
PHYSICAL REVIEW B 104, 224405 (2021)

Spin excitation spectra in helimagnetic states:
Proper-screw, cycloid, vortex-crystal, and hedgehog lattices
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We investigate the spin excitation spectra in chiral and polar magnets by the linear spin-wave theory for an
effective spin model with symmetric and antisymmetric long-range interactions. In one dimension, we obtain
the analytic form of the dynamical spin structure factor for proper-screw and cycloidal helical spin states with
uniform twists, which shows a gapless mode with strong intensity at the helical wave number. When introducing
spin anisotropy in the symmetric interactions, we numerically show that the stable spin spirals become elliptically
anisotropic with nonuniform twists and the spin excitation is gapped. In higher dimensions, we find that similar
anisotropy stabilizes multiple-Q spin states, such as vortex crystals and hedgehog lattices. We show that the
anisotropy in these states manifests itself in the dynamical spin structure factor: a strong intensity in the
transverse components to the wave number appears only when the helical wave vector and the corresponding
easy axis are perpendicular to each other. Our findings could be useful not only to identify the spin structure but
also to deduce the stabilization mechanism by inelastic neutron scattering measurements.
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I. INTRODUCTION

The helimagnetic orders are periodic spin states found in a
wide range of materials, from metals to insulators, where the
magnetic moments form twisting and swirling textures, such
as spin spirals and vortex crystals (VCs) [1]. Of particular
interest is the cases where the spin textures define topolog-
ically nontrivial objects [2–5]. There are many examples of
such helimagnetic orders, e.g., one-dimensional (1D) proper-
screw helical spin (HS) states [Fig. 1(a)] [6], 1D cycloidal HS
states [Fig. 1(b)] [7], 1D chiral soliton lattice [8–14], two-
dimensional (2D) skyrmion crystals (SkXs) [15–18], 2D VCs
[19], and three-dimensional (3D) hedgehog lattices (HLs)
[20–25]. These helimagnetic states have been attracting a lot
of attention since they induce intriguing electronic and trans-
port properties, such as the magnetoelectric effect [26] and the
topological Hall effect [27], which would lay the cornerstone
of future technology.

Several mechanisms have been proposed for the sta-
bility of these helimagnetic spin textures, including the
Dzyaloshinskii-Moriya antisymmetric exchange interactions
[28–30], frustration among the competing exchange inter-
actions [31–33], four spin interactions [34–39], long-range
interactions via itinerant electrons [40–48], long-range dipole
interactions [49–51], and bond-dependent anisotropic inter-
action [52–54]. To elucidate the relevant mechanism, it is
desired to clarify the microscopic information of the magnetic
interactions. Inelastic neutron scattering is a useful experi-
mental tool to obtain such microscopic information from the
analysis of the spin excitation spectrum. It is, however, not
always an easy task, especially for the complex spin textures.
For example, while the SkXs and the HLs are stably obtained
for the models with either short-range [28,31,55,56] or long-
range interactions [44–46,57,58], it remains yet to be clarified
which is the most relevant mechanism in each substance.

This is mainly due to less available information on the spin
excitations for the detailed comparison between theory and
experiment.

In this paper, we systematically study the spin excitation
spectra for spin models which stabilize various types of he-
limagnetic spin textures, by tuning the range of magnetic
interactions in real space. Specifically, starting from the effec-
tive spin model for spin-charge coupled systems, which has
infinite-range interactions [45,57], we extend it by including
both symmetric and antisymmetric exchange interactions with
spatial decay, and obtain the ground states and spin excitation
spectra by variational calculations and the linear spin-wave
theory, respectively. We find that our models stabilize 2D VCs
and 3D HLs in addition to 1D HS states, by introducing spin
anisotropy in the symmetric interaction. In the 1D case, we
show that the dynamical spin structure factor for both proper-
screw and cycloidal HS states has a gapless mode with strong
intensity at the helical wave number in the isotropic case,
but they are gapped in the presence of the anisotropy which
modulates the stable spin spirals into elliptically anisotropic
ones and makes the twists nonuniform. We also clarify that
the lowest-energy excitation mode with the strongest intensity
can be regarded as a phase shift of the spin helix. In higher
dimensions, we find that while the system exhibits a HS state
in the isotropic case, the anisotropy can stabilize multiple-Q
spin states which are composed of superpositions of multiple
spin helices; we obtain four different types of double-Q (2Q)
VCs in two dimensions and three different types of triple-Q
(3Q) HLs in three dimensions. We find that the dynamical
spin structure factor for the multiple-Q spin states exhibits a
strong intensity in the lowest-energy excitation mode when
the helical wave vector is perpendicular to the easy axis of
the corresponding interaction. This means that the experi-
mental identification of such strong intensity by the inelastic
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FIG. 1. Helimagnetic orders: (a) proper-screw and (b) cycloidal
helical spin states. The latter is obtained by π/2 spin rotation of the
former about the z axis.

neutron scattering would provide the information of not only
the propagating direction and magnetic period of the helices
but also the anisotropy in the effective magnetic interactions.
In addition to the experimental relevance, our present scheme
provides a versatile theoretical framework to investigate spin-
wave excitations in a wide variety of multiple-Q spin states,
even beyond those treated in this paper, such as SkXs and
other multiple-Q HLs.

The structure of this paper is as follows. In Sec. II, we
first introduce the effective spin model for chiral magnets with
infinite-range interactions. Several types of the symmetric and
antisymmetric interactions are introduced for the 1D, 2D,
and 3D cases. Then, we extend the model by introducing
spatial decay in the interactions. In Sec. III, we describe the
methods used in the present study: the variational method
for the ground state and the linear spin-wave theory for the
spin excitations. In Sec. IV, the results for the 1D, 2D, and
3D cases are shown. For the 1D case, we present the results
of the analytical calculations for the HS states with spatially
uniform spin twist in the isotropic case and the results of the
numerical calculations for the effect of the anisotropy. For the
2D and 3D cases, we show the ground-state phase diagrams
while changing the anisotropy in the symmetric interaction
and the strength of the antisymmetric interaction. Then, we
discuss the details of the stabilized spin states, the spin-wave
dispersion, and the dynamical spin structure factor, which is
relevant to the inelastic neutron scattering experiments, for
different types of VCs and HLs. Section V is devoted to the
summary and discussion.

II. MODEL

A. Effective spin model

We begin with a generic spin model for chiral magnets
whose Hamiltonian is defined in momentum space as

H =
∑

q∈1BZ

Hq, (1)

with

Hq = −
∑
α,β

Jαβ
q Sα

q Sβ
−q − iDq · (Sq × S−q), (2)

where α, β = x, y, z; Sq = (Sx
q, Sy

q, Sz
q) is defined by the

Fourier transform of the spin in real space, Sr, as

Sq = L− d
2

∑
r

Sre−iq·r. (3)

Here we define this model on a d-dimensional hypercubic
lattice with linear dimension L under the periodic boundary
condition; the lattice site r is denoted as

r =

⎧⎪⎨
⎪⎩

x (≡ �), (d = 1)

(x, y), (d = 2)

(x, y, z), (d = 3)

, (4)

with integers x, y, and z in [0, L). The sum
∑

q∈1BZ in Eq. (1)
runs over all the wave numbers in the first Brillouin zone
(1BZ):

q =

⎧⎪⎨
⎪⎩

qx ≡ q = 2π
L nx, (d = 1)

(qx, qy) = 2π
L (nx, ny), (d = 2)

(qx, qy, qz ) = 2π
L (nx, ny, nz ), (d = 3)

, (5)

with integers nα in [−L/2, L/2), that is, −π � qα < π . The
first term of Hq in Eq. (2) represents the symmetric exchange
interaction (Jαβ

q = Jβα
q ), while the second term represents

the antisymmetric one of the Dzyaloshinskii-Moriya type
[7,59]. For the former, we include only the diagonal elements,
namely, Jαβ

q = Jαα
q δα,β , for simplicity (δα,β is the Kronecker

delta). Then, Hq is expressed as

Hq = −
∑
α,β

Sα
qJ αβ

q Sβ
−q, (6)

with

Jq =

⎡
⎢⎣

Jxx
q iDz

q −iDy
q

−iDz
q Jyy

q iDx
q

iDy
q −iDx

q Jzz
q

⎤
⎥⎦ = J ∗

−q. (7)

B. Infinite-range limit

A particular case of the model in Eq. (1) was studied for
2D VCs and SkXs [57], where Jαα

q and Dq in Eq. (7) are taken
as

Jαα
q =

∑
η

Jαα
Qη

(
δq,Qη

+ δq,−Qη

)
, (8)

Dq =
∑

η

DQη

(
δq,Qη

− δq,−Qη

)
. (9)

This corresponds to the model in the limit of infinite-range
interactions in real space. The summations in Eqs. (8) and
(9) are taken for a particular set of the wave vectors Qη,
which correspond to the nesting vectors of the Fermi sur-
faces when the model is constructed as an effective model for
itinerant electron systems of the Kondo lattice type [45,57].
This infinite-range model was shown to stabilize VCs in two
dimensions, which turn into SkXs in an applied magnetic field
[57]. It was also shown that the models with an additional
infinite-range biquadratic interaction stabilize SkXs and HLs
in two and three dimensions, respectively [58,60,61].
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TABLE I. Theoretical models in the present study: dimension d , target spin states, spin configurations, equations and schematics of the
symmetric and antisymmetric interactions, crystallographic point groups, and corresponding sections for the results.

d Target spin state Spin configuration Jαα
Qη

DQη
Schematic Crystallographic point group Results

1D Proper-screw HS state Figs. 11(a)–11(c) Eq. (15) Eq. (14) Fig. 2(a) Orthorhombic D2 (222) Sec. IV A
Cycloid(I) HS state Eq. (16) Eq. (17) Fig. 2(b) Orthorhombic C2v (mm2)
Cycloid(II) HS state Eq. (18) Eq. (17) Fig. 2(c) Orthorhombic C2v (mm2)

2D Proper-screw(I) VC Fig. 15(a) Eq. (22) Eq. (21) Fig. 3(a) Tetragonal D4 (422) Sec. IV B
Cycloid(I) VC Fig. 15(b) Eq. (23) Eq. (24) Fig. 3(b) Tetragonal C4v (4mm)
Proper-screw(II) VC Fig. 15(c) Eq. (25) Eq. (26) Fig. 3(c) Tetragonal D2d (4̄2m)
Cycloid(II) VC Fig. 15(d) Eq. (27) Eq. (28) Fig. 3(d) Tetragonal D2d (4̄m2)

3D Proper-screw HL Fig. 19(a) Eq. (30) Eq. (29) Fig. 4(a) Cubic T (23) Sec. IV C
Cycloid(I) HL Fig. 19(b) Eq. (31) Eq. (32) Fig. 4(b) Trigonal C3 (3)
Cycloid(II) HL Fig. 19(c) Eq. (33) Eq. (34) Fig. 4(c) Trigonal C3 (3)

C. Helical wave number and anisotropy

In the present study, starting from the infinite-range model,
we consider its extension by introducing exponential decay
in the long-range interactions. Before going into the exten-
sion, we define the characteristic wave numbers Qη and the
anisotropy in the magnetic interaction in this section. With
regard to Qη, for simplicity, we take them being parallel to the
principal axes of the hypercube and |Qη| = Q:

Qη =

⎧⎪⎨
⎪⎩

Qx̂, (d = 1)

Qx̂, Qŷ, (d = 2)

Qx̂, Qŷ, Qẑ, (d = 3)

, (10)

where x̂, ŷ, and ẑ are the unit vectors along the x, y, and z axes,
respectively. Meanwhile, regarding the anisotropy, we intro-
duce it in the symmetric part of the interaction Jαα

q , following
Ref. [57]. In the following, we describe the specific forms of
the anisotropic interactions in each spatial dimension.

1. One-dimensional case

In the 1D case (d = 1), we choose

Jαα
q = Jαα

Q (δq,Q + δq,−Q), (11)

Dq = DQ(δq,Q − δq,−Q), (12)

with

Q = 2π

�
, (13)

where � gives the period of the HS states. We consider three
sets of the coupling constants with different spin anisotropy
in Jαα

Q and the direction of DQ as described below. They are
summarized in Table I, including the crystallographic point
groups of the resultant models.

The first is the one which stabilizes a proper-screw HS
state shown in Fig. 1(a). In this case, to align the helical plane
perpendicular to the propagating direction, we set DQ as

DQ = Dx̂. (14)

In addition, we introduce an anisotropy 	 in Jαα
Q as

Jxx
Q = Jzz

Q = J (1 − 	), Jyy
Q = J (1 + 2	). (15)

As we will discuss later, this anisotropy modulates the spin
helix from circular to elliptical and makes the twist angle
between neighboring spins nonuniform, which opens a gap
in the magnetic excitation spectrum. The pictorial representa-
tions of Jαα

q and Dq are shown in Fig. 2(a).
The second one is for realizing a cycloidal HS state, whose

spin structure is obtained by π/2 spin rotation of the proper-
screw one about the z axis, as shown in Fig. 1(b). To stabilize
this, we rotate the spin axis in the coupling constants as

Jyy
Q = Jzz

Q = J (1 − 	), Jxx
Q = J (1 + 2	), (16)

DQ = Dŷ, (17)

as shown in Fig. 2(b). We call the spin state realized by this
model the cycloid(I) HS state.

The last one is for a different type of the cycloidal HS
state, which we call cycloid(II), obtained by additional π/2
spin rotation about the y axis. In this case, we set

Jxx
Q = Jyy

Q = J (1 − 	), Jzz
Q = J (1 + 2	), (18)

with the same DQ as Eq. (17). This case is shown in Fig. 2(c).

2. Two-dimensional case

In the 2D case (d = 2), we choose

Jαα
q =

∑
η

Jαα
Qη

(
δq,Qη

+ δq,−Qη

)
, (19)

FIG. 2. Pictorial representations of the coupling constants for
the symmetric and antisymmetric interactions in the 1D models
for (a) proper-screw [Eqs. (14) and (15)], (b) cycloid(I) [Eqs. (16)
and (17)], and (c) cycloid(II) [Eqs. (17) and (18)] HS states. The
blue ellipsoids represent Jαα

±Q: the lengths along the principal axes
[100], [010], and [001] denote the amplitudes of Jxx

±Q, Jyy
±Q, and Jzz

±Q,
respectively. The red arrows represent D±Q. The axes for the spin
space are shown in (a).

224405-3



KATO, HAYAMI, AND MOTOME PHYSICAL REVIEW B 104, 224405 (2021)

FIG. 3. Similar pictorial representations to Fig. 2 for the 2D
models realizing the VCs of (a) proper-screw(I) [Eqs. (21) and (22)],
(b) cycloid(I) [Eqs. (23) and (24)], (c) proper-screw(II) [Eqs. (25) and
(26)], and (d) cycloid(II) [Eqs. (27) and (28)] types. The notations are
common to those in Fig. 2.

Dq =
∑

η

DQη

(
δq,Qη

− δq,−Qη

)
, (20)

with Q1 = Qx̂ and Q2 = Qŷ [see Eq. (10)]. We consider four
sets of Jαα

Qη
and DQη

. The first is the one which can stabilize a
superposition of two proper-screw spirals. In this case, to align
each helical plane perpendicular to the corresponding helical
direction, we set DQη

as

DQη
=

{
Dx̂, (η = 1)

Dŷ, (η = 2)
. (21)

For the symmetric part, we introduce the anisotropy compati-
ble with C4 rotational or S4 rotoreflection symmetry about the
z axis, that is,(

Jxx
Qη

, Jyy
Qη

, Jzz
Qη

)
=

{
[J (1 − 	), J (1 + 2	), J (1 − 	)], (η = 1)

[J (1 + 2	), J (1 − 	), J (1 − 	)], (η = 2)
. (22)

The pictorial representations of Jαα
q and Dq are shown in

Fig. 3(a). We call the 2Q spin state stabilized in this setting
the proper-screw(I) VC.

The second one is for realizing a superposition of two
cycloidal spirals. Similarly to the 1D case, we apply −π/2
spin rotation to the first case about the z axis and set(

Jxx
Qη

, Jyy
Qη

, Jzz
Qη

)
=

{
[J (1 + 2	), J (1 − 	), J (1 − 	)], (η = 1)

[J (1 − 	), J (1 + 2	), J (1 − 	)], (η = 2)
,

(23)

DQη
=

{−Dŷ, (η = 1)

Dx̂, (η = 2)
. (24)

See Fig. 3(b). We call the 2Q spin state stabilized in this
setting the cycloid(I) VC.

The third one is for realizing a superposition of two proper-
screw spirals which are different from the first case. This is
obtained by additional π spin rotation about the [11̄0] axis,
and hence, we set(

Jxx
Qη

, Jyy
Qη

, Jzz
Qη

)
=

{
[J (1 − 	), J (1 + 2	), J (1 − 	)], (η = 1)

[J (1 + 2	), J (1 − 	), J (1 − 	)], (η = 2)
, (25)

DQη
=

{
Dx̂, (η = 1)

−Dŷ, (η = 2)
, (26)

as shown in Fig. 3(c). We call the 2Q spin state stabilized in
this setting the proper-screw(II) VC.

The last one is for realizing a different superposition of
two cycloidal spirals from the second case. This is obtained
by additional π/2 spin rotation to the third case about the z
axis, and hence, we set(

Jxx
Qη

, Jyy
Qη

, Jzz
Qη

)
=

{
[J (1 + 2	), J (1 − 	), J (1 − 	)], (η = 1)

[J (1 − 	), J (1 + 2	), J (1 − 	)], (η = 2)
,

(27)

DQη
=

{
Dŷ, (η = 1)

Dx̂, (η = 2)
, (28)

as shown in Fig. 3(d). We call the 2Q spin state stabilized in
this setting the cycloid(II) VC.

The four sets of the coupling constants are summarized
in Table I, including the crystallographic point groups of the
resultant models. See also Fig. 15 for the spin configurations
of each 2Q spin state. We note that the proper-screw(I) VC is
categorized into the so-called Bloch-type VCs, while the cy-
cloid(I) VC is the so-called Néel-type. In general, the Bloch-
and Néel-type multiple-Q spin states are realized under the
Rashba- and Dresselhaus-type spin-orbit couplings, respec-
tively [57,62]. Note that multiple-Q states in the presence of
both types of the spin-orbit coupling were studied for a model
which explicitly includes itinerant electrons [63].

3. Three-dimensional case

In the 3D case (d = 3), we choose the same forms of
Jαα

q and Dq as Eqs. (19) and (20), but with Q1 = Qx̂, Q2 =
Qŷ, and Q3 = Qẑ [see Eq. (10)]. We consider three sets of
Jαα

Qη
and DQη

as described below; see Table I. See also Fig. 19
for the spin configurations stabilized in each model.

The first is the one which can stabilize a superposition of
three proper-screw spirals. In this case, to align the helical
plane perpendicular to the corresponding helical direction, we
set DQη

as

DQη
=

⎧⎪⎨
⎪⎩

Dx̂, (η = 1)

Dŷ, (η = 2)

Dẑ, (η = 3)

. (29)
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FIG. 4. Similar pictorial representations to Fig. 2 for the 3D
models realizing the HLs of (a) proper-screw [Eqs. (29) and (30)],
(b) cycloid(I) [Eqs. (31) and (32)], and (c) cycloid(II) [Eqs. (33) and
(34)] types. The notations are common to those in Fig. 2.

For the symmetric part, we introduce the anisotropy compati-
ble with C3 rotational symmetry about the [111] axis, that is,(

Jxx
Qη

, Jyy
Qη

, Jzz
Qη

)

=

⎧⎪⎨
⎪⎩

[J (1 − 	), J (1 + 2	), J (1 − 	)], (η = 1)

[J (1 − 	), J (1 − 	), J (1 + 2	)], (η = 2)

[J (1 + 2	), J (1 − 	), J (1 − 	)], (η = 3)

.

(30)

The pictorial representations of Jαα
q and Dq are shown in

Fig. 4(a). We call the 3Q spin state realized in this setting the
proper-screw HL.

The second one is for realizing a superposition of three
cycloidal spirals. This is obtained by −2π/3 spin rotation of
the proper-screw HL about the [111] axis, and hence, we set(

Jxx
Qη

, Jyy
Qη

, Jzz
Qη

)

=

⎧⎪⎨
⎪⎩

[J (1 + 2	), J (1 − 	), J (1 − 	)], (η = 1)

[J (1 − 	), J (1 + 2	), J (1 − 	)], (η = 2)

[J (1 − 	), J (1 − 	), J (1 + 2	)], (η = 3)

,

(31)

DQη
=

⎧⎪⎨
⎪⎩

Dẑ, (η = 1)

Dx̂, (η = 2)

Dŷ, (η = 3)

. (32)

See Fig. 4(b). We call the 3Q spin state stabilized in this
setting the cycloid(I) HL.

The last one is for realizing a different superposition of
three cycloidal spirals. This is obtained by additional −2π/3
spin rotation about the [111] axis, and hence, we set(

Jxx
Qη

, Jyy
Qη

, Jzz
Qη

)

=

⎧⎪⎨
⎪⎩

[J (1 − 	), J (1 − 	), J (1 + 2	)], (η = 1)

[J (1 + 2	), J (1 − 	), J (1 − 	)], (η = 2)

[J (1 − 	), J (1 + 2	), J (1 − 	)], (η = 3)

,

(33)

DQη
=

⎧⎪⎨
⎪⎩

Dŷ, (η = 1)

Dẑ, (η = 2)

Dx̂, (η = 3)
, (34)

as shown in Fig. 4(c). We call the 3Q spin state stabilized in
this setting the cycloid(II) HL.

D. Finite-range model

As introduced in Sec. II B, the model in Eq. (1) has been
studied in the limit of the infinite-range interactions in Eqs. (8)
and (9). In the following, we extend the model by introducing
spatial decay in the interactions. After explaining the exten-
sion in detail for the 1D case in Sec. II D 1, we describe
the 2D and 3D cases in Secs. II D 2 and II D 3, respectively.
Throughout this section, we assume the set of the coupling
constants for the proper-screw states firstly introduced for
each dimensional case in Sec. II C; the extensions to the other
sets are straightforward by using the spin rotations introduced
above.

1. One-dimensional case

Let us begin with the real-space representation of the 1D
infinite-range model with Eqs. (11) and (12). By the Fourier
transformation, the Hamiltonian reads

H = − 2

L

∑
�,�1

∑
α,β

J αβ
Q Sα

� Sβ

�−�1
e−iQ�1 , (35)

where the sum of �1 runs over all the integers in the range
[−L/2, L/2). Here and hereafter, we assume that the helix has
a commensurate period to the lattice for simplicity; namely,
L/� is an integer. To introduce spatial decay in the infinite-
range interactions, we multiply an exponential dumping factor
as

H → H̃ = − 2

L

∑
�,�1

∑
α,β

J αβ
Q Sα

� Sβ

�−�1
e−iQ�1 e−γ |�1|. (36)

For sufficiently large L, the modified Hamiltonian H̃ can be
expressed as

H̃ = − 2

L

∑
q∈1BZ

∑
α,β

J αβ
Q Sα

q Sβ
−q fγ ,Q(q), (37)

where

fγ ,Q(q) = sinh γ

cosh γ − cos(Q − q)
. (38)

This function fγ ,Q(q) for γ � 1 is well approximated near
q = Q by the Lorentzian function as

fγ ,Q(q) ≈ 2γ

γ 2 + (Q − q)2
. (39)

By symmetrizing the terms of ±q, we end up with the Hamil-
tonian in the form

H̃ = −
∑

q∈1BZ

∑
α,β

J̃ αβ
q Sα

q Sβ
−q, (40)

where

J̃ αβ
q =

⎧⎨
⎩

J αα
Q

L [ fγ ,Q(q) + fγ ,Q(−q)], (α = β )

J αβ
Q

L [ fγ ,Q(q) − fγ ,Q(−q)], (α �= β )
. (41)

The model in Eq. (40) stabilizes a spin helix whose pe-
riod deviates from � = 2π/Q because the peaks of |J̃ αβ

q |
are shifted due to the factors of fγ ,Q(±q). To facilitate the
following analyses, we adjust the form of the interactions so
that |J̃ αβ

q | have peaks exactly at q = ±Q and the period of
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q
Q−Q

jγ,Q∗
J ,Q(q)

dγ,Q∗
D,Q(q)

00.0

FIG. 5. q dependences of jγ ,Q∗
J ,Q(q) [Eq. (44)] and dγ ,Q∗

D,Q(q)
[Eq. (45)] in the 1D finite-range model. We take � = 16 and γ =
0.2. Q∗

J and Q∗
D are set to Q∗

J 	 0.396 and Q∗
D 	 0.390 so that Jαα

q

and |Dq| take their maxima at q = ±Q = ±π/8.

the stable spin helix becomes � = 2π/Q. This is achieved by
replacing fγ ,Q(±q) by fγ ,Q∗ (±q), where Q∗ is determined so
that the derivative of the corresponding coupling constant with
respect to q becomes zero at q = ±Q. In addition, we rescale
all the elements of J̃ αβ

q individually so that they take the
same values with the infinite-range model at q = ±Q, namely,
J̃ αβ

Q = J αβ
Q . Then, finally we obtain the Hamiltonian with the

finite-range interactions in the same form of Eqs. (1) and (2)
with

Jαα
q = Jαα

Q jγ ,Q∗
J ,Q(q), (42)

Dq = DQdγ ,Q∗
D,Q(q), (43)

where Jαα
Q and DQ are given in Eqs. (15) and (14), respec-

tively, for the proper-screw HS case; jγ ,Q∗
J ,Q and dγ ,Q∗

J ,Q are
defined as

jγ ,Q∗
J ,Q(q) = fγ ,Q∗

J
(q) + fγ ,Q∗

J
(−q)

fγ ,Q∗
J
(Q) + fγ ,Q∗

J
(−Q)

, (44)

dγ ,Q∗
D,Q(q) = fγ ,Q∗

D
(q) − fγ ,Q∗

D
(−q)

fγ ,Q∗
D
(Q) − fγ ,Q∗

D
(−Q)

. (45)

Here Q∗
J and Q∗

D are determined by solving

∂ jγ ,Q∗
J ,Q(q)

∂q

∣∣∣∣
q=Q

= 0, (46)

∂dγ ,Q∗
D,Q(q)

∂q

∣∣∣∣
q=Q

= 0, (47)

respectively. Figure 5 exemplifies jγ ,Q∗
J ,Q(q) and dγ ,Q∗

D,Q(q)
for � = 16 and γ = 0.2. The other cases for the cycloidal HS
states are obtained by the spin rotations in Sec. II C 1.

2. Two-dimensional case

Following the 1D case, we can construct the finite-range
model in two dimensions. The Hamiltonian also has the same
form of Eqs. (1) and (2). Using the functions jγ ,Q∗

J ,Q(q) and
dγ ,Q∗

D,Q(q) in Eqs. (44) and (45), respectively, the coupling
constants for the symmetric interactions are given as

Jαα
q = Jαα

Q1
jγ ,Q,Q∗

J
(qx ) jγ ,0,0(qy)

+ Jαα
Q2

jγ ,0,0(qx ) jγ ,Q,Q∗
J
(qy), (48)

FIG. 6. q = (qx, qy ) dependences of (a) Jxx
q , (b) Jyy

q , (c) Jzz
q , and

(d) |Dq| in the 2D finite-range model. The color bar is common to
(a)–(d), while |Dq| in (d) is plotted by multiplying a factor of 10 for
better visibility. (e) Profile of (a)–(d) along the path (π, 0)–(0,0)–
(0, π ) [white dotted lines in (a)–(d)]. We take � = 16, γ = 0.2, J =
1, D = 0.2, and 	 = 0.3. The values for Q∗

J and Q∗
D are the same as

those in Fig. 5.

with Jαα
Qη

in Eq. (22), and those for the antisymmetric interac-
tions are given as

Dq = Dq
q
|q| , (49)

where

Dq = D[|dγ ,Q,Q∗
D
(qx ) jγ ,0,0(qy)|

+ | jγ ,0,0(qx )dγ ,Q,Q∗
D
(qy)|], (50)

for the case of the proper-screw(I) VC. Figure 6 exemplifies
Jαα

q and Dq for � = 16, γ = 0.2, J = 1, D = 0.2, and 	 =
0.3. The other cases are obtained by the proper spin rotations
in Sec. II C 2.

3. Three-dimensional case

In a similar manner, we can obtain the forms of the finite-
range interactions for the 3D case as

Jαα
q = Jαα

Q1
jγ ,Q,Q∗

J
(qx ) jγ ,0,0(qy) jγ ,0,0(qz )

+ Jαα
Q2

jγ ,0,0(qx ) jγ ,Q,Q∗
J
(qy) jγ ,0,0(qz )

+ Jαα
Q3

jγ ,0,0(qx ) jγ ,0,0(qy) jγ ,Q,Q∗
J
(qz ), (51)

Dq = D[|dγ ,Q,Q∗
D
(qx ) jγ ,0,0(qy) jγ ,0,0(qz )|

+ | jγ ,0,0(qx )dγ ,Q,Q∗
D
(qy) jγ ,0,0(qz )|

+ | jγ ,0,0(qx ) jγ ,0,0(qy)dγ ,Q,Q∗
D
(qz )|], (52)

where we use Eqs. (30) and (49) for Jαα
Qη

and Dq, respectively,
in the case of the proper-screw HL. Figure 7 exemplifies Jαα

q
and Dq for � = 12, γ = 0.2, J = 1, D = 0.3, and 	 = 0.3.
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FIG. 7. q = (qx, qy, qz ) dependences of [(a)–(c)] Jxx
q , [(d)–(f)]

Jyy
q , [(g)–(i)] Jzz

q , and [(j)–(l)] |Dq| in the 3D finite-range model.
Panels (a), (d), (g), and (j); (b), (e), (h), and (k); and (c), (f), (i), and (l)
show the qz = 0, qx = 0, and qy = 0 planes, respectively. The color
bar is common to (a)–(l), while |Dq| in (j), (k), and (l) are plotted by
multiplying a factor of 5 for better visibility. (m) Profile along the
white dotted lines in (a)–(l). We take � = 12, γ = 0.2, J = 1, D =
0.3, and 	 = 0.3. Q∗

J and Q∗
D are set to Q∗

J = 0.525 and Q∗
D = 0.522

so that Jαα
q and |Dq| take their maxima at q = ±Q = ±π/6.

The other cases are obtained by the proper spin rotations in
Sec. II C 3.

III. METHODS

A. Variational method

In this study, we investigate the spin excitation spectrum
of the stable ground state for each model introduced in the
previous section. For this purpose, we first determine the
ground state by using variational calculations in the classi-
cal limit where Sr is regarded as a 3D vector with fixed
length of |Sr| = 1. In the case of the isotropic symmetric
interactions (	 = 0), we perform the variational calculation
analytically by assuming a 1Q HS state with a uniform twist
in all dimensions, as we do not find any other lower-energy
state in the numerical variational calculation described be-
low. Meanwhile, in the presence of the spin anisotropy with
	 �= 0, we employ the numerical variational calculation, as
the 1Q HS state is modulated and other multiple-Q spin
states may have lower energy. In the numerical calculation,
starting from several different initial spin configurations (see

below), we determine the lowest-energy state by optimiza-
tion of the individual spin orientation taking into account the
internal magnetic field from the other spins and the single-
ion anisotropy (Sα

r )2 appearing in the real-space form of the
Hamiltonian. As the initial spin configurations, we take into
account a 1Q HS state with a uniform twist for the 1D case,
the 1Q state and a 2Q VC [57] for the 2D case, and the 1Q
and 2Q states and a 3Q HL [58] for the 3D case; in each
state, we set an appropriate helical plane depending on the
type of Dq, namely, the proper-screw type (Dq ‖ q) or cycloid
type (Dq ⊥ q). We first perform the numerical calculations
for the infinite-range model with γ = 0, and then, study the
finite-range model with γ > 0 starting from the solution for
the infinite-range model as the initial state.

B. Linear spin-wave theory

For the stable spin configuration obtained by the variational
method, we study the spin excitation by using the linear spin-
wave theory. For the 1D 1Q HS states with uniform twists,
we obtain the analytic form of the excitation spectra regard-
less of the range of interactions (Sec. IV A 1). Meanwhile,
for the anisotropic cases (	 > 0) as well as the 2D and 3D
cases, we perform the spin-wave calculations numerically as
follows. For each stable spin configuration, we introduce new
local spin axes at each site so that all the spins point to
the z direction. We denote the spins in the new spin frame
as S̃r. Then, the stable spin configuration is regarded as a
ferromagnetic state, namely, S̃r = ẑ for all r. We apply the
Holstein-Primakoff transformation to the Hamiltonian in the
new spin frame, leaving the lowest order of bosonic operators:

⎡
⎢⎣

S̃x
r

S̃y
r

S̃z
r

⎤
⎥⎦ →

⎡
⎢⎢⎢⎣

√
S
2 (ar + a†

r )√
S
2

1
i (ar − a†

r )

S − a†
rar

⎤
⎥⎥⎥⎦, (53)

where ar and a†
r represent the annihilation and creation oper-

ators of magnon at site r, respectively; S is the spin quantum
number of Sr.

We denote the spatial coordinate r as r = R + r0, where
R and r0 are the position vectors of each magnetic unit
cell and the sublattice site within the unit cell, respectively:
{R|Rμ = �Nμ, Nμ ∈ [0, L/�)} and {r0|rμ

0 ∈ [0,�)}, where
Nμ and rμ

0 are integers. The Brillouin zone is folded from
{q| − π � qμ < π} to {K| − π/� � Kμ < π/�} under the
magnetic order with period of �. Using the Fourier transfor-
mation

aK,r0 =
(

�

L

)d ∑
R

aR+r0 e+iK·R, (54)

we obtain the linear spin-wave Hamiltonian expressed as

HSW = S

2�d

∑
K

′
α†

KAKαK, (55)

where

α†
K = [aK+, a−K+, aK−, a−K−], (56)
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with

aK+ = [a†
K,(0,··· ), . . . , a†

K,r, . . . , a†
K,(�−1,··· )], (57)

aK− = [aK,(0,··· ), . . . , aK,r, . . . , aK,(�−1,··· )]. (58)

In Eq. (55), AK is a 4�d × 4�d matrix for generic K, while
it becomes a 2�d × 2�d matrix for K = 0 or on the zone
boundary; each term in the sum of K includes all the contribu-
tions from a±K,r0

and a†
±K,r0

, and the sum
∑′

K runs over a half
of the folded Brillouin zone (e.g., Kx � 0). By the Bogoliubov
transformation [64], the Hamiltonian is diagonalized as

HSW =
∑

K

′ ∑
p

εKpb†
KpbKp + const, (59)

where εKp > 0 represents the pth spin-wave dispersion (p =
1, . . . , dim[AK]/2), and bKp and b†

Kp represent the anni-
hilation and creation operators of a bosonic quasiparticle,
respectively, which are given by linear combinations of a±K,r0

and a†
±K,r0

.
By using the linear spin-wave theory, we evaluate the dy-

namical spin structure factor given by

Sμν (q, ω) = ε

π

∑
K

′ ∑
p

〈vac|Sμ
−q|Kp〉〈Kp|Sν

q|vac〉
(ω − εKp)2 + ε2

, (60)

where |vac〉 is the vacuum of the quasiparticles b, |Kp〉 =
b†

Kp|vac〉, and ε corresponds to the relaxation rate. In inelastic
neutron scattering experiments, the transverse components to
the incident wave number q are observed [65]. Thus, we study
the transverse component of the dynamical spin structure fac-
tor defined as

S⊥(q, ω) = Sμ1μ1 (q, ω) + Sμ2μ2 (q, ω), (61)

where μ1 and μ2 are the two orthogonal directions perpen-
dicular to q, e.g., μ1 = y and μ2 = z for q ‖ x̂. Furthermore,
using a polarized neutron beam, two transverse components
can be decomposed by measuring the spin-flip and non-spin-
flip cross sections.

IV. RESULTS

A. One-dimensional magnetic helices

First, we present the results for the 1D HS states. In
Sec. IV A 1, we discuss the case of the isotropic symmetric
interaction, where the stable state has a uniform twist. In
this case, we can derive the analytic forms of the spin-wave
dispersion and the dynamical spin structure factor. We discuss
their dependences on the interaction range γ , including the
limit of D → 0. In Sec. IV A 2, we numerically show that
the anisotropy 	 makes the twist of the HS state nonuni-
form, accordingly, modulates the excitation spectra. Finally,
in Sec. IV A 3, we study the lowest-energy excitation mode.

1. Uniform helical spin state in the isotropic case

We begin with a HS state in one dimension which is stable
when the symmetric interactions are isotropic, namely, 	 = 0
in Eq. (15). We here consider a proper-screw spin state given
by

S� = [0, sin(Q�), cos(Q�)]t , (62)

and derive the analytic forms of the dispersion of spin excita-
tion and the dynamical spin structure factor.

The Hamiltonian in Eq. (1) reads

Hq = −[
JqSq · S−q + iDq

(
Sy

qSz
−q − Sz

qSy
−q

)]
= − 1

L

∑
�,�′

[
JqS� · S�′ + iDq

(
Sy

�Sz
�′ − Sz

�Sy
�′

)]
e−iq(�−�′ ),

(63)

with Jq ≡ Jαα
q and Dq in Eqs. (42) and (43), respectively. By

substituting Eq. (62) with the rotation of the local spin axes,
namely,

S� =

⎡
⎢⎣

0 1 0

− cos(Q�) 0 sin(Q�)

sin(Q�) 0 cos(Q�)

⎤
⎥⎦S̃�, (64)

and applying the Holstein-Primakoff transformation in
Eq. (53), we obtain the linear spin-wave Hamiltonian as

HSW = S
∑

q∈1BZ

{
Jq

2
(a−q− a†

q)(aq− a†
−q )+2(J + D)a†

qaq

− Jq + Dq

4
[a−(q−Q) + a†

q−Q][aq−Q + a†
−(q−Q)]

− Jq − Dq

4
[a−(q+Q) + a†

q+Q][aq+Q + a†
−(q+Q)]

}

=
∑

q

′
[a†

q a−q]Aq

[
aq

a†
−q

]
+ const, (65)

where

a†
q = 1√

L

∑
�

a†
�e−iq�, (66)

Aq = S

[
Jq

[−1 1

1 −1

]
+ 2(J + D)

[
1 0

0 1

]

− Jq+Q + Dq+Q + Jq−Q − Dq−Q

2

[
1 1

1 1

]]
, (67)

and the sum
∑′

q in Eq. (65) runs over a half of the first Bril-
louin zone (e.g., q ∈ [0, π ]).1 Note that no term linear to the
bosonic operators appears as long as the HS state in Eq. (62)
is energetically stable. Using the Bogoliubov transformation,
the Hamiltonian in Eq. (65) is diagonalized as

UqAqUq =
[
εq 0

0 εq

]
, (68)

with

Uq =
[

cosh ξq sinh ξq

sinh ξq cosh ξq

]
, (69)

1Strictly speaking, special treatment is required when q = 0 or q =
π , but in reality, the same result is obtained by considering the limit
of q → +0 or q → π − 0.
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D/J

εq/(JS)

q = 0

other

q = ±Q
q = ±2Q

0.0

FIG. 8. D dependence of the spin excitation energy εq of the
infinite-range model (γ = 0) with the isotropic symmetric interac-
tions (	 = 0) in one dimension for q = 0 (blue), q = ±Q (orange),
q = ±2Q (green), and the other generic q (red) [Eq. (74)].

where

ξq = 1

4
[lnBq − lnCq], (70)

Bq = J + D − Jq, (71)

Cq = J + D − Jq+Q + Dq+Q + Jq−Q− Dq−Q

2
. (72)

The excitation spectrum is obtained as

εq = 2S
√

BqCq. (73)

Let us first consider the infinite-range limit (γ = 0)
[Eqs. (11) and (12)]. In this limit, εq becomes q independent as
εq = 2S(J + D), except for the δ-functional changes at q = 0,
±Q, and ±2Q, namely

εq =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, (q = 0)

2S
√

D(J + D), (q = ±Q)

S
√

(J + D)(J + 3D), (q = ±2Q)

2S(J + D), (other q)

. (74)

The results are plotted as functions of D/J in Fig. 8. We
note that the flat dispersion with excitation energy 2S(J + D)
originates from the term 2S(J + D)

∑
� a†

�a�, indicating that
the corresponding excitations are the local ones with reduction
of the S̃z

� component at every site [see Eq. (53)]. This is a
pathological feature of the infinite-range model.

Next, let us consider the finite-range model while changing
the interaction range γ [Eqs. (42) and (43)]. Figures 9(a) and
9(b) show γ dependences of Jq = Jαα

q and Dq = |Dq|, respec-
tively, for � = 16. While increasing γ , the distributions of Jq

and Dq in q space get wider and qualitatively approach those
of the model with the nearest-neighbor interactions only: Jq =
J cos q and Dq = D sin q. Figure 9(c) shows the excitation
spectrum εq at D/J = 0.2. We find that the spikes at q = 0,
±Q, and ±2Q for γ = 0 are broadened by increasing γ ; εq

is always zero at q = 0, accompanied by a linear dispersion
around the gapless point for nonzero γ .

Meanwhile, as indicated in Fig. 8, the spikes at q = ±Q
for γ = 0 also come down to zero energy when D → 0.

FIG. 9. Interaction range γ dependences of (a) the symmetric in-
teraction Jq = Jαα

q , (b) the antisymmetric interaction Dq, and [(c) and
(d)] the spin-wave dispersion εq for the isotropic case (	 = 0) with
� = 16 in one dimension. The antisymmetric interaction is set to
(c) D/J = 0.2 and (d) D/J = 0. The black dots and lines in (c) and
(d) represent the results in the infinite-range limit of γ → 0; see also
Fig. 8.

Figure 9(d) shows εq in this limit. In this case, the broadening
by nonzero γ gives rise to gapless linear excitations at not
only q = 0 but also q = ±Q. These three gapless modes are
commonly seen in the HS states appearing in spin models
without the antisymmetric interactions, such as a J1-J2 model
in one dimension [66,67].

Last, we derive the analytic form of the dynamical spin
structure factor Sμμ(q, ω) defined by Eq. (60). Within the lin-
ear spin-wave theory, by using Eqs. (53) and (64), we replace
the spin operators Sμ

q by linear combinations of the bosonic
operators as

⎡
⎢⎣

Sx
q

Sy
q

Sz
q

⎤
⎥⎦ →

√
S

2

⎡
⎢⎣

1
i (a−q − a†

q)

− 1
2 (a−(q−Q) + a†

q−Q + a−(q+Q) + a†
q+Q)

1
2i (a−(q−Q) + a†

q−Q − a−(q+Q) − a†
q+Q)

⎤
⎥⎦.

(75)

Then, using the Bogoliubov transformation [Eqs. (68)–(72)],
we obtain the diagonal components of the dynamical spin
structure factor as

Sxx(q, ω) = Sε

2π

[
e−2ξq

(ω − εq)2 + ε2

]
, (76)
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FIG. 10. Anisotropy dependence of the dynamical spin structure factor Sμμ(q, ω)/S for the proper-screw HS state in one dimension. The
anisotropy 	 is set to [(a)–(c)] 	 = 0 (the isotropic case), [(d)–(f)] 	 = 0.1, [(g)–(i)] 	 = 0.2, and [(j)–(l)] 	 = 0.4. Panels (a), (d), (g), and
(j); (b), (e), (h), and (k); and (c), (f), (i), and (l) show the μ = x, y, and z components, respectively. The color bar is common to all plots whereas
the data for 	 = 0.4 in (j)–(l) are plotted by multiplying a factor of 5 for better visibility. The parameters are taken as � = 16, D/J = 0.2,
γ = 0.3, and ε = 0.1.

Syy(q, ω) = Szz(q, ω)

= Sε

8π

[
e2ξq+Q

(ω − εq+Q)2 + ε2
+ e2ξq−Q

(ω − εq−Q)2 + ε2

]
,

(77)

where ξq is given by Eq. (70). Noting

e−2ξq =
√

2(J + D) − Jq+Q − Dq+Q − Jq−Q + Dq−Q

2(J + D − Jq)

q→0−−→ |q|, (78)

we can show the asymptotic behaviors:

Sxx(q, ω)
q→0−−→ |q|, (79)

Syy(q, ω) = Szz(q, ω)
q→±Q−−−→ |q ∓ Q|−1. (80)

Figures 10(a), 10(b), and 10(c) show Sxx(q, ω), Syy(q, ω),
and Szz(q, ω), respectively, for the model with � = 16,
D/J = 0.2, and γ = 0.3; we take ε = 0.1 in Eqs. (76)

and (77). Note that Sxx(q, ω) vanishes as q → 0, while
Syy(q, ω) = Szz(q, ω) diverge as q → ±Q, as shown in
Eqs. (79) and (80). In the inelastic neutron scattering exper-
iments, only the transverse components to the wave number
q = qx̂, namely, Syy(q, ω) and Szz(q, ω), can be observed,
as mentioned below Eq. (60). This means that for the
proper-screw HS state the divergent behaviors at q → ±Q
in Syy(q, ω) and Szz(q, ω) are observable, but the q-linear
mode around q = 0 with increasing intensity for larger q in
Sxx(q, ω) cannot be observed. Note that when we consider a
cycloidal HS state, in which the spins are rotated by π/2 about
the z axis from the proper-screw one (Fig. 1), Sxx(q, ω) and
Syy(q, ω) are interchanged, and hence, the q-linear mode with
increasing intensity for larger q is observed in the Syy(q, ω)
component. Thus, the neutron scattering spectra are sensitive
to the direction of the helical plane. Similar behaviors were
discussed for short-range models [68,69].

2. Effect of magnetic anisotropy

When we introduce the anisotropy 	 in the symmetric in-
teractions as Eq. (15), the proper-screw HS state is modulated
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FIG. 11. Effect of the anisotropy 	 in the symmetric interactions
[Eq. (15)] for the 1D finite-range model with � = 16, D/J = 0.2,
and γ = 0.3. [(a)–(c)] Stable spin configurations for (a) 	 = 0.1,
(b) 	 = 0.2, and (c) 	 = 0.4. The color of arrows indicates the
z component of spin according to the color bar in (c). (d) Inner
product of nearest-neighbor spins, S� · S�+1, representing the spatial
modulation of the spin twist. (e) Spin excitation spectra for different
	. (f) 	 dependences of the spin excitation gap 	gap and the ratio of
the Fourier components of spins, RS = |Sz

Q|/|Sy
Q|.

from Eq. (62). Figures 11(a)–11(c) show our numerical results
for the stable spin configurations obtained by the variational
calculation in Sec. III A. We find that the twist of the helix is
modulated and becomes spatially nonuniform in the presence
of the anisotropy 	, as more clearly shown in Fig. 11(d).
This is because the spins tend to align to the ±ŷ direction
to gain energy for 	 > 0. Indeed, we find that the ratio of the
Fourier components of spins, RS = |Sz

Q|/|Sy
Q|, monotonically

decreases while increasing 	, as shown in Fig. 11(f). We note
that similar HS states with inhomogeneous twist were studied
for a short-range model [70] and observed in CuB2O4 [71]
and TbMnO3 [72].

Figure 11(e) shows how the spin-wave dispersion is
changed by 	. When 	 > 0, the gap opens at K = 0 (K repre-
sents the wave number in the folded Brillouin zone as defined
in Sec. III B) and monotonically increases with increasing 	.
The 	 dependence of 	gap is plotted in Fig. 11(f).

Figure 10 displays the dynamical spin structure factor for
the modulated proper-screw HS states with several values of

Δ = 0.1

(a)

μ
x
y

z ω/(JS)

Sμμ(Q, ω)/S

0.0

Δ = 0.2

(b)

ω/(JS)

Sμμ(Q, ω)/S

0.0

Δ = 0.4

(c)

ω/(JS)

Sμμ(Q, ω)/S

0.0

FIG. 12. The dynamical spin structure factor Sμμ(q, ω)/S at q =
Q for (a) 	 = 0.1, (b) 	 = 0.2, and (c) 	 = 0.4. The model and
parameters are the same as Fig. 11.

	. The spectra for 	 > 0 are gapped reflecting the spin-wave
excitation, although the gap is small and hardly seen in the
spectra for 	 = 0.1 and 0.2. In addition, while increasing
	, the intensities at q = ±Q become weaker and the overall
spectra become diffusive. Looking more closely, we find that a
nonzero 	 makes Syy(q, ω) different from Szz(q, ω); Syy(q, ω)
becomes larger than Szz(q, ω) in the low-energy part around
q = ±Q. This is more clearly seen in the ω dependence at
q = Q shown in Fig. 12. The results are consistent with RS

being smaller than 1 while increasing 	 [Fig. 11(f)]. On the
other hand, unlike Syy(Q, ω) and Szz(Q, ω), Sxx(Q, ω) takes
the largest value at a higher energy around ω/(JS) ≈ 0.7
as shown in Figs. 10 and 12, whose energy scale roughly
corresponds to ε±Q in the infinite-range limit [Eq. (74)]. The
transverse component of the dynamical spin structure factor,
S⊥(q, ω) in Eq. (61), for the proper-screw HS state is obtained
by setting μ1 = y and μ2 = z as discussed in the end of
Sec. IV A 1, and then the results for the other HS states
are obtained by using the corresponding rotations in spin
space:

S = (Sx, Sy, Sz ), proper-screw HS state

→
{

S = (−Sy, Sx, Sz ), cycloid(I) HS state

S = (Sz, Sx, Sy), cycloid(II) HS state
. (81)
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Since Sxx(q, ω) is (not) observed in the proper-screw (cy-
cloidal) HS state, the presence or absence of the higher-energy
intensity around ω ∼ ε±Q at q = Qx̂ in the inelastic neutron
scattering experiments can be an indicator for distinguishing
the proper-screw and cycloidal HS states. In addition, it is
worth noting that the spectra for 	 > 0 exhibit higher har-
monics at q = ±3Q, originating from the modulation of the
spin configurations by the anisotropy. Such satellite peaks
were observed in neutron scattering experiments of CuB2O4

[71] and TbMnO3 [72].

3. Mode analysis

Let us discuss the nature of the lowest-energy excitation
mode. For this purpose, we consider a wave function

|ϕ〉 = |vac〉 + λe−iεext |ex〉, (82)

where λ denotes a mixing between the ground state |vac〉
(vacuum of magnons) and the lowest-energy excited state |ex〉
at K = 0: |ex〉 = |K = 0, p = 1〉 with excitation energy of
εex ≡ εK=0,p=1 [see Eq. (59)]. For simplicity, in this section,
we assume the large S limit, in which 〈vac|S̃z

�|vac〉 = S. Then,
in the linear spin-wave theory, the expectation values of spins
are computed as

〈ϕ|S̃μ

� |ϕ〉 = 〈vac|S̃μ

� |vac〉 + λ
[
e−iεext 〈vac|S̃μ

� |ex〉 + H.c.
]

+ O(λ2)

≈ Sδμz + λ

2
Re

[
e−iεext 〈vac|S̃μ

� |ex〉] =:
〈
Sμ

�

〉
. (83)

Figure 13 shows the results of numerical calculations for
	 = 0.1, 0.2, and 0.4 with λ = 0.1. At t = 0, all the spins for
the excited state ϕ are in the helical plane, namely 〈Sx

�〉 = 0.
While increasing t , each spin shows an elliptically distorted
precession, as schematically shown in the inset of Fig. 13(a).
After the precession by εext = π/2, the yz components of
spins are indistinguishable from those of the ground state, and
only the x component is different from the ground state. These
features are commonly seen regardless of 	.

The amplitude of the precession motion, however, strongly
depends on 	. When 	 is small, the spin components in the
helical plane, 〈Sy

�〉 and 〈Sz
�〉, show large motions, while the

perpendicular component 〈Sx
�〉 changes much smaller, as ex-

emplified in Fig. 13(a); the excitation mode can be regarded as
a phase shift of the helix. With an increase of 	, the changes
of 〈Sy

�〉 and 〈Sz
�〉 (〈Sx

�〉) are suppressed (enhanced), as shown in
Fig. 13(b). For larger 	, the spins are almost pinned in the ±y
directions and the amplitude of the precession becomes small,
as shown in Fig. 13(c); 〈Sy

�〉 and 〈Sz
�〉 show almost no change,

while 〈Sx
�〉 oscillates near the regions where 〈Sy

�〉 changes its
sign.

B. Two-dimensional vortex crystals

Next, we present the results for the 2D VCs. In Sec. IV B 1,
we show the ground-state phase diagram for the 2D model
in the limit of infinite-range interactions computed by the
variational calculations. In the phase diagram, we find that the
anisotropy 	 favors the 2D VCs. In Sec. IV B 2, we examine
the details of the 2D VCs and their stabilization mechanism.
In Sec. IV B 3, we discuss the dependence of the spin-wave

Δ = 0.4
(c)

Δ = 0.2
(b)

Δ = 0.1
(a)

μ

Sμ /S

Sμ /S

Sμ /S

x(×10)

y

z

εext = 0
π/4π/2

0

0

0

FIG. 13. Time evolution of the lowest-energy excitation mode
at K = 0 for (a) 	 = 0.1, (b) 	 = 0.2, and (c) 	 = 0.4. The data
connected by the solid, dotted, and dashed lines indicate the spin
configurations obtained by Eq. (83) with εext = 0, π/4, and π/2,
respectively, for λ = 0.1. The model and parameters are the same
as Fig. 11. Inset of (a) shows a schematic view of a spin precession
motion (black arrow) around the ground state (gray arrow).

dispersion on the interaction range γ . Finally, in Sec. IV B 4,
we discuss the dynamical spin structure factor computed by
the linear spin-wave theory.

1. Phase diagram

Figure 14(a) shows the ground-state phase diagram for the
infinite-range model in two dimensions (Sec. II C 2) obtained
by the variational calculations (Sec. III A) while changing
	 and D/J . We take � = 16. The result is common to all
the settings of the proper-screw and cycloidal VCs listed in
Table I. We find three phases: the 1Q state, the anisotropic 2Q
state where |SQ1 | �= |SQ2 |, and the isotropic 2Q state where
|SQ1 | = |SQ2 |. All the phase transitions among the three states
look continuous. In the isotropic case (	 = 0), the system
always stabilizes the 1Q state for D > 0; it remains stable
against nonzero 	, and the range becomes wider for larger
D, as shown in Fig. 14(a). In the larger 	 region, the system
stabilizes the 2Q states, whose spin configurations are non-
coplanar except for D = 0. In the 2Q states, the constituent
two spin helices are deformed from circular. To evaluate the
ellipticity, we extend the ratio RS defined in Sec. IV A 2 to
the present situation as RS = |Sμ⊥,1

Qmax
|/|Sμ⊥,2

Qmax
|, where Qmax is

Qη for larger |SQη
|, and μ⊥,1 and μ⊥,2 denote the x, y, or z
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Δ

1Q

(|SQ1 |=|SQ2 |)2Q

2Q (|SQ1 |=|SQ2 |)

(a)

(b)

Δ

RS

D/J

D/J

FIG. 14. Variational results for the infinite-range model in two
dimensions. We take � = 16. (a) Phase diagram, including the 1Q
state, the anisotropic 2Q state with |SQ1 | �= |SQ2 |, and the isotropic
2Q state with |SQ1 | = |SQ2 |. (b) Contour plot of the ratio of the
Fourier components of spins, RS ≡ |Sμ⊥,1

Qmax
|/|Sμ⊥,2

Qmax
|, representing the

ellipticity of the constituent spin helix; see the text for the definition.

directions perpendicular to DQmax satisfying |Sμ⊥,2

Qmax
| > |Sμ⊥,1

Qmax
|

(for instance, μ⊥,1 = z, and μ⊥,2 = y when DQmax ‖ x̂ and
|Sy

Qmax
| > |Sz

Qmax
|). Note that RS = 0 in the isotropic 2Q state at

D = 0 and 	 � 1.6 because the spin state becomes coplanar
(Sz

Qη
= 0) composed of a superposition of two sinusoidal spin

density waves with equal weight. The calculated result of
RS is plotted in Fig. 14(b). We find that RS increases while
increasing D and decreasing 	.

2. Vortex crystals

While the phase diagram is common to all the settings
of the proper-screw and cycloidal VCs listed in Table I, the
actual spin configuration in the 2Q state depends on the type
of interactions. We present the variational results in Fig. 15,
focusing on the isotropic 2Q state at D/J = 0.2 and 	 = 0.3
(RS 	 0.31). Figure 15(a) shows the stable spin configuration
when taking Jαα

Qη
and DQη

as Eqs. (22) and (21), respectively.
This is the proper-screw(I) VC. On the other hand, Fig. 15(b)
shows the spin configuration obtained for Eqs. (23) and (24),
which is the cycloid(I) VC. Likewise, Figs. 15(c) and 15(d)
display the spin configurations for Eqs. (25) and (26) and
Eqs. (27) and (28), which are the proper-screw(II) and cy-
cloid(II) VCs, respectively. Note that the VCs of type (I) [(II)]
can be regarded as square lattices with a staggered arrange-

FIG. 15. Isotropic 2Q spin states stabilized in the infinite-range
model in two dimensions with D/J = 0.2, 	 = 0.3, and � = 16:
(a) proper-screw(I), (b) cycloid(I), (c) proper-screw(II), and (d) cy-
cloid(II) VCs. The forms of Jαα

Qη
and DQη

in each case are summarized
in Table I. The configurations of DQη

as well as Qη are shown in
each figure. The color of arrows indicates the z component of spin
according to the color bar in (a).

ment of merons and antimerons with vorticity +1 (−1) [73].
Similarly, the spin configurations of the anisotropic 2Q state
also form VCs where the vortices are deformed (not shown).

These VCs are stabilized by the anisotropy 	 in the
symmetric interactions, as suggested in the phase diagram
in Fig. 14(a). This can be directly confirmed by calculat-
ing the spin components of SQη

. We find that all the VCs
have large values of |Sy

Q1
| = |Sx

Q2
| and |Sx

Q1
| = |Sy

Q2
| for the

proper-screw and cycloidal VCs, respectively: For example,
at D/J = 0.2 and 	 = 0.3, we find (|Sx

Q1
|, |Sy

Q1
|, |Sz

Q1
|) 	

(0, 7.4, 2.3) and (|Sx
Q2

|, |Sy
Q2

|, |Sz
Q2

|) 	 (7.4, 0, 2.3) for the
proper-screw VCs, while (|Sx

Q1
|, |Sy

Q1
|, |Sz

Q1
|) 	 (7.4, 0, 2.3)

and (|Sx
Q2

|, |Sy
Q2

|, |Sz
Q2

|) 	 (0, 7.4, 2.3) for the cycloidal VCs.
This leads to the energy gain in the interaction terms, −J (1 +
2	)Sy

Q1
Sy

−Q1
and −J (1 + 2	)Sx

Q2
Sx

−Q2
in Eqs. (22) and (25),

for the proper-screw VCs, while −J (1 + 2	)Sx
Q1

Sx
−Q1

and
−J (1 + 2	)Sy

Q2
Sy

−Q2
in Eqs. (23) and (27) for the cycloidal

VCs.

3. Interaction range dependence

Let us consider the finite-range model in two dimensions
while changing the parameter for the interaction range, γ . We
perform the variational calculations for γ > 0 starting from
the stable spin configuration for the infinite-range limit of
γ = 0, which results in the solutions retaining the type of each
VC with modulated spin configurations; while this procedure
does not ensure that the resultant solution is the ground state,
but it is, at least, a metastable state, for which we can compute
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FIG. 16. Spin excitation spectra in the isotropic 2Q spin states
in two dimensions while changing the parameter for the interaction
range: (a) γ = 0.01, (b) γ = 0.1, and (c) γ = 0.2. We take D/J =
0.2, 	 = 0.3, and � = 16, as in Fig. 15. (d) Symmetric lines in the
folded Brillouin zone, used for the plots in (a)–(c).

the spin excitations by the linear spin-wave theory. Figure 16
shows the spin-wave dispersion εK in the folded Brillouin
zone for three different values of γ . The results are common to
all the VCs in Fig. 15. When γ is small enough, the excitation
spectra are almost flat except around the � point. The multiple
values of excitation energy arise from a nonuniform twist
in VCs. As in the 1D case (Fig. 9), while increasing γ , the
dispersion becomes more dispersive, whereas the bandwidth
is barely changed.

4. Dynamical spin structure factor

We discuss the transverse component of the dynamical spin
structure factor, S⊥(q, ω) in Eq. (61), for each VC, which is
related to the observable in the inelastic neutron scattering
experiment. Note that the direction of q is fixed along the x
direction in the 1Q case in Sec. IV A, where we discussed
Syy(q, ω) and Szz(q, ω), but in the 2D case the q direction
is rotated and the relevant spin components change with the
direction. In the calculation, we first compute 〈Kp|Sμ

q |vac〉 in
Eq. (60) using the model for the proper-screw(I) VC, and then
obtain the results for the other VCs by using the corresponding
rotations in spin space:

S = (Sx, Sy, Sz ), proper-screw(I) VC

→

⎧⎪⎨
⎪⎩

S = (Sy,−Sx, Sz ), cycloid(I) VC

S = (Sx,−Sy,−Sz ), proper-screw(II) VC

S = (Sy, Sx,−Sz ), cycloid(II) VC

. (84)

Figure 17 shows S⊥(q, ω) for the four types of VCs ob-
tained at D/J = 0.2, 	 = 0.3, � = 16, and γ = 0.2. Here,

FIG. 17. Transverse component of the dynamical spin structure
factor, S⊥(q, ω) in Eq. (61), for (a) proper-screw(I), (b) cycloid(I),
(c) proper-screw(II), and (d) cycloid(II) VCs, plotted along the sym-
metric lines in the first Brillouin zone shown in (h). (e) and (f) show
the enlarged views of the dotted areas in (a) and (c) and then (b) and
(d), respectively. (g) ω dependence at q = Q1. The interaction range
and the relaxation rate are taken as γ = 0.2 and ε = 0.05, respec-
tively. The other parameters are � = 16, D/J = 0.2, and 	 = 0.3 as
in Fig. 15.

we take ε = 0.05 in Eq. (60). The overall spectra look similar
among the different VCs. In particular, as expected from the
above calculation scheme, the spectra along the �-X line are
common to the two types of the proper-screw VCs [Figs. 17(a)
and 17(c)]; this holds also for the cycloid(I) and (II) VCs
[Figs. 17(b) and 17(d)]. In the same way, the spectra along the
M-� line are common to the proper-screw(I) and cycloid(II)
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VCs [Figs. 17(a) and 17(d)], and to the cycloid(I) and proper-
screw(II) VCs [Figs. 17(b) and 17(c)]. In addition, we note
that the spectra along the X-M line are common to the two
types of VCs for both proper-screw and cycloidal cases (see
Appendix).

On the other hand, a stark difference between the proper-
screw and cycloidal VCs is found along the �-X line,
especially in the vicinity of q = Q1: The intensity of the
lowest-energy excitation mode is much larger for the proper-
screw VCs [Fig. 17(e)] than the cycloidal VCs [Fig. 17(f)].
This is more clearly shown in the ω dependence at q = Q1

in Fig. 17(g). The large difference is consistent with the
small RS plotted in Fig. 14(b), since the ratio between the
intensities at q = Q1 and ω = εQ1 p=1 is well approximated
by R2

S . The reason is as follows. The intensity is computed
from the dynamical spin structure factor as S⊥(Q1, ω) =
Syy(Q1, ω) + Szz(Q1, ω) for the two types of the proper-screw
VCs, while S⊥(Q1, ω) = Sxx(Q1, ω) + Szz(Q1, ω) for those
of the cycloid. At ω = εQ1,p=1, S⊥(Q1, ω) is dominated by
Syy(Q1, ω) [Szz(Q1, ω)] for the proper-screw (cycloid) VCs.
Since the frequency integral of the dynamical spin structure
factor corresponds to the static spin structure factor, i.e.,∫

Sμμ(q, ω)dω ∝ |Sμ
q |2, the intensity ratio is approximately

given by |Sz
Q1

|2/|Sy
Q1

|2 = R2
S . For the present parameter set,

RS 	 0.31 as shown in Sec. IV B 2, leading to R2
S ≈ 0.10.

The value well explains the peak difference in Fig. 17(g).
Thus, such a difference around q = Q1 could be useful to
distinguish the proper-screw and cycloid types of VCs in
experiments.

We note that it is rather difficult to distinguish the type
(I) and (II) from the spectra, in both proper-screw and cy-
cloidal cases. There is, however, a noticeable difference near
(q, ω) ≈ (Q1 + Q2, 1.8JS) along the M-� line, as shown in
Figs. 17(a)–17(d).

C. Three-dimensional hedgehog lattices

Finally, we present the results for the 3D HLs. The struc-
ture of the following sections is similar to that in Sec. IV B
for the 2D case: the variational phase diagram in Sec. IV C 1,
the details of the 3D HLs and their stabilization mechanism
in Sec. IV C 2, the spin-wave dispersion while changing the
interaction range in Sec. IV C 3, and the dynamical spin struc-
ture factor in Sec. IV C 4.

1. Phase diagram

Figure 18(a) shows the ground-state phase diagram for the
infinite-range model in three dimensions (Sec. II C 3) obtained
by the variational calculations (Sec. III A) while changing
	 and D/J . We here take � = 12. The phase diagram is
common to all the settings of the proper-screw and cycloid
HLs listed in Table I. We find three phases: the 1Q state,
the anisotropic 2Q state where one of three |SQη

| is zero and
the other two have nonzero different values, and the isotropic
3Q state where |SQ1 | = |SQ2 | = |SQ3 |. The phase transition
between the 3Q and 2Q states is discontinuous, while that
between 2Q and 1Q looks continuous. Similarly to the 2D
case, the system stabilizes the 1Q state for D > 0 and small
	, as shown in Fig. 18(a). In the larger 	 region, the system

Δ

1Q

(a)

(b)

Δ

RS

D/J

D/J

2Q

3Q (|SQ1 |=|SQ2 |=|SQ3 |)

(|SQ1 |=|SQ2 |)

FIG. 18. Variational results for the infinite-range model in three
dimensions. We take � = 12. (a) Phase diagram, which includes the
1Q state, the anisotropic 2Q state with |SQ1 | > |SQ2 | �= 0 and SQ3 =
0 (the cyclic permutations of Qη are energetically degenerate) and the
isotropic 3Q state with |SQ1 | = |SQ2 | = |SQ3 |. (b) Contour plot of the
ratio of the Fourier components of spins, RS , defined in Sec. IV B 1
and Fig. 14.

stabilizes the 2Q and 3Q states, whose spin configurations
are noncoplanar. In the 3Q state, the constituent three spin
helices are elliptical, as in the isotropic 2Q case in Sec. IV B 1.
The calculated RS , whose definition is the same as that in
Fig. 14(b) (Qmax is Qη for the largest |SQη

|), is plotted in
Fig. 18(b). Note that RS = 0 in the isotropic 3Q state at D = 0
where three sinusoidal spin density waves are superposed with
equal weight. We find that RS increases while increasing D
and decreasing 	.

2. Hedgehog lattices

While the phase diagram is common to all the settings in
Table I, the actual spin configuration in the 3Q state depends
on the type of interactions. We present the variational results
in Fig. 19, focusing on the isotropic 3Q state at D/J = 0.3
and 	 = 0.3 (RS 	 0.22). Figure 19(a) shows the stable spin
configuration when taking Jαα

Qη
and DQη

as Eqs. (30) and (29),
respectively. This is the proper-screw HL. On the other hand,
Fig. 19(b) shows the spin configuration obtained for Eqs. (31)
and (32), which is the cycloid(I) HL. Likewise, Fig. 19(c)
displays the spin configuration for Eqs. (33) and (34), which

224405-15



KATO, HAYAMI, AND MOTOME PHYSICAL REVIEW B 104, 224405 (2021)

FIG. 19. Isotropic 3Q spin states in the infinite-range model in
three dimensions with D/J = 0.3, 	 = 0.3, and � = 12: (a) proper-
screw, (b) cycloid(I), and (c) cycloid(II) HLs. The forms of Jαα

Qη
and

DQη
in each case are summarized in Table I. Insets show DQη

as well
as Qη for each case. The color of arrows indicates the z component of
spin according to the color bar in (a). (d) Positions of the hedgehogs
(magenta spheres) and the antihedgehogs (cyan spheres), which are
common to all the HLs shown in (a)–(c). The dashed lines are the
guides for eyes.

is the cycloid(II) HL. Figure 19(d) shows the positions of
the topological defects, i.e., hedgehogs and antihedgehogs,
which are identified as sources and sinks, respectively, of the
emergent magnetic field defined by a solid angle formed by
neighboring three spins [58]. The positions of the hedgehogs
and antihedgehogs are common to the three HLs, since the
spin configurations are mutually transformed by 2π/3 ro-
tations about the [111] axis in spin space as described in
Sec. II C 3.

These HLs are stabilized by the anisotropy 	 in the sym-
metric interactions, as suggested in the phase diagram in
Fig. 18(a). Similarly to the 2D case in Sec. IV B 2, this can be
confirmed by calculating the spin components of SQη

. We find
that all the HLs have the large amplitudes for |Sy

Q1
| = |Sz

Q2
| =

|Sx
Q3

|, |Sx
Q1

| = |Sy
Q2

| = |Sz
Q3

|, and |Sz
Q1

| = |Sx
Q2

| = |Sy
Q3

| for the
proper-screw, cycloid(I), and cycloid(II), respectively, which
gain the interaction energy in the presence of 	 in each case.

3. Interaction range dependence

Let us discuss the finite-range model in three dimensions.
As in the 2D case, we perform the variational calculations

FIG. 20. Spin excitation spectra in the isotropic 3Q spin states in
three dimensions for (a) γ = 0.01, (b) γ = 0.1, and (c) γ = 0.2. We
take D/J = 0.3, 	 = 0.3, and � = 12, as in Fig. 19. (d) Symmetric
lines in the folded Brillouin zone, used for the plots in (a)–(c).

for γ > 0 starting from the solutions for γ = 0, and find
stable but modified spin configurations. Figure 20 shows the
spin-wave dispersion εK in the folded Brillouin zone for three
different values of γ at D/J = 0.3, and 	 = 0.3 with � = 12;
the results are common to all the HLs in Fig. 19. Similarly to
the 1D and 2D cases, the excitation spectra are almost flat
in most regions in momentum space for small γ , but they
become more dispersive while increasing γ .

4. Dynamical spin structure factor

Figure 21 shows the transverse component of the dynam-
ical spin structure factor, S⊥(q, ω) in Eq. (61), for the three
types of HLs obtained at D/J = 0.3, 	 = 0.3, � = 12, and
γ = 0.2. We take ε = 0.05 in Eq. (60). The calculations are
done in a similar manner to the 2D case in Sec. IV B 4, by
using the spin rotation as

S = (Sx, Sy, Sz ), proper-screw HL

→
{

S = (Sy, Sz, Sx ), cycloid(I) HL

S = (Sz, Sx, Sy), cycloid(II) HL
. (85)

The overall spectra look similar among the different HLs.
In particular, as expected from the above calculation scheme,
the spectra along the R-� line are common to all the three
types of HLs.

On the other hand, similar to the 2D case, a stark difference
among the three HLs is found in the vicinity of q = Q1:
The large intensities of the lowest-energy excitation mode are
seen in the proper-screw and cycloid(II) HLs [Figs. 21(d) and
21(f)], whereas not in the cycloid(I) HL [Fig. 21(e)]. This
is more clearly shown in the ω dependence at q = Q1 in
Fig. 21(g). As in the 2D case, this large difference is con-
sistently understood from R2

S: For the present parameter set,
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FIG. 21. Transverse component of the dynamical spin structure
factor, S⊥(q, ω) in Eq. (61), for (a) proper-screw, (b) cycloid(I), and
(c) cycloid(II) HLs, plotted along the symmetric lines in the first
Brillouin zone shown in (h). (d), (e), and (f) show the enlarged views
of the dotted areas in (a), (b), and (c), respectively. (g) ω dependence
at q = Q1. The interaction range and the relaxation rate are taken
as γ = 0.2 and ε = 0.05, respectively. The other parameters are
� = 12, D/J = 0.3, and 	 = 0.3 as in Fig. 19.

RS 	 0.22 as shown in Sec. IV C 2, leading to R2
S ≈ 0.048.

Since the intensity for the cycloid(I) is particularly smaller
than the other two, this difference could be useful to distin-
guish the cycloid(I) HL from the proper-screw and cycloid(II)
HLs in experiments.

Although it is rather difficult to distinguish the proper-
screw and cycloid(II) HLs solely form the spectra in Fig. 21,
it would be useful to separately measure the spin-flip and
non-spin-flip cross sections in inelastic neutron scattering
experiments. We expect a larger (non-)spin-flip component for
the proper-screw [cycloid(II)] HL since it has a larger intensity
in Syy(Q1, ω) [Szz(Q1, ω)].

V. SUMMARY AND DISCUSSION

We have investigated the spin excitation spectra for various
types of helimagnetic states in the spin models with long-
range exchange interactions. Starting from the model with
infinite-range interactions, we have studied the models with
long- but finite-range interactions including the symmetric
diagonal ones with spin anisotropy and the antisymmetric
off-diagonal ones of the Dzyaloshinskii-Moriya type. While
changing the range of the interactions, we clarified the ground
state and the spin excitation by the variational calculation and
the linear spin-wave theory, respectively. For the spin excita-
tion, in addition to the spin-wave dispersion, we computed the
transverse component of the dynamical spin structure factor,
S⊥(q, ω), which is relevant to the inelastic neutron scattering
experiments.

In the 1D case, we obtained the analytical solution for
the spin excitation in the isotropic HS states with a spatially
uniform twist angle, for both proper-screw and cycloid types.
We showed that the spin-wave dispersion is completely flat
in the infinite-range model except for q = 0, ±Q, and ±2Q,
where Q is the helical wave number, but it becomes dispersive
for the finite-range case. Irrespective of the spatial range of
interactions, there is a gapless excitation mode, which results
in strong intensities at q = ±Q in the dynamical spin structure
factor. Meanwhile, we also obtained the numerical results for
the effect of the spin anisotropy in the symmetric diagonal
interactions. We found that the anisotropy makes the twist an-
gle of the stable spin texture inhomogeneous, and accordingly
opens a gap in the spin-wave dispersion. We also showed that,
as long as the anisotropy is weak, the lowest-energy excitation
mode can be regarded as a phase shift of the helix. In addition,
we found a discernible difference between the proper-screw
and cycloid HS states in the high-energy spectra of S⊥(q, ω)
at q = Qx̂. We also found additional intensities in S⊥(q, ω)
for the higher harmonics at q = ±3Q in the presence of the
spin anisotropy.

Extending the analyses to the 2D case, we have discussed
the stability and excitations of 2Q VCs. By using the varia-
tional calculation, we found that the 2Q VCs are stabilized
by the spin anisotropy. More specifically, while increasing the
spin anisotropy, the 1Q HS state stabilized by the antisymmet-
ric interactions turns into the 2Q VCs through the apparently
continuous phase transition. There are two different 2Q VC
phases: the anisotropic one with a superposition of two spin
helices with different amplitudes and the isotropic one with
equal amplitudes. The latter appears for larger anisotropy than
the former. While the phase diagram is common, the stable
spin configurations of the VCs depend on the form of the
interactions in the model, that is, the easy axes of the spin
anisotropy and the directions of the Dzyaloshinskii-Moriya
vectors. We obtained four types of VCs: two of them are
superpositions of proper screws and the other two are of
cycloids. By using the linear spin-wave theory, we showed
that the spin-wave dispersion, which is common to the four
VCs, becomes dispersive upon introducing the spatial decay
of the interactions, similar to the 1D HS case. Meanwhile,
we found discernible differences in S⊥(q, ω) among the four
types of VCs at q 	 Q1 and q 	 Q1 + Q2. The finding could
be useful to determine the type of VCs as well as the rel-
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evant effective spin model in inelastic neutron scattering
experiments.

In the 3D case, we have examined the stable spin con-
figurations and the spin excitation spectra for three types of
3Q HLs: one proper-screw type and two cycloid types. In the
variational phase diagram, which is common to the three HLs,
we found that the HLs are stabilized in the presence of the
spin anisotropy, similar to the 2Q VCs in the 2D case. In
this 3D case, however, while increasing the spin anisotropy,
the 1Q HS state first turns into the anisotropic 2Q VC, and
then into the isotropic 3Q HL; the phase transition between
the 2Q VC and the 1Q HS state looks continuous, while that
between the 3Q HL and the 2Q VC is discontinuous. With
regard to the spin excitation spectra, we found qualitatively
similar behaviors to the 2Q VC cases. Thus, in this case also,
the differences in S⊥(q, ω) would be useful to distinguish
the type of HLs and to identify the relevant interactions in
experiments.

Finally, we discuss candidate materials to which our results
are potentially relevant. As discussed in Sec. IV A 2, the 1D
HS states in CuB2O4 and TbMnO3 could be accounted for
by our 1D model with the spin anisotropy, which predicts
higher harmonics at q = ±3Q in the dynamical spin structure
factor as observed in the experiments [71,72]. For the 2D (3D)
models, the magnetic metals with the crystallographic point
groups D4, C4v , and D2d (T and C3) can be candidate mate-
rials, as shown in Table I: for example, a Mn-Pt-Sn inverse
Heusler compound (D2d ) where an antiskyrmion crystal has
been found [74], and MnSi1−xGex of B20 structure (T ) where
the magnetic HLs have been found [20–25]. To the best of our
knowledge, inelastic neutron scattering experiments have not
been performed systematically for the multiple-Q spin states
of VC and HL thus far. We hope that our results stimulate
such experiments and the detailed comparison between the-
ory and experiment provides a hint for understanding of the
microscopic mechanism of the multiple-Q states.

In addition to the above substances, recently, multiple-Q
spin states in centrosymmetric systems, for which the an-
tisymmetric interactions of the Dzyaloshinskii-Moriya type
are inactive, have been attracting considerable attentions, for
example, GdRu2Si2 (D4h) [19,75], Gd2PdSi3 (D6h) [76–81],
Gd3Ru4Al12 (D6h) [82,83], and SrFeO3 (Oh) [84–87]. In
our model, however, when the antisymmetric interactions are
absent, the ground states are almost always given by super-
positions of sinusoidal spin density waves, inconsistent with
the experimental observations. Thus, for these multiple-Q spin
states, further extensions of the model are necessary, e.g.,

additional biquadratic interactions [58,60,61]. This interesting
issue is left for future research.
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APPENDIX: SYMMETRY ARGUMENT FOR S⊥(q, ω)
ALONG THE X-M LINE IN 2D VCs

In this Appendix, we explain why S⊥(q, ω) along the
X-M line are common to the two types of VCs for both
proper-screw and cycloidal cases as shown in Fig. 15, from a
symmetry argument. Let q0 be any wave number on the X-M
line. S⊥(q, ω) at q = q0 for the type (I) VCs are computed by
using Eq. (60) as

SI
⊥(q0, ω) = Szz(q0, ω) + Sμ2μ2 (q0, ω), (A1)

where the spin component in the second term is taken along
μ̂ = (−q̂y

0, q̂x
0, 0); here, q̂0 = (q̂x

0, q̂y
0) = q0/|q0|. On the other

hand, those for the type (II) VCs, SII
⊥(q0, ω), are computed by

replacing μ̂ by μ̂′ = (q̂y
0, q̂x

0, 0) because the type (I) and (II)
VCs are connected each other by π rotation about [100] axis
in spin space. Denoting q′

0 = (−qx
0, qy

0) ⊥ (μ̂′x, μ̂′y), which
is connected to q0 by a reciprocal vector [q′

0 = q0 − (2π, 0)],
we obtain

SII
⊥(q0, ω) = SI

⊥(q′
0, ω). (A2)

In addition, the following relation holds:

SI
⊥(q0, ω) = SI

⊥(q′
0, ω), (A3)

because the Hamiltonian and the ground-state spin configu-
rations are invariant under π rotation about the [010] axis in
both coordinate and spin spaces for the proper-screw(I) VC
and under a combined operation of π rotation about the [010]
axis in coordinate space and π rotation about the [100] axis in
spin space for the cycloid(I) VC. Finally, from Eqs. (A2) and
(A3), we find

SI
⊥(q0, ω) = SII

⊥(q0, ω), (A4)

where q0 is in the X-M line.
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