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Distinguishing the dynamics of an Anderson insulator from a many-body localized (MBL) phase is an
experimentally challenging task. In this work we propose a method based on machine learning techniques
to analyze experimental snapshot data to separate the two phases. We show how to train three-dimensional
convolutional neural networks (CNNs) using space-time Fock-state snapshots, allowing us to obtain dynamic
information about the system. We benchmark our method on a paradigmatic model showing MBL (t-V model
with quenched disorder), where we obtain a classification accuracy of ≈80% between an Anderson insulator
and an MBL phase. We underline the importance of providing temporal information to the CNNs and we
show that CNNs learn the crucial difference between an Anderson localized and an MBL phase, namely the
difference in the propagation of quantum correlations. Particularly, we show that the misclassified MBL samples
are characterized by an unusually slow propagation of quantum correlations, and thus the CNNs label them
wrongly as Anderson localized. Finally, we apply our method to the case with quasiperiodic potential, known as
the Aubry-André model (AA model). We find that the CNNs have more difficulties in separating the two phases.
We show that these difficulties are due to the fact that the MBL phase of the AA model is characterized by a
slower information propagation for numerically accessible system sizes.
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I. INTRODUCTION

Advancements of controlled experimental techniques, such
as ultracold atoms in optical lattices, trapped ions, and su-
perconducting q-bits have led to considerable interest in the
out-of-equilibrium dynamics of isolated quantum many-body
systems [1–5]. In particular, it became possible to provide ex-
perimental evidence of many-body localization (MBL) [6–8],
and therefore to shed light upon the emergence of the laws of
statistical mechanics in the quantum realm.

MBL generalizes Anderson localization to the interacting
case and has emerged as a novel paradigm for ergodic-
ity breaking of generic many-body systems subjected to
strong disorder [9–13]. An MBL phase is best understood
in terms of an emergent form of integrability, meaning that
the system is fully described by an extensive number of
quasilocal integrals of motion (LIOMs), which are adiabat-
ically connected to the noninteracting ones. As a result,
due to the local nature of the LIOMs, transport in the sys-
tem is strongly hindered [14–17]. Furthermore, unlike an
Anderson insulator, interactions weakly couple the LIOMs,
producing a dephasing mechanism that yields a slow logarith-
mic spread of entanglement [18–20]. Among the propagation
of entanglement entropy, other dynamical indicators have
been proposed to distinguish an Anderson insulator from an
MBL phase, i.e., propagation of quantum mutual information
[21], quantum Fisher information [7,14], temporal fluctua-
tions [14,22], or spin noise spectroscopy [23,24]. However,
it remains a challenge to reliably distinguish the two phases

(a)

(b)

FIG. 1. (a) Three-dimensional (3D) structure of the input data
(#Snapshots × L × Nt ) with a pictorial representation of the CNN
used to distinguish an MBL phase from an Anderson localized one.
(b) The left panel shows the confusion matrix for the classification
task. The CNN classifies 83.9% of AL and MBL samples correctly.
The right panel shows the entanglement entropy S(t ) averaged over
MBL samples (V = 1), right and wrong classified separately, and
S(t ) for the noninteracting case (V = 0). As one can notice for the
wrongly classified MBL samples, S(t ) has an unusual slower growth
of the entanglement.
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experimentally. These difficulties come mainly from the fact
that the distinction requires the measurement of nonlocal
quantum correlations.

The aim of this work is to show how to use machine learn-
ing toolboxes and, in particular, convolutional neural networks
(CNNs) to analyze experimental snapshot data and distinguish
an MBL phase from an Anderson insulator.

Machine learning techniques have proven to be a useful
tool in characterizing and understanding correlations in quan-
tum phases of matter [25–38]. Recently, several works used
machine learning to investigate the MBL transition which
separates a thermal phase from the localized one [35,39–47].
In particular, in Ref. [48] a CNN was trained using experimen-
tally Fock-space snapshots data to distinguish an MBL from
a thermal phase. However, the distinction of an Anderson
insular from an MBL phase is more subtle than the separation
of an ergodic/extended from an MBL phase.

In both, the Anderson insulator and MBL phase, degrees
of freedom are frozen and the only difference is found in
the propagation of quantum correlations, which are harder
to be measured. By using space-time Fock-space snapshots
as input data, we show that CNNs are able to capture the
important spatial and temporal correlations to distinguish the
two phases. This approach should be opposed to the ones used
to separate an ergodic from an MBL phase [48], in which
only Fock-space snapshots at a single time are sufficient to
distinguish the two phases.

Concretely, in quantum simulation platforms such as ul-
tracold atoms in optical lattices, Fock-space snapshots are
accessible following a time evolution with the use of a
quantum microscope [49,50]. The computation of local ob-
servables at a specific target time is then found by a proper
average over the ensemble of snapshots. Here we show how
to construct and train a CNN (see Fig. 1) to extract dynamic
properties and therefore to distinguish the two phases. Impor-
tantly, we provide numerical evidence that only a reasonable
amount of snapshots is needed to separate the two phases,
which bounds the number of experimental measurements.
Moreover, we show that the MBL samples that are wrongly
classified are characterized by an atypical slow propagation
of information, i.e., entanglement entropy and particle number
fluctuation, see Fig. 1(b). This supports the idea that the CNN
learns the important aforementioned features to distinguish an
MBL phase from an Anderson localized one.

This work is structured as follows. In Sec. II we introduce
the utilized models. In Sec. III we explain the structure of
the neural network and the generation of the snapshots. Sec-
tion IV is dedicated to examining the network performance on
classifying an Anderson insulator and an MBL phase. In par-
ticular, we show that it is necessary to consider snapshots from
different points in time and thus gain dynamic information
to improve the classification accuracy. In Sec. V we test the
stability of our neural network by tuning the chain length and
interaction strength of the input data. The observed stability
of the trained neural network is an important component of
our work. It provides an indication that our method can be
applied to real experimental data. With the aim to understand
the high performance of our network, in Sec. VI we show that

the wrongly classified MBL samples are characterized by an
unusually slow growth of entanglement, see Fig. 1(b). Thus,
our CNNs are able to detect the important features that dis-
tinguish an Anderson insulator from an MBL phase. Finally,
we apply our method to the case in which the disorder is
generated by a quasiperiodic potential (Aubry-André model),
which is particularly relevant for experiments [6,51–55].

II. MODEL

We study the t-V disordered spinless fermionic chain with
periodic boundary conditions
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where c†
j (c j ) is the fermionic creation (annihilation) operator

at site j. t = 1 and V are the hopping and the interaction
strength, respectively, and {hi} are random fields which are
uniformly distributed between [−W,W ]. L is the length of the
chain and N = L/2 is the number of fermions (half-filling).

For V = 0, all the single-particle wave functions are expo-
nentially localized for any amount of disorder [56–58]. The
interacting case (V �= 0) is the paradigmatic model which is
believed to have an MBL transition. Several numerical works
have shown that the critical value of the transition is Wc ≈ 3.5
for V = 1 [21,22,59–64] (W < Wc ergodic and W > Wc local-
ized).

Additionally, in the final part of our work, we will test
our method on the quasiperiodic case, known as the Aubry-
André model (AA model) [65]. The AA model is obtained
from Eq. (1) by setting t = 1, hj = W cos(2π jφ + α), where

φ = 1+√
5

2 is the golden ratio and α is a random phase uni-
formly distributed between [0, 2π ]. For V = 0, the AA model
has a metal insulator transition at Wc = 1 [65], extended for
W < Wc and localized for W > Wc. For V = 1 the AA model
is believed to show MBL at strong disorder (Wc > 4) [66].

In order to be in the strongly localized regime, in both
models, we consider W ∈ {6, 7, 8}.

III. METHOD

In this section we introduce the numerical methods and
the structure of the CNN [67]. As shown schematically in
Fig. 1(a), the first layer is an adapted version of an inception
layer [68], followed by a convolution layer and two fully con-
nected layers. As we will show, this architecture enables the
network to achieve good results in classifying the snapshots.
A detailed description of the architecture and the hyperparam-
eters can be found in the Appendix. The CNNs are trained
to distinguish 3D Fock-state snapshots of the Anderson and
MBL phases. Those snapshots have been obtained from
the out-of-equilibrium dynamics of the system using exact
diagonalization. In particular, with the aim to get as close as
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possible to an experimental setup, we follow the dynamics of
a global quench starting from the Néel state |ψ〉 = ∏N

j c†
2 j |0〉,

which is easy to realize in experiments and belongs to the mid-
dle of the spectrum of H . During the dynamics, we compute
the probability to be in the Fock-state |n〉 = ∏L

i (c†
i )ni |0〉 with

ni ∈ {0, 1},
Pn(t ) = |〈n|e−itH |ψ〉|2. (2)

Finally, at each target time t , a given number of Fock-state
snapshots n = (n1, n2, . . . , nL ) are randomly sampled from
Pn(t ). Doing so, we simulate the collapse of the wave function,
as done in an experimental protocol using a quantum micro-
scope [49,50].

We organize the input data for the neural network in a
three-dimensional (3D) structure as depicted in Fig. 1(a):
#Snapshots × L × Nt . A chosen number of Fock-state snap-
shots are taken at fixed target times and then stacked together
to form two-dimensional slices. Along the t axis, slices from
different times are then concatenated to form the 3D input
blocks for CNNs [see Fig. 1(a)]. The resulting 3D block
structure contains information that can be measured in ex-
periments, namely the location of the fermions at a given
time. If not stated otherwise, we will consider #Snapshots ×
L × Nt = 30 × 16 × 11, where 30 snapshots were taken at
11 different times from systems of size L = 16. The target
points in time are distributed linearly in log scale up to a final
time t f .

Finally, we repeat the procedure above to obtain one snap-
shot block for each random instance of the fields {h j}, where
we generate 1000 random configurations for W ∈ {6, 7, 8}
and V ∈ {0, 1}. The resulting 6000 snapshot blocks are ran-
domly divided into a training set containing 5000 samples
and a validation and test set, both containing 500 samples.
The network is trained using only data from the training set
and adjusts its weights depending on the snapshots it uses
in the training. To avoid overfitting on the training set, the
network classifies the validation set after each training epoch.
The CNN that achieves the best accuracy on the validation
set is used after training to classify the test set [69]. This
procedure is repeated for 100 CNNs (if not stated otherwise)
to get an averaged classification accuracy.

IV. NEURAL NETWORK PERFORMANCE

In this section we study the performance of our neural
network in distinguishing the MBL phase from the Anderson
localized one. Furthermore, we inspect the dependence on the
input data parameters, i.e., #Snapshots, system size L and final
time t f . Particular attention is given to the 3D structure of
our data and on the fundamental importance of the time axis,
which provides dynamic information of the system.

The performance of our CNN is quantified by the accuracy
∈ [0, 1], which is given by the number of exactly classified
samples within the test set divided by the total number of
samples in the test set. Thus, the CNN fails to classify the
two phases if the accuracy is ≈1/2 since it is equivalent to
making a decision using a fair coin. Otherwise, if the accuracy
is equal to one, the neural network has a perfect performance.
Classifying ergodic/thermal and MBL phases with neural

(a) (b)

(c) (d)

FIG. 2. Dependence of the classification accuracy on variations
of the snapshot block parameters #Snapshots, L, t f , and t , where
we tune each parameter separately. (a) L = 16, t f = 103, and we
tune #Snapshots. (b) #Snapshots = 30, t f = 103, and L is varied. (c)
#Snapshots = 30, L = 16 are fixed and the final time t f is varied.
(d) Unlike the other panels where the CNNs were trained using
snapshots at different times in the range [0, t f ], in this panel, the
CNNs were trained using only snapshots at a single target time t .
In all panels, the gray dots are the performance of single CNNs and
Nt = 11 is fixed.

networks can be done with high accuracy ≈ 1 [40,45,46,48]
since the two phases are fundamentally distinct. However,
one expects that distinguishing an MBL from the Anderson
phase is a much harder problem, since the two phases are
both localized and differ only in terms of the information
propagation [18,22].

First, we study the dependence of our classification ac-
curacy on the value of #Snapshots used in the CNN. This
is particularly relevant in an experimental setup, where one
would like to reduce the number of measurements. Figure 2(a)
shows the mean test accuracy for t f = 103 and L = 16 as
a function of #Snapshots, where the average was performed
over 100 CNNs. For completeness, in Fig. 2, the performance
of individual CNNs is also reported (dashed vertical dots),
which quantifies the error. As expected, the accuracy increases
with the number of snapshots used and reaches its maximum
at ≈ 0.75. Importantly, the accuracy reaches an almost con-
stant value already for #Snapshots = 15, meaning that only
a limited number of measurements are needed. In Fig. 2(b)
the accuracy of our CNNs is shown as a function of the
system size L. Although only slightly, the mean accuracy
increases with L, providing evidence that in an experimental
setup, where hundreds of sites can be probed, the CNNs could
perform even better.

Another important parameter of our input data is given by
the final time t f , which is the latest time in the dynamics. In
Fig. 2(c) we study the dependence of t f on our results. In

224307-3



KOTTHOFF, POLLMANN, AND DE TOMASI PHYSICAL REVIEW B 104, 224307 (2021)

particular, we train our CNNs always taking Nt = 11 target
times in t ∈ (0, t f ] [70]. This ensures that the amount of input
data is independent of the final time t f , and, consequently, we
can fairly compare the performance of our CNNs at different
t f . An increase in accuracy as a function of t f is observed [see
Fig. 2(c)], reaching accuracies ≈ 0.8 for t f ≈ 108. Though
these large times are still not affordable in an experimental
setup, where the longest times that have been simulated are of
order ≈103 hopping units [71], the results in Fig. 2(c) provide
us a hint of the kind of information learned by the neural
network. We remind the reader that at such long timescales
(t f ≈ 108), in an MBL phase, local degrees of freedom are
frozen and the only relevant dynamics are induced by the de-
phasing mechanism producing a logarithmic slow propagation
of entanglement [18–20]. As a result, we can fairly assume
that our CNNs are able to distinguish an MBL phase from an
Anderson insulator by learning dynamic correlations between
the snapshots induced by the dephasing mechanism.

Finally, we would like to emphasize the important role of
the time axis in the 3D structure of the input data. Figure 2(d)
shows the accuracy as a function of individual time t of our
CNNs, where the CNNs were trained using input data only
from time t . Thus, the CNNs are not trained with the full
dynamic range t ∈ [0, t f ], but only on single time slices. To
fairly compare the results, we want to give the same amount
of information to our network and hence stack the Nt = 11
slices of snapshots from the same time t to form a 3D block.
As expected, at short times t ≈ 1, the neural network is not
able to distinguish the two phases (accuracy ≈1/2), since
interactions do not play any relevant role yet. Using larger
times, a distinction is possible, though the performance is
clearly worse in comparison to the performance of the CNNs
trained with the full dynamic range. We conclude that the
temporal correlation plays a major role in distinguishing the
two phases.

V. NETWORK ROBUSTNESS

Having tested the performance of our method, we now
focus on the robustness of the CNNs. The goal of our work
is to construct a neural network that can classify experimental
data into an MBL and Anderson insulator. Ideally, one would
like to train a CNN using numerical data and then classify
experimental data. This opens up the issue that the data from
training and testing are originated from the same source,
namely numerical simulations. Moreover, experimental data
can have several forms of imperfections, i.e., the Hamilto-
nian’s parameters are known only up to some precision. In
the following two subsections we show that the performance
of our CNN is robust if tested on data produced with different
Hamiltonian parameters. Then we train our CNN using Fock-
space snapshots taken only from a small block of the system,
allowing particle fluctuations. We show that information ex-
tracted from the small subsystem is already good enough to
reliably distinguish the two phases [72].

A. Robustness towards Hamiltonian perturbations

In the following we present an argument to provide ev-
idence that our CNN approach is robust when tested on

(a) (b)

FIG. 3. (a) Performance of the CNNs on classifying data with
V ∈ [10−5, 1], where the CNNs were only trained on different
interaction strengths V ∈ {0, 1}. Different curves represent the per-
formance of the CNNs with different final times t f . (b) Average
accuracy for CNNs trained on subblock snapshots of length � in a
system of system size Ltrain � � and tested on subblock snapshots
always of length �, but in a system of size L.

imperfect data sets and hence could be used in an experimen-
tal setup. Figure 3(a) shows the fraction of correctly classified
MBL [73] as a function of interaction strength V ∈ [10−5, 1]
for systems of size L = 16. Importantly, the CNNs have been
trained using only the noninteracting samples (V = 0) and the
interacting ones with V = 1. Moreover, Fig. 3(a) also shows
the results for different final times t f ∈ {103, 106, 109}. A few
considerations are in order. As expected, the timescale t f plays
an important role. In agreement with the results in Fig. 2(c),
the accuracy increases with t f , since the network is trained
in a longer dynamic range. As expected, if t f � V −1 the
performance is poor, since interactions have not shown their
effects yet. This is manifested in the plateau of the blue curve
(t f = 103) that exists only until t f V ≈ 10 [dashed vertical line
in Fig. 3(a)], where the accuracy starts to increase. In Sec. VI
we will see in detail that features like the logarithmic growth
of the entanglement entropy S(t ) ∼ log tV are consistent with
the information extracted by the networks. Thus, the rise of
accuracy at ∼t f V −1 could be explained by the onset of the
information growth [19]. Importantly, the performance of our
CCN is robust if we moderately perturb the Hamiltonian’s
parameters, as can be seen for interaction strengths close to
the value used for training (V = 1).

B. Robustness towards subsystem classifications

Now we focus on the question of whether our method
is stable if the CNN is trained using only Fock-state snap-
shots from a subsystem. The idea is to use cut-out techniques
by training the CNN with Fock-state snapshots of length �

taken from a small subsystem (nLtrain/2−�/2, . . . , nLtrain/2+�/2)
with ni ∈ {0, 1} and Ltrain the length of the system used to
generate the snapshot blocks, see Fig. 3(b) [74]. Hence the
CNN learns how to make a distinction while only seeing
a small subsystem of length � out of the entire system of
length Ltrain. Figure 3(b) shows the test accuracy for several
combinations of �, Ltrain, and the size of the system used to test
the networks L. Remarkably, the performance of the network
shows almost no dependence on Ltrain, �, and, in agreement

224307-4



DISTINGUISHING AN ANDERSON INSULATOR FROM A … PHYSICAL REVIEW B 104, 224307 (2021)

with the results in Fig. 2(b), the accuracy increases with L.
This increase could be explained by the decreases of finite
size effects with increasing L. The stability on Ltrain and � is
a direct consequence of the fact that we are at strong disorder
and therefore the localization length ξloc is shorter than the
dimension of the subsystem �. As a result, one might train
the CNN using finite-size numerics and then use the network
to classify data from experiments, which are usually done on
larger system sizes. In particular, subblock Fock-space snap-
shots have no particle number conservation, therefore we also
tested the efficiency of our method in the case of a fluctuating
number of particles.

In summary, we have found that the CNN is stable to small
perturbations of the Hamiltonian’s parameters. Moreover, the
CNN can have a high performance even if trained using only
Fock-state snapshots taken from a smaller subsystem. As a
consequence, only measurements in a finite portion of the
system are needed to distinguish the two phases. Second,
this opens the possibility to train our CNN using exact di-
agonalization techniques, which are limited to small system
sizes.

VI. WHAT DOES THE NEURAL NETWORK LEARN?

Understanding how a neural network makes a distinction
and on which patterns it focuses is usually a challenging task
[69]. The aim of this section is to evaluate which information
the neural network uses to distinguish the two phases.

Several methods have been proposed to solve this issue
which are based on the examination of the kernels of the
convolutional layer. For example, Schindler et al. [43] used
the so-called dreaming mechanism [75], where a pretrained
network modifies random input data until this data would be
classified in one of the two phases. By doing so, the network
dreams about new data, meaning it produces new data that has
the features of the phases which are critical for the classifica-
tion.

Here we take the more pragmatic approach of taking a
closer look at the correctly classified and misclassified sam-
ples. In Sec. V we have provided evidence that the neural
network might learn features connected to the interaction-
induced dephasing mechanism and consequentially to the
information propagation through the system. Thus, motivated
by the last observation, we compare the dynamics of the
correctly and wrongly classified samples using two different
probes to distinguish the two phases. First, we compute the
time evolution of the bipartite half-chain entanglement en-
tropy

S(t ) = −Tr[ρL/2 log ρL/2], (3)

where ρL/2(t ) is the half-chain reduced density matrix of the
evolved states |ψ (t )〉. In an MBL phase, after an initially short
ballistic propagation, S(t ) spreads logarithmically slow in
time and finally reaches a nonthermal volume law steady state
for asymptotically long times [S(∞) ∼ O(L)]. Instead, in an
Anderson insulator phase entanglement does not propagate,
and thus after the initial transient propagation, S(t ) saturates
to an area law value [S(∞) ∼ O(L0)]. The second dynamic

(a) (b)

(c) (d)

FIG. 4. (a) and (c) The growth of the entanglement entropy S(t )
and particle fluctuations 	N 2(t ) averaged separately over the cor-
rectly and wrongly classified Anderson (V = 0) and MBL (V = 1)
samples for the disordered t-V model. (b) and (d) The same in-
formation as in the adjacent panels, but for the AA model with
quasiperiodic potential.

indicator we evaluate is the particle number fluctuation

	N 2(t ) = 〈O2(t )〉 − 〈O(t )〉2, O =
L/2∑
j=1

n j . (4)

In an interacting localized phase, 	N 2(t ) has an extremely
slow propagation over several orders of magnitude in time,
which is consistent with 	N 2(t ) ∝ log log t or ∝ logν t with
ν < 1 [14,76,77], unlike in an Anderson localized phase,
	N 2(t � 1) ∼ O(L0). Although it is debated if the found
propagation is only transient or persistent for asymptotically
long times [76,78], 	N 2(t ) still remains a useful and experi-
mentally accessible probe to distinguish the two phases [7] at
finite timescales.

During the time evolution, we compute both the entan-
glement entropy S(t ) and the particle fluctuation 	N 2(t )
and simultaneously sample randomly the Fock-state snapshots
n = (n1, . . . , nL ) from the probability distribution Pn(t ) in
Eq. (2). Finally, we test our CNN on this data, and in order to
understand which features the CNN learns, we take a closer
look at S(t ) and 	N 2(t ) for the samples that have been
correctly and wrongly classified.

Figures 4(a) and 4(c) show the entanglement entropy S(t )
and the particle number fluctuation 	N 2(t ) averaged sepa-
rately over correctly and wrongly classified samples (dashed
lines), respectively. For the interacting case, t-V model with
V = 1, a clear separation between the correctly and wrongly
classified snapshots is visible. Crucially, the samples which
the network wrongly classified as Anderson localized exhibit
a late onset and a slower propagation of information, thus
affirming our main assumption.
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(a)

FIG. 5. (a)The entanglement entropy after subtracting the non-
interacting value V = 0. The dynamics is computed using the �-bit
Hamiltonian H eff with W = 6 and V = 0.1, for the t-V (dashed line)
and the AA (solid line) models.

The situation changes drastically when we consider the
interacting model having quasiperiodic potential (AA model),
defined in Sec. II [66,79,80]. In order to have a fair com-
parison to the t-V model, we train our CNNs with the same
3D structure of the input data #Snapshots × L × Nt with
#Snapshots = 30, L = 16, Nt = 11, final time t f = 103, and
W ∈ {6, 7, 8} [81].

In the case of the t-V model, the CNN reaches an accuracy
of ≈76%, while for the AA model the network is on average
only able to classify ≈66% of the samples correctly (see the
Appendix). The difficulty for the CNN to distinguish the two
phases for the AA model is connected to an atypically slow
information propagation through the system. Figures 4(b) and
4(d) show S(t ) and 	N 2(t ) averaged only over correctly and
wrongly classified samples, respectively. As one can observe,
in the AA model the information propagation is much slower
than in the case with the random potential [see Figs. 4(a)
and 4(c)]. Particularly, S(t ) has only a growth of ≈30% at
timescale t f = 103, compared to the noninteracting case, and
	N 2(t ) does not show any significant growth, as shown in
Figs. 4(a) and 4(c). As a consequence, our CNNs have diffi-
culties in distinguishing the two phases.

This anomalous propagation is traceable to the fractal na-
ture of the single-particle spectrum of the AA model [82].
Indeed, it is known that that the energy spectrum of the AA
model is multifractal and thus its spectrum hosts quaside-
generate single-particle energy [82]. As a consequence, these
quasidegenerate frozen degrees of freedom with energies εx

and εy will need a time proportional to (εx − εy)−1 to dephase.
We test this idea by studying the EE growth for a minimal-
model constructed from H in Eq. (1) using perturbation theory
in the interaction strength V . In the limit of weak interactions
V � 1 and strong disorder W � 1, H can be approximated as
H eff = ∑

l εlη
†
l ηl + V

∑
l,m Blmη

†
l ηlη

†
mηm, where η

†
l (ηl ) is the

creation (annihilation) operator for the single-particle orbital
φl (x) at energy εl , and Blm can be found by using perturbation

theory (for details see Ref. [14]). In this limit, H eff repre-
sents the paradigmatic model known as �-bits Hamiltonian
[13,15,83], describing an MBL phase at strong disorder.

Figure 5 shows δS, which is the entanglement entropy after
subtracting the noninteracting values (V = 0). δS is computed
using H eff constructed from the t-V model (dashed lines)
and the AA model (solid lines). As one can observe and in
agreement with the results in Fig. 4, in the MBL phase for
the AA model S(t ) has an anomalous slow propagation if
compared to the t-V model case. We checked numerically that
the dephasing couplings Bl,m in H eff do not present signifi-
cant differences between the two models. Thus, the important
difference between the two models is only given by the single-
particle energies {εl}. Indeed, in the case of the t-V model
the {εl} are Poissonian distributed and their density of states
can be approximated with a box function at strong disorder,
whereas in the AA model the {εl} are almost degenerate and
the density of states is a Cantor set. As a result, this provides
numerical evidence that the slower propagation of information
for the AA model is due to the fractal nature of its single-
particle spectrum [82].

VII. CONCLUSION

In this work we addressed the question of how to dis-
tinguish an Anderson insulator from an MBL phase using
snapshot data by formulating a method based on machine
learning tools, i.e., CNNs. We trained a CNN using a 3D
structure for the input data, which contains a fixed amount
of space-time Fock-state snapshots. A particular focus was
given to this 3D structure and on the fundamental importance
of having dynamic/temporal information. Unlike the case of
distinguishing an ergodic phase from a localized one, where
only a fixed amount of snapshots is important [48], here it is
crucial to analyze snapshots at different times. Thus, this work
provides a novel method to analyze accessible experimental
data (e.g., from cold-atoms setups) and to separate the two
localized phases.

We benchmarked our method on the paradigmatic model
exhibiting an MBL phase (t-V model with quenched disorder)
and showed that the CNN reaches accuracies of ≈80% in
distinguishing the two phases. We studied the stability of our
method and provided evidence that it can be used to analyze
real experimental data. Importantly, we found an upper bound
to the number of snapshots needed in an experimental setup
to distinguish the two phases.

In order to understand what kind of features of the input
data are used by the CNN to classify the two phases, we took
a closer look at the dynamics of the entanglement entropy
and the particle fluctuation. Both quantities are known to be
dynamical indicators of an MBL phase. From this analysis
we provided evidence that the CNN makes use of the differ-
ence in the information propagation between an MBL phase
and an Anderson localized one. In fact, we showed that the
interacting samples misclassified as Anderson localized are
characterized by an unusually slow entanglement propagation.

Finally, we applied our method to a model with quasiperi-
odic potential (AA model). Like the t-V model, this model
has been used several times in cold-atoms experiments to
study the MBL transition. In this case, the neural networks
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had difficulties when separating the phases, and the reached
accuracy is significantly lower than in the case of fully random
potentials. This is due to a quantitative slower propagation of
information in the AA model compared to the t-V model.
Indeed, we showed that the MBL phase of the AA model
has a much slower growth of entanglement and the particle
fluctuation fails to be a dynamical indicator to distinguish the
two phases. These results indicate that separating an MBL
phase from an Anderson insulator in the case of quasiperi-
odic is potentially more challenging than for a disordered
system.
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APPENDIX A

1. Network architecture and hyperparameters

The CNN used in this work has a rather simple architec-
ture, which allows extracting complicated dynamic patterns
from the 3D snapshot input. It consists of two convolution lay-
ers with 3D kernels and two fully connected layers. Figure 6
shows a schematic representation of the neural network. The
first layer is an adaptation of the inception layer [68], where
three different kernels extract information from the input data.
One kernel of size (1 × 29 × 1) is able to see many snapshots
of one site at a time, allowing it to compute averages over
the snapshots. The second kernel of size (5 × 5 × 5) gets
information from different sites, snapshots, and times. The
third kernel of size (3 × 3 × 7) is specially designed to extract
dynamic information, hence it has access to seven points in
time. All kernels have a stride equal to one and a padding is
chosen to match the dimension of the output after the con-
volution layer to the dimension of the input (known as same
padding). A pooling layer reduces the amount of information,
before the feature map is given to a second convolution layer
with a kernel size of (2 × 2 × 2), followed by another pooling
layer. The last two layers are fully connected layers with 50
and 2 neurons to make the classification.

The optimizer used in training is Adam [84]. Note that we
use a smaller learning rate of 10−4 since the input data heavily
depends on the random collapse of the wave function The loss
function we use is the cross-entropy loss, additional hyperpa-
rameters are listed in Table I. The CNNs were implemented in
Pytorch [85].

The training was performed on GPUs supporting CUDA
platform, namely a GeForce GTX 960, GeForce GTX 1050

FIG. 6. Schematic representation of the CNN. The first layer is
an adaptation of an inception layer [68], followed by a simple convo-
lutional layer. The final classification is done by two fully connected
layers. Two three-dimensional MaxPool layers shrink down the data
size after the inception layer and after the convolutional layer. Non-
linearities are introduced by the rectified linear unit (ReLU). Dropout
is included to increase the classification accuracy.

Ti, and GeForce GTX 1650 with a minimum memory of 4
GB.

2. Quantum Fisher information

As in Sec. VI, we use the quantum Fisher information
(QFI) to compare the dynamics of the right and wrong classi-
fied samples. The QFI is defined by

F (t ) = 4
[〈Ô2〉 − 〈Ô〉2

]
, Ô =

∑
i

(−1)in̂i. (A1)

In Fig. 7(a) a clear distinction between right and wrong
classifications of the two phases with V = 0, 1 cannot be
made when examining F (t ), indicating that the network does
not focus on patterns that are comparable to F (t ). For the
quasiperiodic AA model in (b), we see that F (t ) is not a good
quantity even to distinguish V = 0 and V = 1 since it exhibits
no different dynamics for small times t < 103.

TABLE I. Hyperparameters we use for implementation and train-
ing. Parameters not listed are the standard parameters proposed by
Pytorch.

Hyperparameter Value

Learning rate 10−4

Learning rate decay 0.995
Weight decay 0
Number of epochs 150
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(a) (b)

FIG. 7. Both panels show the QFI F (t ) averaged separately over
the correctly and wrongly classified MBL and Anderson insulating
samples for the t-V model (a) and the AA model (b).

3. Network performance and robustness for the AA model

In this section we test the robustness of the CNNs and
their general performance to the case with the quasiperiodic
potential (AA model), just as we did in Secs. IV and V for
the t-V model. We find out that the neural network performs
worse in the case of quasiperiodic potentials.

In Fig. 8(a) we test the dependence of the network per-
formance on the shape of the snapshot blocks in the AA
model, comparable to Fig. 2. The classification accuracy rises
with rising #Snapshots up to a saturation value of about 65%,
which is roughly 10% less than in the t-V model. The snap-
shot blocks are taken from systems with L = 16, t f = 103,
the result is averaged over 50 networks, gray dots show the
performance of single CNNs.

(a) (b)

FIG. 8. (a) Dependence of the network performance on
#Snapshots in the AA model. The blue line indicates the averaged
performance over 50 networks, gray dots mark the performance of
single CNNs. (b) Average accuracy for CNNs trained on subblock
snapshots of length � in a system of size Ltrain � � and tested on
subblock snapshots always of length �, but in a system of size L in
the AA model.

In Fig. 8(b) we also test the robustness of our network when
we change the chain length L in the AA model. Therefore,
we use cutoffs of length � defined in Sec. V. For the t-V
model we saw good classification results when we trained
our model using smaller blocks of length �, see Fig. 3(b).
However, the very same idea and network architecture fail
for the AA model, producing classification accuracies < 60%
which is only slightly better than tossing a fair coin.

Hence, we conclude that the dynamic patterns the CNN can
extract from the 3D snapshot blocks are less apparent in the
quasiperiodic AA model than in the t-V model.
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