
PHYSICAL REVIEW B 104, 224306 (2021)

Temperature-dependent anomalous energy transport in finite-length quasi-one-dimensional MoS2:
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Anomalous energy transport is a widely investigated character in one-dimensional lattice and both phonons
and solitons are candidate energy carriers responsible for the thermal conductivity divergence before their
mean-free paths. However, it was long believed the contribution of solitons could be neglected even close to
the melting point in a real crystalline solid. In this paper, we show that a crossover of wave-packet dynamics,
from a phonon- to a soliton-dominated state, occurs in a quasi-one-dimensional molybdenum disulfide (MoS2)
sheet at high temperatures far below its melting point by nonequilibrium and equilibrium molecular dynamics
simulations. Divergent sound speed variation and the corresponding heat capacity peaks are observed in the
transition-temperature region that is related to a second-order phase transition. We also find that its anomalous
energy transport falls into a universality class with thermal conductivity divergence exponent α = 2/5 at a finite
length scale within 2000 nm when solitons are excited above 600 K, and the scaling relations derived from
the Lévy walk of energy carriers is fulfilled as α = 2 − 1/γ = β − 1 in the soliton-dominated state above
1800 K. Our results reveal the peculiar solitonlike contribution to thermal conduction at high temperatures in
the low-dimensional crystalline solids.
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I. INTRODUCTION

Anomalous energy transport is a widely investigated and
heavily debated signature in theoretical lattice models and real
crystalline solids [1–5]. It refers to a breakdown of Fourier’ s
law in a one-dimensional system, where thermal conductivity
κ is divergent with system size L as ∼Lα . Arguments from
mode-coupling and renormalization group theories predict
three universality classes with α = 2/5 [6–14], or α = 1/3
(Kardar-Parisi-Zhang, namely, the KPZ universality class)
[15–22], or α = 1/2 [23–25] in the one-dimensional sys-
tems. Thermal conductivity divergence in real finite-length
quasi-one-dimensional crystalline solids, such as nanotubes
and nanowires, could originate from the finite length before
their ultralong mean-free path of energy carriers and their
reduced dimensionality. A recent work suggests thermal con-
ductivity of carbon nanotubes converge at an ultrahigh value
in millimeter scale (the length scale of its phonon mean-free
path) and remains divergent with α ≈ 0.4 by restraining the
flexural motion of carbon atoms as a one-dimensional lattice
model [5]. In the microscopic view of thermal conduction,
both phonons and solitons could serve as energy carriers in
the nonlinear lattice models and crystalline solids. In the
low-temperature region, the linear phonon wave packets are
dominant energy carriers and the wave-packet dynamics fol-
low the superposition principle. When temperature increases
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above a critical value, solitons are excited as energy carriers.
The superposition principle of wave packets thus fails due to
strengthened nonlinearity from solitons. The collision of two
solitary wave packets induces a deviation in their respective
spatiotemporal trajectories where solitons appear to be in-
stantly translated. The deviation is called a phase shift and
it describes the intrinsic nonlinear nature of solitons [14,26–
32]. It is thus essential to identify the specific energy carriers
and the solitonlike contributions in nonlinear lattices models
and crystalline solids beyond the low-temperature region.

However, it was long believed that, as pointed out by
Peierls, even close to the melting point the excitations in
ordinary three-dimensional crystalline solids are so small that
the solitonlike contribution can be neglected [33,34]. De-
bate about solitonlike contribution also persists in theoretical
lattice models. Over a half century ago, to explain the Fermi-
Pasta-Ulam (FPU) recurrence, Kruskal and Zabusky derived
a Korteweg–de Vries (KdV) equation with supersonic soli-
ton solutions [35]. It is still heavily debated regarding the
dominant energy carriers in the FPU lattice to be solitons
or phonons (effective phonons with mean-field treatment of
nonlinearity) [13,14,29–31,36–39]. The limitation is, even
in the integrable Toda lattice, a clear distinction between a
phonon and a solitary wave packet is difficult at a low tem-
perature unless the phase shift could be identified [40,41].
Preliminary research suggests strong nonlinearity in some
low-dimensional materials like carbon nanotube, graphene,
and black phosphorene [42–46], etc. It inspires us to find
solitons in a low-dimensional material with a high melting

2469-9950/2021/104(22)/224306(11) 224306-1 ©2021 American Physical Society

https://orcid.org/0000-0001-6954-6413
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.224306&domain=pdf&date_stamp=2021-12-17
https://doi.org/10.1103/PhysRevB.104.224306


YANGJIE WANG AND JIGE CHEN PHYSICAL REVIEW B 104, 224306 (2021)

point, such as molybdenum disulfide (MoS2) that is up to
2648 K [47,48].

Meanwhile, anomalous energy transport could be repre-
sented by the Lévy walk of energy carriers, which perform
ballistic steps with finite velocity for power-law distributed
times [19–21,49–52]. There are thus two scaling relations as

α = 2 − 1

γ
, α = β − 1. (1)

Correlation function of energy CE (δx, δt ) describes the
anomalous energy transport at a given temperature T and
gives the scaling exponents β and γ as [14,36,49–52]

CE (δx, δt ) = 〈�E (δx, δt )�E (0, 0)〉
〈�E (0, 0)�E (0, 0)〉 (2)

〈δx2〉E =
∫

δx2CE (δx, δt )d (δx) ∼ δtβ, CE (0, δt ) ∼ δt−γ ,

(3)

where 〈〉 denotes the ensemble averages, �E (δx, δt ) =
E (δx, δt ) − 〈E (δx, δt )〉 and E (δx, δt ) denote energy with spa-
tiotemporal intervals δx and δt . β describes the superdiffusive
behavior from the mean-square displacement (MSD) of en-
ergy, and γ indicates the separation time between successive
ballistic steps of energy carriers as t−1−1/γ . The KPZ univer-
sality class, with energy localized in the hard-point gas or
pure solitons in the Toda lattice, obeys the scaling relations
as α = 1/3, β = 4/3, and γ = 3/5 [49,50,52]. The α = 2/5
universality class, observed in the FPU lattice with α = 2/5
(0.37-0.43) [7,11–14,50], β = 7/5 (1.4-1.598) [12,14,53],
and γ = 0.642 − 0.688 [50,53], violates the first one with
2 − 1/γ > α and obeys the latter one α = β − 1. Some work
suggests carbon and Boron nitride nanotubes fall into the
α = 2/5 (0.38–0.40) universality class and silicon nanowires
fall into the KPZ universality class within a long length scale
before the mean-free path of energy carriers or by restraining
their flexural degree of freedom. However, it is still unknown
whether they fulfill the scaling relations [4,5,54,55]. There-
fore, it is reasonable to examine the satisfaction of the scaling
relations with different energy carriers in various temperature
regions.

In this paper, we show a crossover of the wave-packet
dynamics from phonons to solitons, which determines the
anomalous energy transport behavior at different temperatures
in the quasi-one-dimensional MoS2. Nnonequilibrium wave-
packet excitations and equilibrium correlations of energy and
momentum are studied. To demonstrate the crossover, we
define an order parameter through the wave-packets speed and
calibrate its corresponding temperature from the sound speed
variations. A second-order phase transition from a phonon-
to a soliton-dominated state with divergent order-parameter
variation is observed at two critical temperatures. The con-
vergence of the scaling exponents obtained at a finite length
scale within 2000 nm (α = 2/5, β = 7/5, γ = 5/8, and thus
α = 2 − 1/γ = β − 1) occurs at a high temperature far below
the melting point.

II. ANALYTIC AND NUMERIC MODELING

Hamiltonian of the Mo-S system, based on the reactive
empirical bond-order (REBO) potential [56–58], has the form

as

H =
∑

i

p2
i

2mi
+

∑
i �= j, j>i

f C
i j (ri j )[V

R(ri j ) − bi jV
A(ri j )], (4)

where pi and mi denote the momentum and mass of the ith
atom, and ri j is the interatomic separation between the ith
and the jth atoms; f C

i j (ri j ) is the cutoff function, V R(ri j ) and
V A(ri j ) are the pairwise repulsion and attraction, and bi j is the
bond-order term. By simplifying the quasi-one-dimensional
MoS2 as a one-dimensional lattice along the x axis, we derive
a KdV equation and a supersonic soliton solution as

ṙ1 + 2v0k2

k1
r1r′

1 + v0

6
r′′′

1 = 0,

r1 = 3vsk1

4v0k2
sech2

√
3vs

2v0
(ς − vsτ ), (5)

where coordinates are transformed by a perturbation coeffi-
cient ε as ς = ε

1
2 (x − v0t ) and τ = ε

3
2 t ; r1 denotes the zero

order of atomic displacement, ṙ1 denotes its partial deriva-
tive of τ , r′

1, and r′′′
1 denotes its first- and third-order partial

derivatives of ς ; k1, k2, and v0 are constants; and vs is soliton
velocity. Therefore, the analytical feasibility of finding soli-
tons is guaranteed and the complete derivation is given in the
Appendix.

For numerical modeling, we have performed both nonequi-
librium and equilibrium molecular dynamics simulations. The
schematic is illustrated in Fig. 1(a) and the dimension of the
quasi-one-dimensional MoS2 sheet is 240 × 1.5 nm2, with the
armchair direction along the x axis and the zigzag direction
along the y axis. Periodic boundary conditions are used in the
x − y plane. Liang et al. developed a potential in 2009 com-
bining a REBO potential and Lennard-Jones (LJ) potential for
Mo-S systems [56,57]. Later, Stewart and Spearot modified
this potential and made an open source implementation within
LAMMPS [59,60]. This version of REBO potential, which is
believed to be reliable in describing thermal and anharmonic
properties of MoS2, is used in our simulations [58–60]. Here
the LJ potential part is excluded since only the single-layer
MoS2 is concerned in our study. Similar to literature, the in-
plane pressure of zero and a time step of 0.5 fs are used in our
simulations. Wave packets are excited by adding velocity χL

or −χR km/s along the x axis on an array of atoms (covered in
the red box). Kinetic energy excitation δEk (x, t ) characterizes
the spatiotemporal trajectories of the wave packets. Correla-
tion functions of momentum [Cpx (δx, δt ) and Cpy (δx, δt )] and
energy [CEk (δx, δt ) and CE (δx, δt )] are calculated in the same
manner in Eq. (1) as [14,36,39,45,61]

δEk (x, t ) = Ek (x, t ) − Ek0(x, t ),

Cpx (δx, δt ) = 〈�px(δx, δt )�px (0, 0)〉
〈�px(0, 0)�px(0, 0)〉 ,

Cpy (δx, δt ) = 〈�py(δx, δt )�py(0, 0)〉
〈�py(0, 0)�py(0, 0)〉 ,

CEk (δx, δt ) = 〈�Ek (δx, δt )�Ek (0, 0)〉
〈�Ek (0, 0)�Ek (0, 0)〉 , (6)
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FIG. 1. (a) Schematic of wave-packet excitation in the quasi-one-dimensional MoS2. The sheet is placed with the armchair direction along
the x axis and the zigzag direction along the y axis. A heat pulse (red arrow) excites wave packets by adding velocity χL or −χR km/s along
the x axis on an array of atoms (covered in the red box). (b) Time variation of an advancing wave packet characterized by the kinetic energy
excitation δEk (x, t ), excited by χL=5 at x=50 nm. (c, d) Spatiotemporal trajectories of two solitons with head-on collision, simultaneously
excited by χL=5 at x=50 nm and −χR=-5 at x=190 nm, are colored in orange. Their separate trajectories without collision are colored in
blue. Trajectories of soliton peaks are plotted in (d) and the solid lines represent the extended trajectories of wave packets after collisions.
(e) phase-shift strength of two collided wave packets, measured by the spatial translation S(χL, χR ) in the unit of periodic cell length A, as a
function of χL and χR. (f) Time variation of correlation functions, Cpx (δx, δt ) and Cpy (δx, δt ) of longitudinal and transverse momentum, and
CEk (δx, δt ) and CE (δx, δt ) of kinetic energy and total energy at 2000 K. (g) The order-parameter M = vl (χL ) − vl (2) and vl (χL ) being the
longitudinal wave-packet speed as a function of χL . The corresponding temperature T is calibrated from the inverse function of sound speed
ul (T ) and using the equality ul = vl . TP < T < TS refers to the transition-temperature region (covered in the empty box);TC1 and TC2 refer to
temperatures with divergent dM/dχL . The melting-temperature region is covered in the red box. (h) Specific heat capacity CV = ∂E/∂T as a
function of T .

where Ek (x, t ) represents the kinetic energy of atoms with an
initial excitation and Ek0(x, t ) represents the kinetic energy by
excluding the initial excitation; px(δx, δt ) and py(δx, δt ) de-
note the longitudinal and transvers momentum; and Ek (δx, δt )
denotes the kinetic energy between atoms with spatiotemporal
intervals δx and δt . To our best computation capacity, we use
100 K intervals (25 K intervals in the transition-temperature
region) from 300 to 2400 K in the equilibrium simulations. To
obtain κ and α, we use the reverse nonequilibrium molecular
dynamics [62] and vary the length L from 30 to 240 nm
{and a longest length 2000 nm is considered in our thermal
conductivity calculations. Thickness of the MoS2 sheet is
chosen as the bulk layer separation distance 0.615 nm [58,63].
The calculated value of κ is consistent with results in the
literature by using a SW (Stillinger-Weber) potential for the

Mo-S system [58,64]; please see details in the Supplemental
Material [65]}.

III. RESULTS AND DISCUSSION

As shown in Fig. 1(b) and Fig. 2, a longitudinal soliton
wave packet, characterized by the kinetic energy excitation
δEk (x, t ) or the longitudinal momentum excitation δpx(x, t ),
could be excited by χL = 5 or 8 at x = 50 nm and it leaves a
phonon tail far behind, which is similar to soliton excitation in
the FPU and Toda lattices [30–32]. The contribution from the
nonlinear terms is strong enough to excite solitons. Solitons
are supersonic (larger than the sound speed in the harmonic
limit under a infinite small χL) and thus leave the phonon tail
far behind. On the other hand, when the excitation strength is
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FIG. 2. (a–d) Time variation of the longitudinal wave packets identified by δpx and excited by χL = 2 and 3 (phonon wave packets), 5 and
8 (soliton wave packets), at x = 50 nm.

comparatively small, the harmonic part of atomic interactions
would play the dominant role in determining the excited wave-
packet profile. For a weak excitation χL = 2 or 3 (χL < 3.83),
the phonon tail closely follows the advancing wave packet,
which is similar to the phonon excitation in the harmonic
lattice. Their advancing speeds are small and almost identical
to the sound speed in the harmonic limit. We denote the wave-
packet speed as vl (χL ) and it represents the upper limit of
energy transport speed under different excitation strength. In
the equilibrium state, the upper limit refers to the longitudinal
sound speed ul (T ) at the given temperature T . Later we use
the equality ul = vl to associate the nonequilibrium and equi-
librium wave-packet dynamics together. As shown in Figs.
2(a)–2(d), the advancing speed of the wave-packet vl (χL )
follows the relation that vl (8) > vl (5) > vl (3) ≈ vl (2) since
the advancing speeds of soliton wave packets are dependent
on its excitation strength while the phonon wave packets are
almost identical due to their weak nonlinearity. We have also
observed the excitation of transverse wave packets; see PS1
in the Supplemental Material [65]. To identify the soliton
nature of a wave packet, it is necessary to perform the collision
between two wave packets. Phase shift is the intrinsic property

of solitons and it describes the asymptotic interaction between
solitons. Consistently, we perform the head-on collision be-
tween wave packets excited by χL and −χR from 2 to 8.
As shown in Figs. 1(c) and 1(d) and 3(b) and 3(d), the spa-
tiotemporal trajectories of two simultaneously excited wave
packets (χL = 5 at x = 50 nm and −χR = −5 at x = 190 nm)
are colored in orange. To make a comparison, their separate
trajectories, independently excited in another two systems,
are colored in blue in the same plot. Before collision (0 <

t < 7.95 ps), the wave-packet trajectories with and without
collisions are identical. Phase shift occurs at 7.95 ps. The
collided wave-packet peaks appear to be instantly translated
3/2 periodic cells forward and it implies the two wave packets
are solitons under this excitation strength. After collision (t
> 7.95 ps), by extending trajectories of the wave packets
after collision [indicated by the solid lines in Fig. 1(d)], a
clear spatiotemporal deviation between wave packets with and
without collision is observed. On the other hand, as illustrated
in Figs. 3(a) and 3(c), no spatiotemporal deviation is observed
between wave packets excited by χL = 2 and −χR = −2.
The spatiotemporal trajectories of the collide-wave packets
show no deviation from their separate trajectories without
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FIG. 3. (a, b) Time variation of two wave- packets with head-on collision, simultaneously excited by χL = 2 and −χR = −2 (collision of
two phonon wave packets), and χL = 5 and −χR = −5 (collision of two soliton wave packets). (c, d) Trajectories of the wave-packet peaks
are colored in orange. As a comparison, the separate trajectories of wave packets without collision independently excited by χL and −χR, are
colored in blue.

collision. It indicates that the superposition principle is ful-
filled at this small excitation strength. Meanwhile, phase-shift
strength is usually measured by the spatial translation length
S(χL, χR) [26,28,30,32] in the unit of a periodic cell length
(A = 0.548 nm). As shown in Fig. 1(e), nonzero S(χL, χR)
is observed until χL � 3.83 and χR � 3.83. Threshold of
soliton excitation strength is thus 3.83. No phase shift occurs
at collision between phonon-phonon (χL < 3.83 and χR <

3.83) and phonon-soliton (χL < 3.83 or χR < 3.83) wave
packets.

The correlation functions describe the spreading of the ini-
tial energy and momentum fluctuations at a given temperature.
As illustrated in Fig. 1(f) and Fig. 4(a), the longitudinal and
transverse momentum correlations at a high temperature like
2000 K, Cpx (δx, δt ) and Cpy (δx, δt ), exhibit two symmetric
advancing fronts induced by the fastest energy carriers. The
high-temperature behavior is similar to soliton-involved cor-
relations in the FPU and Toda lattices [31,36–39,51]. On the
other hand, as illustrated in Fig. 4(b), the low-temperature
behavior, e.g., at 300 K, is similar to correlations in the
harmonic lattice with vibrational fronts. Longitudinal and
transverse fronts also appear in the kinetic energy and en-

ergy correlations CEk (δx, δt ) and CE (δx, δt ). Later, the scaling
exponents β and γ are obtained by calculating CE (δx, δt )
at different temperatures. Longitudinal and transverse sound
speeds, ul (T ) and ut (T ), are obtained by measuring the peak
position of the advancing fronts [14,36–38]. The temperature-
dependent sound speed variation is presented in PS2 in the
Supplemental Material [65].

It is known that the increase of sound speed with tem-
perature is entirely caused by the strengthened nonlinearity.
Consistently, we define an order-parameter M = vl (χL ) −
vl (2) to measure the nonlinearity strength in the wave-packet
excitations. The equilibrium temperature is thus calibrated
from the inverse function of longitudinal sound speed ul (T ).
By using the equality ul = vl , we could associate an equilib-
rium temperature T with an order-parameter M. As illustrated
in Fig. 1(g), M exhibit a crossover from phonons- to solitons-
dominated state as a function of χL.

(i) In the low-temperature region (χL<3.83, T < TP, TP =
548.5 K), M is approximately constant to be zero since
only phonons are excited. The sound speed is almost invari-
ant due to the weak nonlinearity in this phonon-dominated
state.
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FIG. 4. (a, b) Time variations of the correlation functions of longitudinal and transverse momentum Cpx (δx, δt ) and Cpy (δx, δt ) at (a) a
high temperature 2000 K and (b) a low equilibrium temperature 300 K.

(ii) In the transition-temperature region (3.83 � χL < 4.00,
TP � T < TS , TS = 1753 K), M suddenly jumps to a high
value since solitons are excited. Its variation rate dM/dχL

becomes divergent near χL = 3.82684 (TC1 = 959 K) and
3.82690 (TC2 = 1149.5 K). It resembles a second-order phase
transition with two critical points. We conjecture two instead
of one critical points is due to the quasi-one-dimensional
structure where both longitudinal and transverse energy trans-
port are involved.

(iii) In the high-temperature region (χL � 4.00 and T >

TS), M increases linearly with χL where solitons become the
dominant energy carriers with linear-increased wave-packet
speed. TS (1753 K) is still far below the melting point at
2648 K [48].

Now let us consider how the crossover affects the heat ca-
pacity of MoS2. Here the specific heat capacity CV = ∂E/∂T
is calculated at constant volume since periodic boundary
conditions are applied and CV = 0.318 meV/K at 300 K.
As illustrated in Fig. 1(h), two peaks are observed in the
transition-temperature region near TC1 (1000 K) and TC2

(1150 K). We thus conjecture that this crossover is related to a
second-order phase transition. However, limited by our com-
putation accuracy, we cannot conclude CV is also divergent at
TC1 and TC2 and more rigid analysis is needed.

Now we turn to the scaling exponents in the anomalous
energy transport of the quasi-one-dimensional MoS2 at a finite
length scale within 2000 nm. As illustrated in Figs. 5(a)–5(c),
similar power-law behaviors, like anomalous energy transport
in the one-dimensional nonlinear lattice models, are observed.
Here κ is divergent as ∼Lα (calculation details of κ are given
in PS3 in the Supplemental Material [65]), CE (0, δt ) decays as
∼δt−γ , and 〈δx2〉E is superdiffusive as ∼δtβ (β is fitted before
the advancing fronts reaching the boundaries). In particular,
the three scaling exponents are found to be temperature depen-
dent rather than invariant constants. As illustrated in Figs. 5(d)

and 5(e), variations of three scaling exponents and their scal-
ing relations α = 2 − 1/γ = β − 1 at different temperatures
are studied. It is found that (1) α varies from 4/5 to 2/5 from
300 to 600 K. It converges to 2/5 when T � 600 K (above TP);
(2) γ varies from 1 to 5/8 from 300 to 1800 K. It converges
to 5/8 and thus 2 − 1/γ = α = 2/5 is fulfilled when T �
1800 K (above TS). (3) β equals 8/5 at 300 K and exhibits
two peak values near TC1 and TC2. It converges to 7/5 and
thus β − 1 = α = 2/5 is fulfilled when T � 2000 K (above
TS∗). Therefore we could see that variation of the scaling
exponents is related to the crossover of wave-packet dynamics
from phonons to solitons. The quasi-one-dimensional MoS2

falls into the α = 2/5 universality class when solitons start
becoming energy carriers above 600 K and both phonons and
solitons act as energy carriers. The excitation of solitons leads
to an invariant α within a microscopic length scale of several
hundreds nanometers. The first scaling relation α = 2 − 1/γ

is fulfilled when solitons become the dominant energy carriers
above 1800 K and it resembles the pure-soliton behavior in the
Toda lattice [50,52]. The second scaling relation α = β − 1 is
also fulfilled in the soliton-dominated temperature region. But
why the convergent temperature 2000 K (TS∗) is a bit higher
than TS remains to be understood. Furthermore, since β = 2
means ballistic transport, we use 1/(2 − β ) in Fig. 5(e) to
indicate the possible divergence of MSD near TC1 and TC2

in Fig. 5(e). Again, the two peaks suggest this crossover is
related to a second-order phase transition near the critical
temperatures. Similar results are observed in the quasi-one-
dimensional MoS2 with different chirality (see PS4 in the
Supplemental Material [65]).

Here it should be emphasized that the anomalous energy
transport and the relative scaling exponents in this work
are obtained within a finite-length scale. It is intended to
understand the temperature-dependent variation of energy
carriers and their relative wave-packet dynamics in MoS2.
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FIG. 5. (a–c) Thermal conductivity κ diverges with length as ∼Lα . Energy correlation peak CE (0, δt ) decays with time as ∼δt−γ . MSD of
energy 〈δx2〉E increases with time as ∼δtβ . (d, e) Variations of α, γ , and β from 300 to 2400 K.

The considered length scale is far below the mean-free path
of energy carriers where the quasi-one-dimensional MoS2 is
still within the ballistic-to-diffusive transition region of the
energy carriers. It cannot answer whether thermal conduction
is divergent or not in the infinite length scale. Similarly to
carbon nanotubes [5], we conjecture that thermal conductivity
of the quasi-one-dimensional MoS2 might be convergent at
a macroscopic length scale (e.g., in millimeter scale) since
its out-of-plane motion would suppress the divergent nature
of thermal conduction found in the strict one-dimensional
system. Therefore a future study is thus heavily demanded to
fully understand thermal conduction of MoS2 in the macro-
scopic length scale.

IV. CONCLUSION

In conclusion, we show a crossover of wave-packet dynam-
ics and temperature-dependent anomalous energy transport,
due to soliton excitations at high temperatures far below
the melting point, in the quasi-one-dimensional MoS2. The
nonequilibrium wave-packet excitation and the equilibrium
correlation of energy carriers are studied. The crossover pro-
cess is characterized by an order parameter defined by the
upper limit of energy transport speed and is related to a
second-order phase transition. The crossover determines the
variation of scaling exponents in the anomalous energy trans-
port at a finite length scale within 2000 nm, which falls into
the α = 2/5 universality class and obeys the scaling relations
α = 2 − 1/γ = β − 1 in the soliton-dominated state. Our
work sheds light on understanding the nonlinear dynamics and
anomalous energy transport in low-dimensional crystalline
solids.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (#11405245) and the Natu-
ral Science Foundation of Shanghai (#14ZR1448100 and
#19ZR1463200). The authors thank the Big Data Science
Center of Shanghai Synchrotron Radiation Facility, the
Shanghai Supercomputer Center of China, and the Supercom-
puting Center of the Chinese Academy of Sciences.

APPENDIX

In this section, we shall demonstrate how to derive a KdV
equation for a quasi-one dimensional MoS2 system. As illus-
trated in Fig. 1(a), the schematic of the quasi-one-dimensional
MoS2 system is long the x axis. The continuum approxima-
tion method, usually applied in dealing with soliton solution
in discrete lattices [26,27,42,43,46,66], is used by assuming
small displacements from the equilibrium positions and a long
wavelength limit.

First, The quasi-one-dimensional MoS2 system is sim-
plified as a one-dimensional chain with equal longitudinal
atomic displacement in each periodic cell along the x axis. It
means the empirical parameters are simplified to be identical
between the periodic cells. The Hamiltonian of the one-
dimensional chain has the form as [56–58],

H =
∑

i

p2
i

2mi
+

∑
i �= j, j>i

f C
i j (ri j )[V

R(ri j ) − bi jV
A(ri j )]

=
∑

i

p2
i

2mi
+

∑
i �= j, j>i

f C
i j (ri j )

[(
1+ Q

ri j

)
Ae−αri j − bi jBe−βri j

]
,

(A1)
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where pi and mi denote the momentum and mass of ith atom,
and ri j denotes the interatomic separation between ith and
jth atom. Here, Q, A, α, B, and β are empirical pairwise
parameters, which are simplified to be identical according to

the average interactions between the periodic cells. Without
this simplification, there would be three sets of empirical
pairwise parameters for different covalent bonds (Mo-Mo, S-S
and Mo-S). The cutoff function, f C

i j (ri j ), is given by

f C
i j (ri j ) =

⎧⎪⎪⎨
⎪⎪⎩

1, ri j < Rmin
i j

1
2

{
1 + cos

[(
ri j − Rmin

i j

)
π/

(
Rmax

i j − Rmin
i j

)]}
, Rmin

i j < ri j < Rmax
i j

0, ri j > Rmax
i j ,

(A2)

where Rmin
i j denotes a cutoff parameter. V R(ri j ) and V A(ri j )

are the pairwise repulsion and attraction, respectively. The
bond order term, bi j , describes the many-body interactions as
bi j = [1 + ∑

k �=i, j f C
ik (rik )G[cos(θi jk ) + P(Ni )]]

1
2 according to

a bond angle term G and a coordinate term P. Here, bi j is also
simplified as a constant parameter between the periodic cells
in the atomic one-dimensional chain. The equation of motion
for the ith atom is thus given,

∂ pi

∂t
= − ∂H

∂ri j

= −∂ f C
i j (ri j )

∂ri j

[(
1 + Q

ri j

)
Ae−αri j − bi jBe−βri j

]
− f C

i j (ri j )

×
[
−QA

r2
i j

e−αri j − αA

(
1 + Q

ri j

)
e−αri j + βbi jBe−βri j

]

= −
(

1 + Q

ri j

)
Ae−αri j

∂ f C
i j (ri j )

∂ri j

+ bi jBe−βri j
∂ f C

i j (ri j )

∂ri j
+ QA

r2
i j

e−αri j f C
i j (ri j )

+ αA

(
1 + Q

ri j

)
e−αri j f C

i j (ri j ) − βbi jBe−βri j f C
i j (ri j ).

(A3)

Hereafter, for simplicity, we set the atomic mass mi = 1
and take spatial variables in units of the equilibrium bond
length as 1, making them dimensionless. The right side of
the equation of motions contains five parts and we shall ex-
pand them up to second-order of the interatomic displacement
ri j − Rmin

i j to simplify this expression. First, the cutoff function
and the interatomic separation are expanded as

f C
i j (ri j ) = 1 − π2

4

(
ri j − Rmin

i j

Rmax
i j − Rmin

i j

)2

(A4)

∂ f C
i j (ri j )

∂ri j
= − π

2
(
Rmax

j − Rmin
i j

)
× sin

[(
ri j − Rmax

i j

)
π/

(
Rmax

i j − Rmin
i j

)]
= − π2

2
(
Rmax

i j − Rmin
i j

)2

(
ri j − Rmin

i j

)
(A5)

ra
i j = (

Rmin
i j + ri j − Rmin

i j

)a = (
Rmin

i j

)a
(

1 + ri j − Rmin
i j

Rmin
i j

)a

= (
Rmin

i j

)a

[
1+ a

ri j − Rmin
i j

Rmin
i j

+ a(a − 1)

2

(
ri j − Rmin

i j

Rmin
i j

)2]
,

a = −1,−2. (A6)

where a could be either −1 or −2. The two formulas are in the
same form and thus we have simplified them into one formula
as Eq. (A6).

Then we substitute the expressions (A4), (A5), and (A6)
into the right side of the equation (A3) to get the expressions.

By doing so, we could get the first part in the right side of
Eq. (A3) is obtained as

− ∂ f C
i j (ri j )

∂ri j

(
1 + Q

ri j

)
Ae−αri j

= π2Ae−αRmin
i j

2
(
Rmax

i j − Rmin
i j

)2

(
1 + Q

Rmin
i j

)(
ri j − Rmin

i j

)

− π2Ae−αRmin
i j

2
(
Rmax

i j − Rmin
i j

)2

[
α

(
1 + Q

Rmin
i j

)
+ Q(

Rmin
i j

)2

]

× (
ri j − Rmin

i j

)2
, (A7)

and the second part in the right side of Eq. (A3) is obtained as

−∂ f C
i j (ri j )

∂ri j

(−bi jBe−βri j
) = − π2bi jBe−βRmin

i j

2
(
Rmax

i j − Rmin
i j

)2

(
ri j − Rmin

i j

)

+ π2βbi jBe−βRmin
i j

2
(
Rmax

i j − Rmin
i j

)2

(
ri j − Rmin

i j

)2
,

(A8)

and the third part in the right side of Eq. (A3) is obtained as,

− f C
i j (ri j )

(
−QA

r2
i j

e−αri j

)

= −QAe−αRmin
i j(

Rmin
i j

)2

(
α + 2

Rmin
i j

)(
ri j − Rmin

i j

) + QAe−αRmin
i j(

Rmin
i j

)2

×
(

− π2

4
(
Rmax

i j − Rmin
i j

)2 + 3(
Rmin

i j

)2 + 2α

Rmin
i j

+ α2

2

)

× (
ri j − Rmin

i j

)2
(A9)
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and the fourth part in the right side of Eq. (A3) is obtained as

− f C
i j (ri j )

[
−αA

(
1 + Q

ri j

)
e−αri j

]
=−αAe−αRmin

i j

[
Q(

Rmin
i j

)2 + α

(
1 + Q

Rmin
i j

)](
ri j − Rmin

i j

) + αAe−αRmin
i j

×
[
− π2

4
(
Rmax

i j − Rmin
i j

)2

(
1+ Q

Rmin
i j

)
+ Q(

Rmin
i j

)3 +α2

2

(
1 + Q

Rmin
i j

)
+ αQ(

Rmin
i j

)2

](
ri j − Rmin

i j

)2
,

(A10)

and the fifth part in the right side of Eq. (A3) is obtained as

− f C
i j (ri j )(βbi jBe−βri j ) = β2bi jBe−βRmin

i j
(
ri j − Rmin

i j

) + βbi jBe−βRmin
i j

(
π2

4
(
Rmax

i j − Rmin
i j

)2 − β2

2

)(
ri j − Rmin

i j

)2
. (A11)

Now we substitute the expression (A7)–(A11) into the right side of Eq. (A3) and omit the high-order terms to fully expand
the equation of motions. It is derived an expression in the form of the first- and second-order terms of ri j − Rmin

i j as

∂ pi

∂t
= π2Ae−αRmin

i j

2
(
Rmax

i j − Rmin
i j

)2

(
1 + Q

Rmin
i j

)(
ri j − Rmin

i j

) − π2Ae−αRmin
i j

2
(
Rmax

i j − Rmin
i j

)2

[
α

(
1 + Q

Rmin
i j

)
+ Q(

Rmin
i j

)2

](
ri j − Rmin

i j

)2

− π2bi jBe−βRmin
i j

2
(
Rmax

i j − Rmin
i j

)2

(
ri j − Rmin

i j

) + π2βbi jBe−βRmin
i j

2
(
Rmax

i j − Rmin
i j

)2

(
ri j − Rmin

i j

)2 − QAe−αRmin
i j(

Rmin
i j

)2

(
α + 2

Rmin
i j

)(
ri j − Rmin

i j

) + QAe−αRmin
i j(

Rmin
i j

)2

×
(

− π2

4
(
Rmax

i j − Rmin
i j

)2 + 3(
Rmin

i j

)2 + 2α

Rmin
i j

+ α2

2

)(
ri j − Rmin

i j

)2 − αAe−αRmin
i j

[
Q(

Rmin
i j

)2 + α

(
1 + Q

Rmin
i j

)](
ri j − Rmin

i j

)

+ αAe−αRmin
i j

[
− π2

4
(
Rmax

i j − Rmin
i j

)2

(
1 + Q

Rmin
i j

)
+ Q(

Rmin
i j

)3 + α2

2

(
1 + Q

Rmin
i j

)
+ αQ(

Rmin
i j

)2

](
ri j − Rmin

i j

)2

+ β2bi jBe−βRmin
i j

(
ri j − Rmin

i j

) + βbi jBe−βRmin
i j

(
π2

4
(
Rmax

i j − Rmin
i j

)2 − β2

2

)(
ri j − Rmin

i j

)2

= k1
(
ri j − Rmin

i j

) + k2
(
ri j − Rmin

i j

)2
. (A12)

The complete form of equation of motions is thus derived in the expressions of displacement variations. In order to simplify
the complex form of equation of motions, here we define two constant parameters k1 and k2 in (A13) and (A14) to simplify,

k1 = π2Ae−αRmin
i j

2
(
Rmax

i j − Rmin
i j

)2

(
1 + Q

Rmin
i j

)
− π2bi jBe−βRmin

i j

2
(
Rmax

i j − Rmin
i j

)2 − QAe−αRmin
i j(

Rmin
i j

)2

(
α + 2

Rmin
i j

)

− αAe−αRmin
i j

[
Q(

Rmin
i j

)2 + α

(
1 + Q

Rmin
i j

)]
+ β2bi jBe−βRmin

i j (A13)

k2 = − π2Ae−αRmin
i j

2
(
Rmax

i j − Rmin
i j

)2

[
α

(
1 + Q

Rmin
i j

)
+ Q(

Rmin
i j

)2

]
+ π2βbi jBe−βRmin

i j

2
(
Rmax

i j − Rmin
i j

)2

+ QAe−αRmin
i j(

Rmin
i j

)2

(
− π2

4
(
Rmax

i j − Rmin
i j

)2 + 3(
Rmin

i j

)2 + 2α

Rmin
i j

+ α2

2

)

+ αAe−αRmin
i j

[
− π2

4
(
Rmax

i j − Rmin
i j

)2

(
1 + Q

Rmin
i j

)
+ Q(

Rmin
i j

)3 + α2

2

(
1 + Q

Rmin
i j

)
+ αQ(

Rmin
i j

)2

]

+ βbi jBe−βRmin
i j

(
π2

4
(
Rmax

i j − Rmin
i j

)2 − β2

2

)
. (A14)

Here, we only consider interactions between the nearest
periodic cells as j = i + 1 and j = i − 1. The two terms of

derivative of interactions, ri j − Rmin
i j and (ri j − Rmin

i j )2, are
expanded up to the fourth order of vibrational displacement
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r as,

rii+1 − Rmin
ii+1 = r + ∂r

∂x
+ 1

2

∂2r

∂x2
+ 1

6

∂3r

∂x3
+ 1

24

∂4r

∂x4
(A15)

rii−1 − Rmin
ii−1 = r − ∂r

∂x
+ 1

2

∂2r

∂x2
− 1

6

∂3r

∂x3
+ 1

24

∂4r

∂x4
(A16)

ri j − Rmin
i j = (

rii+1 − Rmin
ii+1

) − (
rii−1 − Rmin

ii−1

)
= 2∂r

∂x
+ 1

3

∂3r

∂x3
(A17)

(
ri j − Rmin

i j

)2 = (
rii+1 − Rmin

ii+1

)2 − (
rii−1 − Rmin

ii−1

)2 = 4r∂r

∂x
.

(A18)

It is noted that Rmin
i j = Rmin

ii+1 = Rmin
ii−1 is a constant and an

opposite sign is added by calculating the derivative of interac-
tions from the (i-1)th atom.

We substitute expressions (A15)–(A18) into the equation
of motion (A12). It is derived as,

∂ pi

∂t
= 2k1

∂r

∂x
+ 4k2

r∂r

∂x
+ 1

3
k1

∂3r

∂x3
. (A19)

Now we introduce a small perturbation coefficient, ε, to
describe the perturbation expansions as,

r = εr1 + ε2r2 + · · · , pi = εp1 + ε2 p2 + · · · . (A20)

The space and time coordinates are transformed as

ς = ε
1
2 (x − v0t ), τ = ε

3
2 t . (A21)

Therefore, the laboratory derivatives of time and space are
transformed as

∂

∂t
= ∂

∂ς

∂ς

∂t
+ ∂

∂τ

∂τ

∂t
= −v0ε

1
2

∂

∂ς
+ ε

3
2

∂

∂τ
(A22)

∂

∂x
= ∂

∂ς

∂ς

∂x
= ε

1
2

∂

∂ς
. (A23)

Now we substitute expressions (A20)–(A23) into the equa-
tion of motions (A19). It is derived as(

−v0ε
1
2

∂

∂ς
+ ε

3
2

∂

∂τ

)
(εp1 + ε2 p2 + · · · )

= 2k1ε
1
2

∂

∂ς
(εr1 + ε2r2 + · · · )

+ 4k2(εr1 + ε2r2 + · · · )ε
1
2

∂

∂ς
(εr1 + ε2r2 + · · · )

+ 1

3
k1ε

3
2

∂3

∂ς3
(εr1 + ε2r2 + · · · ). (A24)

Equating the terms of order ε
3
2 and ε

5
2 , two equations are

thus obtained,

−v0ε
3
2

∂

∂ς
p1 = 2k1ε

3
2

∂

∂ς
r1 (A25)

ε
5
2

∂

∂τ
p1 = 4k2ε

5
2 r1

∂

∂ς
r1 + k1

3
ε

5
2

∂3

∂ς3
r1. (A26)

From Eq. (A25), a perturbation in the atomic chain is given
as

∂

∂ς
(2k1r1 + v0 p1) = 0, p1 = −2k2

v0
r1. (A27)

Next we substitute the solution (A27) into the equation
(A26). It is derived as

∂

∂τ

(
2k1

v0
r1

)
+ 4k2r1

∂r1

∂ς
+ k1

3

∂3r1

∂ς3
= 0. (A28)

We denote the derivation of ṙ1 = ∂r1
∂τ

, r,
1 = ∂r1

∂ς
and r,,,

1 =
∂3r1
∂ς3 . The typical KdV equation is thus derived as

ṙ1 + 2v0k2

k1
r1r,

1 + v0

6
r,,,

1 = 0. (A29)

The one-soliton solution of the KdV equation (A27) is
given as

r1 = 3vsk1

4v0k2
sech2

√
3vs

2v0
(ς − vsτ ), (A30)

where vs is denoted as the soliton velocity. Hitherto the
analytical feasibility of finding the soliton solutions in the
quasi-one-dimensional MoS2 is guaranteed.
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