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Frequency dependence of the light-induced Hall effect in dissipative graphene
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We determine the Hall conductivity of light-driven graphene, with a specific focus on its frequency depen-
dence, and compare it to the static effective approximation, based on Floquet states. This approximation gives
the Haldane model as the effective model for light-driven graphene, with a gapped spectrum and a quantized Hall
conductivity of −2e2/h. We simulate both the light-driven and the effective model, and explicitly include the
dissipative environment in our simulations. We investigate the effect of different driving regimes and dissipation
strengths on the Hall conductivity in graphene. As a central result, the Hall conductivity of the light-driven
system is not well approximated by the effective model, except for a regime of intermediate driving frequencies
and small dissipation where the Hall conductivity contribution of the Dirac point approximately recovers the
quantized value of −2e2/h, as well as in the transient dynamics for weak dissipation.
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I. INTRODUCTION

While topologically insulating states of solids in equi-
librium have been established, characterized by a quantized
Hall current, a new route of designing materials with a Hall
conductivity via optical control is developed in Refs. [1–4],
and has been demonstrated experimentally in graphene in
Ref. [5]. Given that optical driving is a form of periodic
driving, Floquet theory provides a framework of description
for light-driven materials, insofar as it provides a natural set
of quasienergy states. Floquet theory therefore provides a
mapping of a periodic time-dependent Hamiltonian onto an
effective static one [6,7]. By using such an effective Hamilto-
nian Refs. [8–11] have proposed that circularly polarized light
drives graphene into a topologically insulating state. In the
topological regime a gap opens at the Dirac point and the ef-
fective Hamiltonian resembles the Haldane model [12]. Under
the additional assumption that the electron distribution forms
a band insulating state the system obtains a quantized Hall
conductivity of −2e2/h [8,9]. However, we emphasize that
this hypothesis about the light-driven system at high frequen-
cies requires these simplifying assumptions. As we discuss in
this paper, the conductivity of the light-driven system is in
general not described by this hypothesis, except for narrow
parameter regimes.

We note that the experimental realization of light-induced
Floquet physics is limited to frequencies that are typically
smaller than the bandwidths of the electronic bands. In the
case of light-driven graphene, the size of the band gap at the
Dirac point scales as E2

dr/ω
3
dr, where Edr is the electric field

strength and ωdr the driving frequency. In order to obtain
a sizable gap for driving frequencies larger than the broad-
ening of the Floquet or the Bloch states it is necessary to

simultaneously increase the field strength to experimentally
unfeasible regimes. Therefore the experimental realization of
the light-induced Hall effect in graphene has been performed
for low driving frequencies of 48 THz [5]. We note that, apart
from being experimentally more feasible, low-frequency driv-
ing also adds to the diversity of the topological phase diagram
as additional Chern numbers occur at each of the resonances
[13–15].

To capture the light-induced dynamics and the steady state
of the electrons in a solid, it is imperative to include dissi-
pation in its theoretical description. The specific dissipative
processes and timescales are to be adjusted to describe a spe-
cific material or sample. We note that we have demonstrated
that the resulting Hall conductivity measured in Ref. [5] can
be recovered quantitatively in this manner (see Ref. [16]). As
we point out, the resulting magnitude of the Hall conductivity
is not consistent with the assumption that a band insulator
state on the Floquet states is formed, which would result in
a quantized conductivity that is related to the Chern numbers
of the occupied states. Instead, the electron distribution of the
steady state is a broad, smooth distribution over the Floquet
states, and the Hall conductivity is composed of the weighted
group velocity and the weighted Berry curvature of the Flo-
quet states. As such, we refer to it as a geometric-dissipative
effect. Other studies were reported in Refs. [17–34].

In this paper we present a more extensive discussion of
the effects of dissipation on the light-induced Hall effect in
graphene with a particular focus on its behavior with in-
creasing driving frequencies. In addition to the frequency
dependence, we present the dependence of the Hall conduc-
tivity on the driving field strength and dissipation strength. We
find that the Hall conductivity contribution of the Dirac point
of the light-driven system is greatly suppressed by dissipation
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even in the high-frequency limit, which implies that the limit
of the effective static model is not achieved. We observe
this discrepancy for most of the parameter regimes that we
consider, except for small dissipation and intermediate driving
frequencies. We observe the same tendency in the transient
regime as well, rather than the steady-state behavior.

This paper is organized as follows: In Sec. II we describe
the formalism employed for all calculations. In Secs. III–V
we provide a comparison of the light-induced Hall conductiv-
ity and the corresponding value for the corresponding static
effective model. In Sec. III we consider the limit of increasing
driving frequencies, in Sec. IV the limit of decreasing dissi-
pation, and in Sec. V the transient regime for short times. In
Sec. VI we conclude.

II. NUMERICAL FORMALISM

Our primary objective is to describe the light-induced dy-
namics of electrons in graphene. Our discussion takes the
experimental regime of Ref. [5] as its starting point, and
strongly expands its parameter range to determine if and un-
der what conditions the hypothesized high-frequency limit is
achieved, in which the Floquet quasienergy states are inter-
preted as the energy states of a static effective Hamiltonian.
Here, we describe the key features of our formalism (for a
detailed description, see Ref. [16]).

To determine the electron dynamics of graphene we inte-
grate the time evolution of the density matrix ρ. We factorize
the density matrix ρ as ρ = ∏

k ρk, on a discrete lattice of
N × N momenta k, centered around the Dirac point. At each
momentum k we represent ρk in the four-dimensional basis
of �k consisting of |0〉, c†

k,A|0〉, c†
k,B|0〉, c†

k,Ac†
k,B|0〉. Here, the

operators c†
k,C and ck,C create and annihilate an electron on the

C = A, B sublattice, respectively. We solve the master equa-
tion for each ρk. In the master equation we include unitary
contributions based on the Hamiltonian

H = H0,k + Hdr,k (t ) + HL,k (t ),

in which the contributing terms are given in Eqs. (1)–(3). The
low-energy dynamics of electrons in graphene is described by
Dirac Hamiltonians of the form

H0,k = �
†
k [h̄vF(τzkxσx + kyσy)]�k, (1)

where vF = 106 m/s is the Fermi velocity, σi, i = x, y, z, de-
note Pauli matrices with respect to the singly occupied sector,
and τz = ±1 is the valley index. Additionally we include the
light-matter interaction Hem,k which consists of a circularly
polarized driving term

Hdr,k(t ) = evFEdr

ωdr
�

†
k [τz sin (ωdrt )σx − σpol cos(ωdrt )σy]�k,

(2)

and a longitudinal dc probing field

HL,k = −τzevFELt �
†
k σx�k . (3)

For later convenience we give the Floquet theory result for the
effective static Hamiltonian for Eq. (2), at second order in the
driving field Edr. In the high-frequency limit [8,9]

Heff,k = −σpol�hf �
†
k σz�k, (4)

where �hf = (h̄vFeEdr )2/(h̄ωdr )3. For our simulations we in-
clude an additional switch-on function of the form

tanh
( t−tr,α

σr,α

) + 1

2
, (5)

with the timescales tr,α and σr,α as a global prefactor
of the driving, the longitudinal probing term, and the
effective Hamiltonian. We use different switch-on timescales
for the longitudinal term (α = L) and the driving and effec-
tive Hamiltonian (α = dr). For the longitudinal probing term
tr,L = 50 fs and σr,L = 20 fs.

In the following, we refer to

H = H0,k + Hdr,k

as the light-driven system and to

Hst = H0,k + Hef,k

as the static effective model.
In addition to these unitary contributions we model dissi-

pative processes via Lindblad operators. We introduce three
Lindblad operators in the basis that diagonalizes the instan-
taneous Hamiltonian. The first operator describes decay from
the upper to the lower band, with rate γ1 = 1/T1. The second
operator describes bare dephasing between the upper and the
lower band, described by a rate γz. We introduce the combined
decay rate γ2, which describes the effective dephasing rate, via

γ2 = 1/T2 = γ1/2 + 2γz. (6)

The third Lindblad operator represents single-particle ex-
change with a fermionic bath of temperature T and chemical
potential μ, described by a rate γp = 1/Tp.

We solve the master equation numerically, compute the
current for each momentum by taking the trace of the current
operator jy,k = evF(τzσxex + σyey) with the density matrix.
The contribution to the conductivity of the momentum k is
obtained from the limit σxy(k) = limEL→0 jy,k/EL. We define
the contribution to the conductivity dichroism of the momenta
k and −k, via

σ̃xy(k) = 1

2A
[σxy(k) + σxy(−k)],

where A is the lattice size and the full conductivity

σxy =
∑

k

σ̃xy.

The circular dichroism of the Hall conductivity describes the
difference of the response for right- and left-handed circularly
polarized light.

As a central tool to investigate the Hall conductivity of the
Dirac point and individual resonances we show the conduc-
tivity dichroism σ̃xy(k) in Fig. 1(a) and its radially integrated

value in Fig. 1(b), i.e.,
∫ |kr |

0 σ̃xy(k). In addition to the contri-
bution of the Dirac point there are contributions whenever
the driving frequency is resonant with the band gap, i.e.,
ωdr = 2vFk. For small field strength Edr, the contributions to
the Hall conductivity dichroism are localized around each of
these resonances, depicted by dashed lines in Fig. 1(b). The
initial decrease in Fig. 1(b) corresponds to the contribution
of the Dirac point. It is much smaller than −2e2/h, which is
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FIG. 1. Circular dichroism of the Hall conductivity. (a) We show the conductivity dichroism σ̃xy(k). Note that h̄vFk = 200 meV cor-
responds to k ≈ 0.03 /Å. (b) shows the same data as (a) but radially integrated as a function of threshold momentum |kr |. The first four
resonances are indicated by dashed lines. We observe that the conductivity contributions are localized around individual resonances and indicate
their net contributions by red arrows. For both panels we use Edr = 20 MV/m, ωdr = 2π · 48 THz ≈ 200 meV/h̄, T1 = 1 ps, T2 = 200 fs,
Tp = 250 fs, T = 1 K, EL = 1.7 kV/m, μ = 0, tr,dr = 1 ps, and σr,dr = 0.5 ps. We show the conductivity density after a steady state is achieved
for a tanh-type ramp of the driving field strength.

the result of the static effective model. As an estimate for the
contribution of the Dirac point we can define

σDirac =
∫ k=ωdr/(4vF )

0
d2k σ̃xy, (7)

which we use below.

III. HIGH-FREQUENCY LIMIT

As a first approach we consider increasing the driving fre-
quency, and compare it to the quantized integer conductivity
of the Floquet Hamiltonian interpreted as a static Hamiltonian
with the gap term in Eq. (4). Changing the driving frequency
only implies a reduction of the gap at the Dirac point, which
scales as �hf ∝ E2

dr/ω
3
dr [see Eq. (4)]. Hence, for increasing

driving frequencies the gap at the Dirac point is reduced.
We therefore consider the case of increasing the driving field
strength Edr such that the value of �hf remains constant. We
display this scenario in Fig. 2(a), where we show the Hall con-
ductivity dichroism as a function of the chemical potential μ

for several different driving frequencies ωdr. We compare the
conductivity of the light-driven system with the static effective
high-frequency limit which we model by using the effective
static Hamiltonian from Eq. (4). We find that the conductivity
of the light-driven system has the opposite sign of the static
effective system. Additionally we observe in Fig. 2(a) that
for the given range of frequencies the conductivity of the
light-driven system decreases slowly for increasing driving
frequency.

Given that higher driving frequencies and larger driving
field strengths are numerically challenging, we focus on the
contribution of the Dirac point in Fig. 2(b). For ωdr = 2π ·
50 THz and ωdr = 2π · 100 THz we see the onset of the first
resonance, at h̄vF|kr | ≈ 100 meV and h̄vF|kr | ≈ 200 meV,
respectively. For larger driving frequencies the plateau at
larger threshold momenta gives the Dirac-point contribution
to the conductivity. In the static high-frequency limit it is
expected to converge towards −2e2/h. However, the Hall con-
ductivity of the light-driven system is notably different than
the hypothesized limit of equating the Floquet states to energy
states of a static Hamiltonian. We observe in Fig. 2(b) for

increasing driving frequencies that the conductivity reduces
to 0 instead. This result is consistent with the formation of
a high-temperature state with almost equal occupation of the
lower and upper graphene band. In Ref. [16] we have seen
that the Hall conductivity can be approximated by weighting
the Berry curvature and band velocity with the correspond-
ing band occupations. Since both bands have opposite Berry
curvature and band velocity the resulting Hall conductivity
vanishes.

IV. GEOMETRIC HALL CONDUCTIVITY FOR
LOW DISSIPATION

Next we consider reducing dissipation. We find that for
fixed driving frequency the dissipation greatly inhibits the
Hall-conductivity contribution of the Dirac-point gap. The
contributions of resonances are enhanced by some dissipation
mechanisms (see Appendix A). We can identify a regime
of low dissipation and intermediate electric field strengths
where the Hall-conductivity contribution of the Dirac point
approaches −2e2/h.

In this and the following section we switch off the coupling
to the back gate (Tp = ∞). Hence, we work at a fixed particle
number, enforcing the unit occupation of each momentum
mode. The computations with a decoupled back gate are more
efficient and hence allow one to investigate a wider parameter
regime. Apart from being numerically more feasible we have
several other reasons motivating the decoupled back gate:
Experimentally this could be achieved by using free-standing
graphene, i.e., graphene without a substrate. Also we confirm
in Appendix C that at zero chemical potential the results are
qualitatively similar to those with a coupled back gate. Finally,
it is an interesting question on its own to ask whether decay-
type damping inhibits the geometric Hall conductivity of the
gap at the Dirac point. In addition to decoupling the back gate
we consider only cases where T2 = 2T1, which corresponds to
small dephasing-type dissipation. We explain in Appendix A
that this is beneficial for obtaining a large contribution of the
Dirac point to the Hall conductivity.

We show the driving-field-strength dependence of the
Dirac-point contribution for different T1 in Fig. 3. In the
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FIG. 2. Increasing the driving frequency, while adjusting the driving field Edr to keep the energy gap �hf = (h̄vFeEdr )2/(h̄ωdr )3 fixed.
In both panels we show the circular dichroism of the Hall conductivity. (a) Total conductivity as a function of the chemical potential. For
comparison we show the corresponding conductivity of the static effective model, as defined by Eq. (4). We observe that the Hall conductivity
has the opposite sign for low- and high-frequency driving. (b) We show the conductivity density σ̃xy(k) integrated over all momenta smaller
than the threshold value |kr |. We find that the contribution of the Dirac point becomes vanishingly small instead of converging towards −2e2/h
when increasing the driving frequency by orders of magnitude. The driving frequencies for both panels are indicated in the legends. The electric
field strength is Edr = 20 MV/m for ωdr = 2π · 48 THz and is adjusted such that �hf has the same value for all driving frequencies ωdr. The
remaining parameters for all panels are T1 = 100 fs, T2 = 20 fs, Tp = 25 fs, T = 80 K, and EL = 840 V/m. All observables are shown after a
steady state is achieved for a tanh-type ramp of the driving field strength, for (a) tr,dr = 1 ps and σr,dr = 0.5 ps, while for (b) tr,dr = 0.5 ps and
σr,dr = 0.25 ps.

effective high-frequency limit the contribution of the Dirac
point to the Hall conductivity is small for low electric field
strength, increases to approximately −2e2/h and then reduces
again for even larger field strengths. At low field strength the
size of he gap is small compared to dissipation and temper-
ature resulting in a partial cancellation of the conductivity.

FIG. 3. Contribution of the Dirac point to the Hall conductivity
dichroism, as defined in Eq. (7), for different damping timescales as
indicated in the legend. For comparison the dotted line shows the
static effective model, as defined by Eq. (4), at T1 = 1 ps. Note that
the static effective model has no strong dependence on dissipation,
for driving field strengths that are sufficiently large so that the in-
duced energy gap is larger than the dissipative broadening and the
temperature. We observe a regime of small dissipation and inter-
mediate driving field strengths where the Hall conductivity of the
light-driven system approaches the effective static result of −2e2/h.
We use ωdr = 2π · 200 THz, T2 = 2T1, Tp = ∞, T = 80 mK, EL =
1.7 kV/m, and μ = 0. All observables are shown after a steady state
is achieved following a tanh-type ramp-up function of the driving
field strength with timescales tr,dr = 1 ps and σr,dr = 0.5 ps. The
simulations for the low dissipation cases are numerically challenging
which is the origin of the numerical noise in the T1 = 33 ps data.

The origin of the reduction for large field strength is that the
conductivity contribution spreads out in momentum space and
hence extends beyond the regime that we associate with the
Dirac point. At intermediate field strengths we find a plateau
near −2e2/h for the effective high-frequency system.

For the light-driven system we see in Fig. 3 that decay-type
damping has a strong influence on the Hall conductivity of the
Dirac point. The Dirac-point contribution is reduced signifi-
cantly for large decay-type damping, i.e., small T1. For larger
values of T1 the contribution of the Dirac point agrees with
the one computed for the effective high-frequency system
for small values of the driving field strength. When further
increasing T1 the range in which the two contributions agree
extends to a larger and larger field strength. For T1 = 33 ps we
nearly recover the quantized value of −2e2/h at intermediate
field strengths. We expect that the Hall-conductivity contribu-
tion of the Dirac point converges towards its high-frequency
limit when reducing dissipation.

V. GEOMETRIC HALL CONDUCTIVITY IN THE
TRANSIENT RESPONSE

As a third comparison, we consider the contribution of
the Dirac point to the Hall conductivity during the tran-
sient response before the system equilibrates. We show the
time-resolved contribution of the Dirac point to the Hall con-
ductivity in Fig. 4. The net Hall conductivity is negative for
all dissipation strengths and times. For vanishing dissipation,
corresponding to T1 = ∞, the Hall conductivity approaches
−2e2/h. For nonzero but small dissipation we find that the
Hall conductivity approaches −2e2/h before it equilibrates at
a smaller value. The dissipative process results in a population
of both the upper and the lower band at the Dirac point,
which gives a partial cancellation of the Hall conductivity. For
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FIG. 4. Contribution of the Dirac point to the Hall conductivity
dichroism, as defined in Eq. (7), as a function of time t for several
dissipation times T1. We use Edr = 84 MV/m, ωdr = 2π · 200 THz,
T2 = 2T1, Tp = ∞, T = 80 mK, EL = 1.7 kV/m, μ = 0, and the
ramp-up timescales tr,dr = 1 ps and σr,dr = 0.5 ps.

stronger dissipation, i.e., smaller T1, both the transient and the
equilibrium Hall conductivity is suppressed as compared to
weaker dissipation.

VI. SUMMARY AND OUTLOOK

We have investigated the Hall conductivity of light-driven
graphene for a wide range of driving frequencies and dissi-
pation strengths. As a central focus, we have compared the
Hall conductivity of the light-driven system to a hypothetical
limit that we refer to as the static effective model, in which
the Floquet quasienergies are interpreted as energies of a
static Hamiltonian, to determine if this static effective limit
provides a valid approximation for the light-driven, dynamical
system. We have focused on the contribution of the Dirac
point on the Hall conductivity which is expected to show a
quantized response of −2e2/h for large driving frequencies
and vanishing dissipation for the static effective model. We
find that the steady-state contribution of the Dirac point is cru-
cially influenced by dissipation. As a central focus, we have
compared the Hall conductivity of the light-driven system to
a hypothetical limit that we refer to as the static effective
model, in which the Floquet quasienergies are interpreted as
energies of a static Hamiltonian, to determine if this static
effective limit provides a valid approximation for the light-
driven, dynamical system. For finite dissipation we find that
the Hall conductivity vanishes in the high-frequency-driving
limit. Instead we identify a regime of small dissipation and
intermediate driving frequencies and field strengths where we
recover the value of −2e2/h approximately.

Our work paves the way for a more complete understand-
ing of periodically driven solids in the dissipative regime.
We emphasize that similar conclusions as we present here
will apply to light-driven materials in general. This implies
that, in general, a prediction for a Floquet-engineered material
cannot by achieved by determining the Floquet states and
using the static effective approximation. Rather, the inclu-
sion of dissipative processes creates a steady state, for which
the magnitude of the observables depends on the type and
magnitude of the dissipative processes. We identify a narrow
regime, in which the static effective model gives an acceptable
approximation of the steady state, and point out that the tran-
sient state of the light-driven material is approximated by the

FIG. 5. Circular dichroism of the integrated Hall conductivity
densities for several different values of the dissipation as indicated in
the legend. We show the conductivity density σ̃xy integrated over all
momenta smaller than the threshold value |kr |. The first and second
resonance are indicated by dashed lines. We use Edr = 84 MV/m,
ωdr = 2π · 200 THz, Tp = ∞, T = 80 mK, EL = 1.7 kV/m, and
μ = 0. All observables are shown after a steady state is achieved
for a tanh-type ramp of the driving field strength with tr,dr = 1 ps and
σr,dr = 0.5 ps.

static effective model, for sufficiently small dissipation. With
these insights, we refine and advance Floquet engineering in
general.
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APPENDIX A: REDUCING THE
DEPHASING-TYPE DISSIPATION

Here, we discuss the role of dephasing-type damping, i.e.,
T2. We observe in Fig. 5 that the relative scale of T1 and
T2 crucially influences the Hall-conductivity contributions of
the Dirac point and the first resonance. Large dephasing-type
damping, i.e., small T2, suppresses the contribution from the
Dirac point, while at the same time enhancing the contribution
of the first resonance. Compared to this effect the overall
timescale of damping at fixed T2/T1 plays a negligible role
for 100 fs < T1 < 1 ps. We note that there is an upper bound
T2/T1 � 2, since there is a finite amount of dephasing for each
decay process. This can also be motivated from Eq. (6) in the
main text, where we see, when setting the bare dephasing-type
damping γz = 0, that at low temperature

1

T2
= � = γ1

2
≈ 1

2T1
.

Our results motivate the use of the optimal case of T2 = 2T1

in the main text.
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FIG. 6. Coefficients of the density matrix for a cut along the kx direction at different snapshots in time as indicated in the legend. For
comparison we show the ground state of the effective high-frequency system with solid lines. We show mx by black triangles and mz by
red circles, but we do not show my since it is negligible along the kx direction. The left column shows the undamped system while the right
column shows T1 = 10 ps, T2 = 2T1, and Tp = ∞. For all panels Edr = 84 MV/m, ωdr = 2π · 200 THz, T = 80 mK, EL = 0, and the ramp-up
timescales are tr,dr = 0.5 ps and σr,dr = 0.25 ps.

APPENDIX B: TIME-RESOLVED OCCUPATIONS

In order to get an intuitive understanding of the transient
regime we first consider the time evolution of the density
matrix without an applied longitudinal field. When decoupling
the back gate (Tp = ∞) the system has unit filling and hence
can be described by a 2 × 2 density matrix

ρk = 1/2 + mx(k)σx + my(k)σy + mz(k)σz.

We show the coefficients of the density matrix for a cut along
the kx direction in Fig. 6. We do not show my(k) since it is
negligible for ky = 0. We first consider the undamped case
which is shown in the left column of Fig. 6. Initially the
density matrix correctly shows the dependence for undriven
graphene where mx = −kx/|k| and mz = 0. Subsequently the
system evolves towards the ground state of the driven effective
high-frequency system shown by the solid lines in Fig. 6. For

large momenta it reaches this value after about 5 ps. Here,
the quench is adiabatic since the timescale of the quench of
about tquench = 1 ps (h̄/tquench ≈ 0.7 meV) is slow compared
to the bandwidth of undriven graphene 2εk = 2h̄vFk. Directly
at the Dirac point the bands of undriven graphene touch
and hence the quench cannot be adiabatic. The timescale of
the quench determines the range around the Dirac point where
the quench is nonadiabatic. For longer quench timescales the
region where the response deviates from the ground state
of the high-frequency system is more confined around the
Dirac point. A finite mz component around the Dirac point is
important for having finite Berry curvature and hence a finite
Hall conductivity. With dissipation momentum points that are
nonadiabatic may relax towards the ground-state value of the
high-frequency system (see the right column of Fig. 6). At the
same time dissipation leads to a reduction of all coefficients
of the density matrix. We find that this reduction is stronger
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FIG. 7. Comparison of the integrated Hall conductivity dichro-
ism for the 2 × 2 and the 4 × 4 model for low dissipation. We show
the conductivity density σ̃xy integrated over all momenta smaller
than the threshold value |kr |. (a) shows the conductivity after a
steady state has been achieved for a tanh-type ramp of the driv-
ing field strength, while (b) shows the transient response. We use
Edr = 30 MV/m, ωdr = 2π · 200 THz, T1 = 10 ps, T2 = 2 ps, Tp =
4 ps, T = 80 mK, EL = 1.7 kV/m, μ = 0, tr,dr = 0.5 ps, and σr,dr =
0.25 ps. The first, second, and third resonances are indicated by
dashed lines.

for larger dissipation. This overall reduction also reduces the
Hall conductivity. In the right column of Fig. 6 we consider a
regime where the quench duration is faster than the relaxation
timescale T1. Then there are two different timescales. First,
the system approaches the ground state of the high-frequency
system for all momentum modes that are adiabatic within
the first 5 ps. Then on a longer timescale the density-matrix
components of all momenta approach the steady state which
is reached after about 40 ps. At intermediate times the mz

component of the density matrix at the Dirac point already
has a nonzero value while at the same time the density-matrix
components of larger momenta are still close to the effective
high-frequency system. This is the regime where we expect
the quantized Hall response of the Dirac point.

APPENDIX C: COMPARISON OF THE 2 × 2
AND 4 × 4 MODEL

As we have noted, Secs. IV and V in the main text have
used the effective 2 × 2 system, i.e., have considered the sys-
tem with fixed particle number Tp → ∞. Here, we compare
these results to the full 4 × 4 system (see Fig. 7). We see
that finite back gate damping Tp within the 4 × 4 model sig-
nificantly reduces the contribution of the Dirac point. While
the overall magnitude is reduced, the conductivity in the tran-
sient regime is still larger than the corresponding steady-state
result.
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