �imp, increase in
the number of anisotropic bonds increases mz

st, indicating the
formation of stronger Néel order. It is interesting to note
that anisotropic strength as low as nimp = 0.1 can induce an
ordered state. Since calculations performed on larger cluster
size of Nc = 12 (dashed lines) do not show any qualitative
difference in the results, most of the analysis will be restricted
to a cluster of 10 sites.

Figure 9(c) shows the evolution of mz
st for different nimp

with increasing �imp. It suggests that introducing a single
impurity spin (nimp = 0.1 in a spin chain of Nc = 10 and
nimp = 0.08 in a spin chain of Nc = 12) affects the overall
order of the chain. This effect can be further increased by
increasing �imp. Note that configurations do not include edge
spins so MF bonds are always pure. It is interesting to ob-
serve that staggered magnetization increases (decreases) with
increasing (decreasing) the cluster size since this sampling un-
derestimates (overestimates) magnetization for lower (higher)
impurity density. Detailed discussion on the number of ran-
dom samplings is given in Appendix C. While the qualitative
behavior of mz

st calculated using CMFT matches very well
with that obtained via DMRG, results obtained using CMFT
suffer from finite-size mean-field effects. The finite-size effect
leads to higher mz

st in comparison to DMRG. This effect is
more pronounced for small nimp, as for low nimp the number
of Heisenberg bonds is larger and CMFT breaks the rotational
symmetry of the Hamiltonian. CMFT results can be further
improved by increasing the cluster size. Detailed discussion
on the finite-size effect is given in Appendix D.

E. Uniform magnetization with external field

In this section, we discuss the �imp and nimp dependence
of total magnetization in the presence of external field hz. The
total magnetization is defined by

mz = 1

L

L∑
1

〈
Sz

i

〉
. (8)

We begin by discussing the behavior of uniform
magnetization mz of pure XXZ Heisenberg chain
with exchange anisotropy � as a function of hz. The
Hamiltonian reads as H = ∑

i[(S
+
i S−

i+1 + S−
i S+

i+1)/2 +
�Sz

i Sz
i+1] + hz

∑
i Sz

i . The DMRG results for mz are plotted in
Fig. 10(a). For � � 1, with increasing hz, mz increases almost
linearly at low hz and exhibits a divergent saturation reflecting
the strong quantum fluctuations. For � > 1, mz remains
zero up to a finite hz(≡ hz,cr ) because of the long-range
Néel order, it rises up vertically at hz = hz,cr, and at higher
hz behavior is qualitatively similar to that for � � 1. The
saturation field is hsat = 1 + � for any �. We then investigate
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FIG. 10. (a) Magnetization curve of XXZ Heisenberg chain as
a function of magnetic field hz. (b)–(d) Magnetization curves of
doped SU(2) Heisenberg chain by Simp = 1

2 XXZ impurities with
(b) �imp = 1.5, (c) 2, and (d) 10 for several impurity densities
nimp. (e), (f) Schematic illustrations of magnetization curve near (e)
nimp = 0 and (f) nimp = 1. The insets of (e) [(f)] show schematic
representations of typical spin states near nimp = 0 at high fields
(nimp = 1 at low fields), where the solid line denotes spin-isotropic
XXX bond and the dashed line denotes spin-anisotropic XXZ bond.

the nimp dependence of magnetization curve for doped SU(2)
Heisenberg chain by XXZ anisotropic Simp = 1

2 impurities
with �imp. In other words, we see how the magnetization
curve is varied from that of � = 1 to that of � = �imp with
increasing nimp.

In Figs. 10(b)–10(d), DMRG results for the magnetization
curve with �imp = 1.5, 2, and 10 at several values of nimp are
shown. The undoped system is an SU(2) Heisenberg chain.
For each curve shown in Figs. 10(b)–10(d), mz is calculated by
taking average over 10 random realizations of impurity distri-
butions on an open chain of length Nc = 1000. Qualitatively,
the nimp dependence of mz vs hz is similar for all �imp cases.
Nevertheless, the characteristics become more obvious with

larger �imp. The specific features can be interpreted by the
fact that XXX spins are more easily polarized than XXZ spins
with easy-axis anisotropy (�imp > 1).

At low impurity density (nimp ∼ 0), a plateaulike feature
is seen near the saturation mz ∼ 1

2 . If the impurities are di-
lute, the system consists of field-polarized spins and isolated
magnons at high fields because the XXZ impurity spins are
initially flipped with decreasing field from the saturation. This
spin state is sketched as I in the inset of Fig. 10(e). Since
there is a “gap” between field strengths to polarize the XXZ
impurity spins and the other spins, a plateau is created at
mz ≈ (1 − nimp)/2. As nimp increases, the probability that two
or more XXZ impurities are aligned increases in the hz range
of plateau. For example, when two XXZ impurities are placed
next to each other, as II in the inset of Fig. 10(e), a tetramer
singlet (Sz = 0) is composed of four spins connected by XXZ
coupling (we call a chain segment like the tetramer in this case
“XXZ chain segment”). Thus, a finite gap to Sz = 1 takes the
shape of plateau. Similarly, when three XXZ impurities are
aligned, a pentamer is formed as III in the inset of Fig. 10(e).
Having polarized spins on either side of the pentamer, a gap
opens between Sz = − 1

2 and 1
2 states. It also creates a plateau.

In general, an XXZ chain segment with even (odd) number of
XXZ impurities exhibits a gap between Sz = 0 and 1 states
(Sz = − 1

2 and 1
2 states). Since the gap value differs by the

length of XXZ chain segment, the plateau has a finite slope.
Basically, odd-length XXZ chain segments have larger gap
than even-length ones; the gap is larger for shorter XXZ chain
segment. The more various lengths of XXZ chain segments
exist, the more the slope of plateau becomes steep. Indeed,
the increase of slope with increasing nimp can be confirmed up
to nimp = 0.3 in Figs. 10(b)–10(d).

At high impurity density (nimp ∼ 1) the overall shape of
mz vs hz looks similar to that of XXZ Heisenberg chains
with � = �imp because most parts of the system are cov-
ered by XXZ chain segments with �imp. However, a slow
increase of mz is seen at lower hz instead of gapped be-
havior in the XXZ Heisenberg chain. This is caused by a
scattering of undoped XXX chain segments, as sketched in
the inset of Fig. 10(f). The XXX chain segments are more
easily polarized than XXZ chain segments. Since typical field
strengths exhibiting the states IV, V, and VI are different, i.e.,
hz(VI) > hz(V) > hz(IV), a gradual slope of mz at lower hz is
created.

It would be informative to compare CMFT results for the
uniform magnetization mz with those by DMRG. In Fig. 11,
we show CMFT results for mz as a function of applied mag-
netic field for different values of impurity densities. Similar
to the DMRG results, for nimp = 0, total magnetization con-
tinuously increases with applied field until saturation where
all the spins align in the direction of field [see Fig. 11(a)].
Small steplike features obtained in net magnetization is a
consequence of finite-size effects in CMFT, which can be
reduced with increasing cluster size. Numerically exact results
obtained from DMRG begin from zero magnetization owing
to the gapless nature of 1D Heisenberg AFM and continu-
ously increases until saturation field. While the intermediate
behavior of mz obtained by CMFT does not match with the
results of DMRG, it is interesting to note that the value of
saturation field agrees very well.
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FIG. 11. Variations of total magnetization mz (pink) and stag-
gered magnetization mz

st (purple) with increasing applied magnetic
field for different values of nimp as indicated in the panels. � is fixed
to 2 and Nav is set to 10.

In Figs. 11(b)–11(i) we show the variation of total magne-
tization mz (pink) and staggered magnetization mz

st (purple)
with increasing applied magnetic field for different values
of nimp as indicated in the panels. A Néel order is formed
on substitution of impurities, which vanishes above a finite
magnetic field. This critical value of the field above which
Néel order vanishes increases with increase in nimp. This
is understood as the closing of the gap existing above the
ground state. This feature is reflected in mz remaining zero
up to a finite strength of magnetic field that is equal to the
energy gap above the ground state. In the XXZ limit, this
gap is related to the anisotropy in Hamiltonian [38,39]. Note
that results for some field values are omitted as for those
applied field values, mean fields did not converge for some
random configurations. It is interesting as mean fields con-
verged for all other values of applied field with the same set
of random configurations. Further increase in the impurity
density increases the saturation magnetic field strength. For
the extreme case, when nimp = 0.8, all the bonds except mean-
field decoupled ones are anisotropic in nature. Disregarding
the field values of nonconvergence, the behavior of net mag-
netization and staggered magnetization reveals formation of
Néel order in low fields and fully saturated state in high-field
limit. The results for mz with applied field match with those
obtained in BaCo2V2O8 [40]. This material is expected to be
explained by a quasi-1D XXZ model with �imp = 2. An ideal
XXZ chain model will show a quantum phase transition from
the Néel ordered phase to Tomonaga-Luttinger liquid to satu-
rated state at high fields. Further investigations are required to
understand this intermediate order appearing in the presence
of field using CMFT.

IV. THERMODYNAMIC PROPERTIES

In the previous section, we have established that the an-
tiferromagnetic order is induced in an isotropic spin chain
on substitution of a spin- 1

2 magnetic impurity resulting in
anisotropic neighboring bonds. We now discuss signatures of
phase transition appearing in specific heat (Cv) and suscepti-

FIG. 12. CMFT results for variation of (a) specific heat and
(b) susceptibility with temperature for different values of impurity
density while the anisotropy strength is fixed to �imp = 2.

bility (χ ) with increasing temperature for different values of
impurity density nimp and �imp.

Figure 12(a) shows variation of Cv with temperature for
different nimp with �imp = 2. For a completely isotropic spin
chain (nimp = 0), specific heat changes smoothly with broad-
ened peak near T = 0.4. For impurity density as low as
nimp = 0.1, a small peak emerges as a consequence of phase
transition from a Néel phase to a paramagnet. The peak in Cv

sharpens when nimp increases. The huge bump in Cv for higher
temperature is a consequence of continuously decreasing cor-
relations among spins. The origin of this behavior is discussed
in detail in Sec. III E. Figure 12(b) shows that χ decreases
with increase in impurity density. Results for susceptibility
in the completely Heisenberg limit show an unusual curva-
ture in T < 0.25, which differs from the behavior expected
from the ideal 1D antiferromagnetic Heisenberg chain. The
result shown here is a consequence of the mixed Néel order
with dimer correlations as obtained using CMFT. The sus-
ceptibility matches with the one expected from an alternating
exchange antiferromagnetic chain (weakly coupled dimers)
[41]. A significant deviation appears for high nimp in lower-
temperature region while the behavior qualitatively remains
the same in higher-T limit.

In Fig. 13, we show the dependence of �imp on specific
heat and susceptibility for different impurity densities. Results
for specific heat reveal that the increase in the anisotropy
strength (�imp) increases the transition temperature as well
as the specific-heat peak. This effect is consistent for all
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(a) (b) (c)

(d) (e) (f)

FIG. 13. Variations of specific heat and susceptibility for differ-
ent values of �imp. The results are obtained for (a), (d) nimp = 0.1,
(b), (e) nimp = 0.4, and (c), (f) nimp = 0.8.

impurity densities nimp = 0.1, 0.4, and 0.8 as shown in
Figs. 13(a)–13(c). Results for the susceptibility in completely
isotropic case (nimp = 0) calculated using CMFT are similar
to that of χ obtained for antiferromagnetic dimer chain [41].
For nimp = 0.1, no significant change in susceptibility is iden-
tified on increasing �imp. Further increase in impurity density
leads to decrease in χ , which is prominent for higher �imp.

Presence of impurity bonds induces a Néel order, which
melts to a disordered state with increase in temperature. As
this effect is more significant in low-temperature regime,
Figs. 14 and 15 show the variations of Cv and χ with tem-
perature for different nimp with fixed �imp = 2.0. Transition
temperature increases with increase in nimp. Although the
effect of interchain coupling is taken into account as mean
field in this paper, this trend would remain correct even if the
interchain couplings are explicitly included in the system. For
high nimp, the peak in specific heat is very sharp owing to
the Ising-type nature of most of the bonds. For intermediate
values of impurity densities, the number of possible random
distributions of the impure spins is huge, leading to difference
in magnetic order. Different colors in Fig. 14 correspond to
different Nav . For intermediate values of nimp, specific heat

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 14. Variations of specific heat (solid lines) and staggered
magnetization (dashed lines) with temperature obtained using CMFT
on a cluster size consisting of 10 spins. Dependence on nimp is shown
for various number of random configurations: Nav = 10 (yellow),
20 (blue), and 40 (red).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 15. Variations of susceptibility with temperature obtained
using CMFT on a cluster size consisting of 10 spins (�imp = 2.0).
Dependence on nimp is shown for various number of random config-
urations: Nav = 10 (yellow), 20 (blue), and 40 (red).

shows a broad peak, which becomes smooth with further in-
crease in Nav . Nonmonotonic behavior in Cv for intermediate
nimp is a direct consequence of the distribution of impure
spins. We believe that these peculiarities might be a finite-size
effect and will lead to a clear phase transition in the thermo-
dynamic limit.

Figure 15 shows dependence of χ with increasing the
number of random configurations used for averaging. It is
interesting to note that susceptibility decreases with increase
in impurity density. Impurity effects in susceptibility are more
prevalent for higher nimp, where it shows a discontinuity at
T ∼ 0.25 [see Figs. 15(g)–15(i)]. Results for susceptibility
of SrCo2V2O8 [18] show a signature similar to χ obtained
for higher nimp. SrCo2V2O8 is expected to be described by
the XXZ model; however, interchain interactions induce an
order in the material at low temperatures. The discontinuity
identified in χ is a result of vanishing Nèel order.

V. CONCLUSION

Using DMRG and CMFT, we studied an AFM spin- 1
2

Heisenberg chain doped with spin-S XXZ magnetic impu-
rities, where an XXZ anisotropic impurity �imp introduces
XXZ exchange interaction in the neighboring bonds. First,
we examined the effect of a single spin-S XXZ magnetic
impurity in the ground-state properties such as the spin-spin
correlation function, instability of Néel order, and local spin
susceptibility. Based on their qualitative characteristics we
find that the types of spin-S impurities are classified into two
groups. (i) One contains nonmagnetic and S = 1 impurities.
A short-range AFM correlation is enhanced but the decay
rate of spin-spin correlation function is faster than that of the
undoped spin- 1

2 Heisenberg chain. Since they behave like a
magnetic defect, i.e., vacancy, the global Néel order cannot be
supported. (ii) The other contains S = 1

2 and S > 1 impurities.
They hardly change the decay rate of spin-spin correlation
function. However, the Néel fluctuation is significantly en-
hanced around the easy-axis XXZ anisotropic impurities in
the spin- 1

2 Heisenberg chain, so that long-range Néel order
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can obviously be stabilized. We also found that the experi-
mentally observed broad NMR spectra at low temperature in
SrCu0.99Co0.01O2 may be a consequence of the presence of
large �imp, S = 3

2 impurities.
In the latter part of this paper, we focused on the case

of S = 1
2 impurity as a representative of (ii). By considering

the staggered magnetization mz
st as an order parameter of

the Néel state, we confirmed that a finite amount of easy-axis
XXZ S = 1

2 impurities immediately induces a Néel order in
the bulk spin chain and mz

st increases with increasing �imp

and nimp. In the presence of uniform magnetic field hz, the
total magnetization mz exhibits a pseudogap behavior at low
hz, which is more pronounced when approaching a pure easy-
axis XXZ Heisenberg chain in the nimp = 1 limit. Also, a
plateaulike feature at mz ∼ (1 − nimp)/2 revealing the exis-
tence of isolated magnons is seen at low nimp.

Furthermore, we investigated the thermodynamic proper-
ties such as specific heat and magnetic susceptibility using
CMFT. These calculations revealed a phase transition from a
Néel order to a paramagnet. The transition temperature as well
as the size of the peak in specific heat increases with increase
in nimp and �imp. The dependence of the transition tempera-
ture on the concentration and anisotropy strength of impurities
is relevant for real systems, where finite-temperature phase
transitions become possible due to interchain couplings.

It is also worth noting that the effect of spin-S impurities on
ferromagnetic chain is a nontrivial question. Very recently, the
interaction-induced bound magnon edge state, which may be-
have like a spin-S impurity, in anisotropic ferromagnetic chain
was studied [42]. The extension of our study to ferromagnetic
chain is expected in the future.
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APPENDIX A: LOCALIZED S = 1
2 STATES

NEAR Simp > 1 IMPURITY

In Sec. III C, we argue that the S = 1
2 states are localized

around the Simp > 1 impurity in the Sz = 1
2 sector. To explain

this, we consider a simplified three-site Heisenberg system
consisting of an Simp = T/2 impurity and the neighboring two
S = 1

2 ’s. In the Sz = 1
2 sector, possible bases are

φ1 =
∣∣∣∣1

2
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1

2

〉
⊗

∣∣∣∣T

2
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2
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FIG. 16. (a) Finite-size scaling analysis of the staggered magne-
tization mz

st calculated by DMRG. The parameters are �imp = 1.1
and nimp = 0.1. Each point is obtained by averaging over 10 000/L
samples of random impurity distribution. (b) DMRG results for the
uniform magnetization mz as a function of external field. The mag-
netization curves for 10 random samplings of impurity distribution
with L = 1000 are shown.

where | jm〉 are the simultaneous eigenstates of the angular
momentum quantum number j and the angular momentum
projection onto the z axis m. For the case of �imp = 1, this
problem can be easily solved. The ground-state energy is
ε0 = −(T + 2)/2 and the eigenfunction is

ψg.s.(�imp = 1) = A

(
φ1 − φ2 − φ3 +

√
T + 3

T − 1
φ4

)
(A5)

with A =
√

T −1
4T . If T is small enough, the dominant configu-

ration of ground state may be written as

ψg.s.(�imp = 1) ≈
∣∣∣∣1

2
,−1

2

〉
⊗

∣∣∣∣T

2
,

3

2

〉
⊗

∣∣∣∣1

2
,−1

2

〉
. (A6)

This means that Sz is maximum at the impurity site. Thus,
we conclude that the S = 1

2 states are localized around the
Simp > 1 impurity. Since the approximation (A6) approaches
the exact ground state with increasing �imp, the localization
of S = 1

2 states is stronger for larger �imp.
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FIG. 17. (a) Variations of mz
st with nimp for averaging over differ-

ent number of random configurations for �imp = 1.2 (dotted-dashed
lines), �imp = 1.5 (dashed lines), �imp = 2.0 (solid lines). (b) Vari-
ation of mz

st with �imp with increasing Nav for nimp = 0.2, 0.4,
and 0.6.

In the limit of �imp = 0, the ground state is

ψg.s.(�imp = 0)

=B

⎛
⎝ T + 1√

T 2 + 2T − 1
φ1 − 2φ2 − 2φ3 +

√
T 2 + 2T − 3

T 2 + 2T − 1
φ4

⎞
⎠

(A7)

with B = 1/
√

10. The bases (A2) and (A3) have larger coef-
ficients. Thus, we find that the localization of S = 1

2 states is
released for smaller �imp.

APPENDIX B: FINITE-SIZE SCALING AND RANDOM
SAMPLING IN DMRG CALCULATIONS

Figure 16(a) shows a finite-scaling analysis of the stag-
gered magnetization mz

st at �imp = 1.1 and nimp = 0.1, which
is one of the most difficult cases to perform the scaling analy-
sis because of small extrapolated value in the thermodynamic
limit L → ∞. Fittings with the third- and fourth-order poly-
nomial functions of l = √

L lead to mz
st = 2.617×10−3 and

mz
st = 2.270×10−3 in the limit L → ∞, respectively. They are

sufficiently close to each other and the fitting lines seem to be
reasonable as shown in Fig. 16(a). Thus, we can confirm the
validity of the finite-scaling analysis of mz

st.

FIG. 18. Cluster-size scaling of mz
st for various �imp with the

number of impurities (a) Ni = Nc/2 and (b) Ni = Nc − 2. Average is
taken for the maximum of 10 random configurations. Dotted-dashed
lines are power-law fits. Solid circles are the results computed using
DMRG for corresponding �imp and nimp.

Figure 16(b) shows the uniform magnetization mz as a
function of external field at �imp = 1.1 and nimp = 0.1. The
magnetization curves for 10 random samplings of impurity
distribution with L = 1000 are plotted. Since we see only
small deviations among the magnetization curves with differ-
ent random sampling, a system with L = 1000 may be large
enough to reproduce every phenomenon induced by impurity
doping. To gain further accuracy, we average mz over 10
random samplings to the magnetization curve shown in the
main text.

APPENDIX C: SAMPLING OF RANDOM
CONFIGURATIONS IN CMFT CALCULATIONS

Staggered magnetization is averaged over various random
distributions of impure bonds for a fixed number of impurities.
Figure 17 shows the dependence of mz

st with increasing num-
ber of random configurations considered for averaging. Due
to small cluster sizes, the number of configurations for nimp =
0.1 and 0.8 cannot be increased. It is evident from Fig. 17(a)
that the fluctuations appearing in mz

st can be minimized by
increasing the number of configurations. Figure 17(b) depicts
the dependence of the number of configurations for different
�imp. It suggests that the dependence of mz

st on Nav is more
significant for lower nimp = 0.2 and 0.4.
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APPENDIX D: FINITE-SIZE EFFECTS
IN CMFT CALCULATIONS

Figure 18 shows mz
st for the number of impurities (Ni) fixed

to Nc/2 and Nc − 2 for respective cluster sizes. Fluctuations
for the case of Ni = Nc/2 appear as the average is taken
for very small number of random configurations (Nav = 10).
We observe that mz

st increases with increasing cluster size
up to a certain cluster size, after which it starts to decrease.
Power-law fits to the data suggest that on further increasing
the size, mz

st will reach the value closer to the one obtained by
DMRG [solid circles in Fig. 18(a)]. For Ni = Nc − 2, finite-
size scaling analysis shows an increase in mz

st with increasing
Nc. This is counterintuitive as for completely isotropic Ising
(� → ∞) or Heisenberg (� = 1) spin chain, where mz

st

decreases with system size. However, in our approach, the MF
bond remains Heisenberg type while the impure bonds are
XXZ type or, in the extreme case, Ising type. For Nc = 4, the
number of impure bonds within the cluster is 3, while there are
two mean-field decoupled Heisenberg bonds. With increasing
number of spins in a cluster, the ratio of impure bonds to
pure bonds keeps on increasing as the number of isotropic
MF bonds remains the same. Due to this competition among
Heisenberg bonds and Ising-type (XXZ-type) bonds, mz

st in-
creases with system size, and eventually saturates towards its
maximum possible value. Solid circles in Fig. 18(b) show
the results obtained by DMRG corresponding to nimp = 0.8.
Power-law fits of CMFT cluster-size scaling show that the
agreement with DMRG results is higher for larger anisotropy
in comparison to �imp = 1.1.
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