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Magnon-magnon entanglement and its quantification via a microwave cavity
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Quantum magnonics is an emerging research field, with great potential for applications in magnon based
hybrid systems and quantum information processing. Quantum correlation, such as entanglement, is a central
resource in many quantum information protocols that naturally comes about in any study toward quantum
technologies. This applies also to quantum magnonics. Here, we investigate antiferromagnetic coupling of
two ferromagnetic sublattices that can have two different magnon modes. We show how this may lead to
experimentally measurable bipartite continuous-variable magnon-magnon entanglement. The entanglement can
be fully characterized via a single squeezing parameter or, equivalently, entanglement parameter. The clear
relation between the entanglement parameter and the Einstein, Podolsky, and Rosen (EPR) function of the
ground state opens up for experimental quantification magnon-magnon continuous-variable entanglement and
EPR nonlocality. We propose a practical experimental realization to measure the EPR function of the ground
state, in a setting that relies on magnon-photon interaction in a microwave cavity.

DOI: 10.1103/PhysRevB.104.224302

I. INTRODUCTION

Hybrid quantum systems provide a natural flexible plat-
form for quantum technologies. Recent developments in
quantum magnon spintronics suggest that hybrid quantum
systems based on collective spin-wave excitations in magnetic
materials, i.e., magnons, are highly promising for many short
and long term applications in quantum technologies, including
quantum sensing, quantum communication, quantum simula-
tion, and quantum computing [1–4]. The spin-wave magnon
modes interact coherently with microwave and optical pho-
tons, phonons, and superconducting qubits, which is essential
for engineering efficient hybrid quantum technologies [3,4].

Recently, studies of entanglement between different com-
ponents of a hybrid magnonic system have been under focus,
as a fundamental element in a quantum device design [3–11].
Relevant for the present paper, it was suggested in Ref. [11]
that one may identify a hierarchy of magnon-mode entan-
glement in antiferromagnetic materials. The motivation for
studies of entanglement in magnetic materials can be traced

*v.azimi@sci.ui.ac.ir
†erik.sjoqvist@physics.uu.se

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

to the development of modern synthetic routes that allow
most combinations of elements to form a magnetic mate-
rial with tailored properties. This development in materials
growth, in combination with advanced lithographic tech-
niques for nanostructuring, open up new vistas to be explored
in magnetic nanotechnology [12], where magnon-magnon en-
tanglement is an essentially unexplored research field.

Here, we discuss how an antiferromagnetic coupling
between two ferromagnetic spin lattices creates bipartite
continuous-variable entanglement between the two ferromag-
netic magnon modes in a way that each energy eigenstate of
the system becomes a two-mode coherent state with nonzero
entropy of entanglement. We show that the entanglement en-
tropy of the energy eigenstates is given by a single squeezing
parameter, which can be related and measured through the
Einstein, Podolsky, and Rosen (EPR) function of the ground
state of the system. We also propose a feasible setup for
experimental measurement of the EPR function and conse-
quently the degree of bipartite ferromagnetic magnon-mode
entanglement and EPR nonlocality. The measurement setup
is based on magnon-photon coupling in a microwave cavity,
which is appropriate for a wide range of antiferromagnetic
materials [13] or synthetic antiferromagnetic multilayers [14].
There are many compounds with antiferromagnetism, where
oxides comprise a broad class. In the perovskite structure
alone, there are three types of antiferromagnetic structures
that are relevant for the discussion presented here; A-, C-,
and G-type antiferromagnetism [15,16]. Synthetically grown
multilayers that have ferromagnetic coupling within one layer
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FIG. 1. Schematic illustration of a bipartite system consisting
of two ferromagnetic spin sublattices with opposite magnetizations,
which are coupled antiferromagnetically to each other. The whole
system can be viewed as a single antiferromagnetic compound with
nearest- and next-nearest-neighbor interactions given by Heisenberg
and Dzyaloshinskii-Moriya exchange interactions. The superfix (1)
denotes couplings between the two different sublattices while (2)
describing couplings within the same sublattice.

and antiferromagnetic coupling between the layers are also
plentiful in the literature, and form in fact the basis for the
giant magnetoresistance effect [17].

II. ESSENTIAL ASPECTS OF MAGNON-MAGNON
ENTANGLEMENT

In this section we describe briefly the Hamiltonian con-
sidered in this paper, and the main conclusion with regard
to which magnon modes are most suitable for quantification
of magnon-magnon entanglement in an experimental setup.
It should be noted that this section has some overlap with
the analysis presented in Ref. [11], where the most central
findings are included in order to make the present presentation
self-contained. A full account of the technical aspects of this
discussion can be found in the Appendices. We consider a bi-
partite system of two ferromagnetic sublattices with opposite
magnetizations denoted here by A and B, which are coupled
antiferromagnetically to each other. Figure 1 illustrates the
considered spin model system for a G-type antiferromagnet
structure, which is consistent with the formulation for the
Hamiltonian in Eq. (2). However, the following discussion is
general and holds for every bipartite antiferromagnetic struc-
ture including C and A types, where the latter also allows for
describing synthetically grown antiferromagnets.

The magnetic interactions of the G-type system are de-
scribed by the Hamiltonian

H = H1 + H2 + Ha + Hz, (1)

where

H1 =
∑
〈i j〉

[
J (1)Si · S j + D(1)

i j · (Si × S j )
]
,

H2 =
∑
〈〈i j〉〉

[−J (2)Si · S j + D(2)
i j · (Si × S j )

]
,

Ha = −K
∑

i

(
Sz

i

)2
, K > 0,

Hz =
∑

i

B · Si, B = Bez,

J (1) > 0, D(1)
i j = −D(1)

ji = D(1) = D(1)ez,

J (2) > 0, D(2)
i j = −D(2)

ji = D(2) = D(2)ez. (2)

H1 defines antiferromagnetic interaction between neighboring
sites on opposite sublattices, e.g., nearest-neighbor spins in G-
type antiferromagnets; H2 defines ferromagnetic interaction
between neighboring sites within each sublattices, e.g., next-
nearest-neighbor spins in G-type antiferromagnets. In our
model, we assume that the interaction can be described by us-
ing a Heisenberg (symmetric) exchange term combined with a
Dzyaloshinskii-Moriya (DM) (antisymmetric) exchange term.
Ha is the easy axis anisotropy, and Hz represents the Zeeman
term in the Hamiltonian. Both Ha and Hz are taken to be in the
z direction for each spin regardless of sublattice.

At low temperatures (kBT � min{J (1), J (2)}), one may
bosonize the Hamiltonian in terms of collective modes in k
space to arrive at

Hk = ωak a†
kak + ωb−k b†

−kb−k

+gkakb−k + g∗
ka†

kb†
−k. (3)

Here,

ωak = εk − B, ωb−k = εk + B,

εk = S
(
z(1)J (1) + 2K

+z(2)
{
J (2) − 2Re

[
(J (2) − iD(2) )γ (2)

k

]})
,

gk = Sz(1)γ
(1)

k (J (1) + iD(1) ), (4)

and a†
k (ak) and b†

−k (b−k) are bosonic creation (annihilation)
operators, which commute and define independent families
of bosonic operators on the opposite sublattices A and B,
respectively.

As derived in Eq. (A8) of Appendix A, under SU(1,1) Bo-
goliubov transformation, it is possible to obtain the following
diagonal form of the Hamiltonian:

Hk = ωαkα
†
kαk + ωβ−kβ

†
−kβ−k, (5)

where the bosonic operators α and β are linear combinations
of the sublattice bosonic operators a and b. From this the com-
plete energy eigenbasis states of the form (α†

k )x(β†
−k )y|ψ0〉 =√

x!y!|x; αk〉|y; β−k〉 for any positive integer powers of x and
y, where

|ψ0(rk, φk )〉 = 1

cosh rk

∞∑
n=0

einφk tanhn rk|n; ak〉|n; b−k〉 (6)

describes the ground state |ψ0〉 in the (a, b) modes as a func-
tion of (rk, φk ) given by Eq. (A7), are explicitly specified in
Appendix B. Here, we make use of the fact that entanglement
entropies of all energy eigenbasis states in the (a, b) modes
can be written as

E
[
(α†

k )x(β†
−k )y|ψ0〉

] = −
∞∑

n=0

∣∣p(x,y)
n;k

∣∣2
log

∣∣p(x,y)
n;k

∣∣2
(7)
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where |p(x,y)
n;k | are only functions of the single parameter rk.

Detailed analyses in Appendix B show that the entangle-
ment parameter rk and therefore the entanglement entropies
are only given by the absolute value of the ratio 	k ∝

gk
ωak +ωb−k

= gk
εk

. As far as the ground state |ψ0〉 is concerned the

entanglement parameter rk is the same as the squeezing pa-
rameter discussed in Ref. [18].

In the absence of an antiferromagnetic coupling term H1

in the Hamiltonian in Eqs. (1), the (a, b) and (α, β ) modes
coincide and as a result the bosonized Hamiltonians in Eqs. (3)
and (5) would be exactly the same describing two separate
noninteracting ferromagnets with opposite magnetizations,
e.g., aligned in the z direction so that 〈Si∈A〉 = −〈S j∈B〉 =
(0, 0, S). In this case, the full energy spectra are separately
given by the ferromagnetic bosonic modes of a and b. Hence,
H1 = 0 corresponds to a pair of disentangled ferromagnets
with separable two-magnon-mode eigenstates. As soon as the
antiferromagnetic interaction between the two ferromagnetic
sublattices is turned on, i.e., H1 
= 0, the (α, β ) modes become
hybridized antiferromagnetic magnon modes while (a, b) still
represents a pair of ferromagnetic magnon modes quantizing
the two ferromagnet sublattices. Indeed, finite entanglement
entropies between a and b magnon modes in the case of
H1 
= 0 indicate that the antiferromagnetic interaction creates
bipartite continuous-variable entanglement between the two
ferromagnets in a way that each energy eigenstate becomes
an entangled two-magnon-mode coherent state (see Appendix
B as well as Ref. [11]). Each of the energy eigenstates is a
coherent superposition of joint excitations of ferromagnetic
magnons in a and b modes.

Based on the above considerations, a hierarchy of magnon-
mode entanglement in antiferromagnets of the kind discussed
here has been analyzed in detail in Ref. [11]. The theoretical
analysis in Ref. [11] was mainly focused on the ground state
of the system, while we here extend the discussion to cover
excited states as well. What follows is the main focus of
the present paper: to provide a theoretical foundation, which
establishes an experimental platform to measure entanglement
between magnon modes of an antiferromagnetic material,
as described by a pair of bosonic modes (a, b), through
the EPR type of nonlocality. The analytical work is com-
bined with a suggested experimental setup, that relies on the
magnon-photon interaction, with which realistic experimental
investigations can be made. This hence provides a formal, as
well as practical, platform for which magnon entanglement
may be quantified experimentally.

III. MEASUREMENT SCHEME VIA
THE MICROWAVE CAVITY

A highly relevant concept to continuous-variable entangle-
ment is the Bell-type nonlocal correlations known as EPR
nonlocality. In the present case, the EPR nonlocality can be
quantified by the following EPR function [19]:


(ψ ) = 1
2

[
Varψ

(
X A

k + X B
k

) + Varψ
(
PA

k − PB
k

)]
, (8)

where X A
k = ak+a†

k√
2

(X B
k = bk+b†

k√
2

) and PA
k = ak−a†

k

i
√

2
(PB

k =
bk−b†

k

i
√

2
) are assumed to be the dimensionless position and

FIG. 2. Left panel: Entanglement entropies E [|ψ0(rk, φk )〉] and
E [α†

k|ψ0(rk, φk )〉] = E [β†
−k|ψ0(rk, φk )〉] against the EPR function


0(rk, φk ) for antiferromagnetic spin lattices with only Heisenberg
interactions. Black and brown curves correspond to the entangle-
ment of the ground state and the first excited state, respectively.
Right panels illustrate how the EPR function 
0(rk, φk ) depends
on k along the (0, 0, 1) direction in a simple cubic lattice for
selected values of exchange couplings J (1) and J (2), and magnetic
anisotropy K.

momentum quadratures for the ak(bk ) mode, respectively.
Varψ (V ) is the variance of a Hermitian operator V with re-
spect to the state |ψ〉. The uncertainty relation 
(ψ ) � 1 is
known to hold for any given bipartite separable state |ψ〉 [19].
Therefore, any violation of this inequality is an indication of
the state |ψ〉 being nonlocal and indeed a bipartite entangled
state. Note that the EPR nonlocality specifies a stronger type
of entanglement than a nonzero entropy of entanglement in
the sense that there are states with nonzero entropy of entan-
glement which do not violate the uncertainty relation. Note
also that the EPR nonlocality depends, just like the entangle-
ment entropy, on the modes that are chosen. In the present
discussion we consider (a, b) modes.

For the spin-wave ground state |ψ0(rk, φk )〉 given in
Eq. (B6), we obtain the EPR function


0(rk, φk ) = cosh 2rk + sinh 2rk cos φk, (9)

which specifies the relation between the entanglement pa-
rameter and EPR nonlocality. Since the ground state EPR
nonlocality and the entanglement entropies depend on the
same squeezing parameter, one may analyze the dependence
between entanglement entropy and the ground state EPR
nonlocality. Figure 2 illustrates the two-mode magnon entan-
glement in the ground state and first excited states against
the EPR function 
0(rk, φk ), for antiferromagnetic spin lat-
tices, where only Heisenberg interactions are relevant (DM
interactions are neglected) and described by Eqs. (1) and (2).
Typical materials that are known to be described by this type
of spin Hamiltonian are antiferromagnets like BiFeO3 [20]
and LaMnO3 [21], as well as synthetic, antiferromagnetic
multilayers [17]. In this case, 	k is real valued and


0(rk, φk ) =
{

e2rk , if φk = 0 (	k < 0),
e−2rk , if φk = π (	k > 0).

(10)

Two distinct regions, the nonlocal bipartite entangled state
and the local bipartite entangled state with transition point
at 
0(rk, φk ) = 1, in Fig. 2 distinguish the stronger region
of magnon-magnon entanglement by the EPR uncertainty
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relation 
0(rk, φk ) < 1. The clear relation between the EPR
function and the two-mode magnon entanglement entropy
allows for experimental quantification of magnon-magnon
entanglement, as we discuss in detail below. It is worth men-
tioning that the EPR nonlocality has been used for verification
of entanglement in optical and atomic systems based on ho-
modyne detection and types of interferometry setups [22–28].
However, these types of measurement setups are not realis-
tic for magnon systems, since these technologies are mainly
based on beam splitters that have limitations for characterizing
magnon entanglement. We propose as a solution a mechanism
and measurement setup that relies on light-matter interaction
as a probe to observe the EPR function and thus EPR nonlo-
cality and the degree of magnon-magnon entanglement.

Cavity modes can couple to magnon modes in both anti-
ferromagnets and ferromagnets [29–34]. The magnon-photon
interaction can be understood in terms of the vector potential
of the quantized photon field and the magnetic moments of the
material. Since the mode polarization and propagation direc-
tion of the electromagnetic wave are highly relevant [33], we
first introduce the essential physics of this interaction. After
this, a possible structure of an experimental measurement of
magnon entanglement is discussed.

We assume a microwave cavity electromagnetic field de-
scribed by the vector potential

Ak(r, t ) = AL;k(r, t ) + AR;k(r, t ),

AR;k(r, t ) = A0
[
eRcke−i(k·r+ωt ) + e∗

Rc†
kei(k·r+ωt )]

= eitωc†
kck AR;k(r, 0)e−itωc†

kck ,

AL;k(r, t ) = A0
[
eLd−kei(k·r−ωt ) + e∗

Ld†
−ke−i(k·r−ωt )

]
= eitωd†

−kd−k AL;k(r, 0)e−itωd†
−kd−k (11)

for a given k vector describing the propagation direction of
the electromagnetic wave. A0 is the amplitude of the vector
potential and ω is the single cavity mode frequency, which
are both tuned by the volume of the cavity and the separa-
tion distance between the two conductor plates in the cavity
(Fig. 2). Here, we focus on the lowest energy cavity mode
and disregard contributions from the higher energy cavity
modes. In fact, the vector potential represents superposition
of right and left circularly polarized photons, where ck(c†

k )
and d−k(d†

−k ) are the corresponding annihilation (creation)
operators with unit vectors eR and eL, respectively. In the
rotating frame, the magnon-photon coupling is given by the
interaction Hamiltonian

Hmp = H + Hph − Bp · S, (12)

where Bp = ∇ × Ak(r, 0) is the photon induced magnetic
field interacting through a Zeeman term with the total spin S
of the antiferromagnetic material. H is the spin Hamiltonian
[Eq. (1)] and

Hph = ω
∑

k

(c†
kck + d†

−kd−k ) (13)

is the cavity photon Hamiltonian. For a given k vector along
the (0, 0, 1) direction, we assume eR = −e∗

L = 1√
2
(1,−i, 0)

and apply the Holstein-Primakoff, Fourier, and Bogoliubov
transformations, as mentioned above and described in the

Appendices, to derive the bosonized interaction Hamiltonian

Hmp;k = ωαkα
†
kαk + ωβ−kβ

†
−kβ−k,+ω(c†

kck + d†
−kd−k )

+(
kd†
−kβ−k + 
∗

kd−kβ
†
−k )

−(
kc†
kαk + 
∗

kckα
†
k ), (14)

with the resonant magnon-photon interaction. Here 
k =
λk(uk + v∗

k ) for uk and vk given by Eq. (A6), λk = A0k
√

S,
and k = (0, 0, k). Note that, apart from the momentum
conservation which leads to Eq. (14), for the sake of en-
ergy conservation the off-resonant interaction (
kd−kαk +

∗

kd†
−kα

†
k ) − (
kckβ−k + 
∗

kc†
kβ

†
−k ) is neglected.

Considering the Hamiltonian in Eq. (14), we notice the in-
variant space spanned by the ordered one-particle Fock states

|1〉 = |1000〉k = α
†
k|0000〉k,

|2〉 = |0100〉k = c†
k|0000〉k,

|1′〉 = |0010〉k = β
†
−k|0000〉k,

|2′〉 = |0001〉k = d†
−k|0000〉k, (15)

with |0000〉k being the joint vacuum state of the magnon-
photon system. In this four dimensional invariant subspace,
the Hamiltonian takes the following direct sum form:

Hmp;k =
(

ωαk −
∗
k−
k ω

)
⊕

(
ωβ−k 
∗

k

k ω

)
. (16)

This implies that we have the following nonzero instantaneous
survival and transition probabilities:

|〈1|U (t )|1〉|2 = |〈2|U (t )|2〉|2

= cos2 [tπ fk] + (
ωαk )2

(
ωαk )2 + |
k|2 sin2 [tπ fk],

|〈2|U (t )|1〉|2 = |〈1|U (t )|2〉|2

= |
k|2
(
ωαk )2 + |
k|2 sin2 [tπ fk],

|〈1′|U (t )|1′〉|2 = |〈2′|U (t )|2′〉|2

= cos2 [tπ f ′
k]+ (
ωβ−k )2

(
ωβ−k )2 + |
k|2 sin2 [tπ f ′
k],

|〈2′|U (t )|1′〉|2 = |〈1′|U (t )|2′〉|2

= |
k|2
(
ωβ−k )2 + |
k|2 sin2 [tπ f ′

k], (17)

where U (t ) = e−itHmp is the time evolution operator and

ωαk = ωαk −ω

2 and 
ωβ−k = ωβ−k −ω

2 are the magnon-photon
energy differences. Transition frequencies read π fk = π

Tk
=√

(
ωαk )2 + |
k|2 and π f ′
k = π

T ′
k

= √
(
ωβ−k )2 + |
k|2,

which result explicitly in relations to the EPR function:


0(rk, φk ) = (π fk )2 − (
ωαk )2

λ2
k

= (π f ′
k )2 − (
ωβ−k )2

λ2
k

. (18)
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This, in fact, follows from

|
k|2
λ2

k

= |uk + v∗
k|2 = cosh 2rk + sinh 2rk cos φk

= 
0(rk, φk ). (19)

Equations (17) and (18) indicate that by tuning the photon
frequency ω to either of the magnon frequencies ωαk or ωβ−k ,
the EPR function and consequently the EPR nonlocality and
the degree of magnon-magnon entanglement can be measured
through the relevant transition frequency fk or f ′

k, where the
associated magnon-photon transition intensity between 1 ↔ 2
or 1′ ↔ 2′, i.e., the visibility of magnon-photon interference
fringes, is maximal. From Eq. (17) we note that the transi-
tion frequencies are the same as the corresponding survival
frequencies. Therefore, the measurement of instantaneous sur-
vival probability |〈x|U (t )|x〉|2 for each magnon or photon,
where |x〉 represents the one-particle Fock states |1〉, |2〉, |1′〉,
or |2′〉, also allows for quantification of the EPR function.

A key practical feature is the direct sum form of the Hamil-
tonian in Eq. (16), which results from energy and momentum
conservation mentioned above. This assures that there are
no transitions between the two subspaces M = span{|1〉, |2〉}
and M′ = span{|1′〉, |2′〉} at any time. This implies that
each of the polarized photons independently interacts with
its hybridized α or β magnon-mode counterpart. This fea-
ture together with Eqs. (17) and (18) indicates that, in fact,
only a single circularly polarized cavity field is needed to
measure the EPR function through magnon-photon transition
frequency.

Regarding the actual measurement, a correct interpretation
of quantities in Eq. (17) is needed to devise the measurement
technique. One may notice that these quantities indeed de-
scribe probabilities, as they take their values between 0 and
1, and also the first two as well as the last two expressions
corresponding to the two subspaces M and M′ each add
up to 1. In particular, each of the photon-magnon transition
probabilities at a given time is just the probability at which
the corresponding polarized single photon is absorbed by the
antiferromagnetic material. By this explanation, one can see
that the transition probabilities are measurable quantities us-
ing polarization sensitive single photon detectors that measure
the fluctuation between one and zero photon in the cavity.
In other words, the transition probabilities can be viewed as
expectation values of the projection operators corresponding
to the location of the single photon detectors.

Figure 3 (left panel) shows the measurement scheme as-
sociated with the subspace M. In this figure, a quantized
circularly polarized photon is depicted to interact with the
hybridized magnon mode (α mode) in a microwave cavity.
By a careful control of the magnon and photon frequencies,
one can measure the EPR function through the transition
frequency fk = 1/Tk between the magnonic α mode and the
interacting photonic mode, and therefore evaluate the degree
of bipartite continuous-variable magnon-magnon entangle-
ment. In the right panels of Fig. 3, this is illustrated via the
transition probability (lower right panel) between magnon and
photon modes, as a function of time. The oscillation period,
Tk, of the magnon-photon transition probability, which can
be measured via a photon counting technique, determines the

FIG. 3. Left panel: A microwave cavity consisting of two perfect
conductor plates located on the z axis at a distance L from each
other. The hybridized magnon in an antiferromagnet (schematically
shown by the yellow slab denoted by AFM), which combines two
ferromagnetic spin sublattices with opposite magnetization along
the z direction, is coupled to a quantized circularly polarized cav-
ity photon field (green curve, including arrows). Right panels: The
resonant magnon-photon coupling allows for measuring the EPR
function 
0(rk, φk ) via the magnon-photon transition frequency fk.
The oscillation period Tk of the magnon-photon transition probability
determines the transition frequency. An external magnetic field tunes
the resonance frequency of the magnon while the photon frequency
depends on the ratio between the speed of light and the separation
distance L.

transition frequency fk. The figure also shows the EPR func-
tion as a function of fk = 1/Tk [explicitly defined in Eq. (18)
and below] for selected values of λk (upper right panel). A
similar M′-based setup is equally valid.

IV. CONCLUSION

In conclusion, we have shown that an antiferromag-
netic coupling between two ferromagnetic sublattices creates
magnon-magnon entanglement in such a way that each energy
eigenstate becomes a two-magnon-mode entangled state. The
bipartite magnon-mode entanglement is fully characterized
by a single entangling parameter, which is clearly related to
the EPR function of the ground state. We propose a feasi-
ble measurement setup based on light and matter interaction
to quantify the EPR function through measurement of the
magnon-photon transition frequency. The proposed setup is
compatible with current advances in magnonic and photonic
technologies.
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APPENDIX A: DESCRIPTION OF THE HAMILTONIAN
IN TERMS OF BOSONIC OPERATORS

The magnetic interactions of the system are described by
the Hamiltonian in Eqs. (1) and (2), as detailed in the main
text. To bosonize the Hamiltonian in terms of collective modes
in k space (see Ref. [35] for a review), we use the Holstein-
Primakoff transformation,

Sublattice A :

⎧⎪⎨
⎪⎩

Sz
i = S − a†

i ai,

S+
i = (

2S − a†
i ai

) 1
2 ai,

S−
i = a†

i

(
2S − a†

i ai
) 1

2 ,

Sublattice B :

⎧⎪⎪⎨
⎪⎪⎩

Sz
j = b†

jb j − S,

S+
j = b†

j

(
2S − b†

jb j
) 1

2 ,

S−
j = (

2S − b†
jb j

) 1
2 b j,

and linear approximation at low temperatures (kBT �
min{J (1), J (2)}), where 〈a†

i ai〉 � S and 〈b†
jb j〉 � S, followed

by Fourier transformation

ai =
√

2

N

∑
k

e−ik·ri ak ⇔ ak =
√

2

N

∑
i

eik·ri ai,

b j =
√

2

N

∑
k′

e−ik′ ·r j bk′ ⇔ bk′ =
√

2

N

∑
j

eik′ ·r j b j (A1)

with orthogonality relations∑
i

e±i(k−k′ )·ri = N

2
δkk′ ,

∑
k

e±ik·(r j−ri ) = N

2
δi j . (A2)

Here, N is the number of sites and

γ
(1)

k = 1

z(1)

∑
δ1

eik·δ1 , γ
(2)

k = 1

z(2)

∑
δ2

eik·δ2 , (A3)

where the sums are carried out over the vectors δ1 connecting
a magnetic site to its nearest neighbors and the vectors δ2

connecting a magnetic site to its next-nearest neighbors. z(1)

and z(2) are the numbers of nearest and next-nearest neigh-
bors of each site on the lattice, respectively. The bosonized
Hamiltonian in k space reads

Hk = ωak a†
kak + ωb−k b†

−kb−k

+gkakb−k + g∗
ka†

kb†
−k, (A4)

where

ωak = εk − B, ωb−k = εk + B,

εk = S
(
z(1)J (1) + 2K

+z(2)
{
J (2) − 2Re

[
(J (2) − iD(2) )γ (2)

k

]})
,

gk = Sz(1)γ
(1)

k (J (1) + iD(1) ). (A5)

Here, a†
k (ak) and b†

−k (b−k) are bosonic creation (annihilation)
operators, which mutually commute and define independent
families of bosonic operators on the opposite sublattices A and
B, respectively.

Under SU(1,1) Bogoliubov transformation(
ak

b†
−k

)
=

(
uk vk
v∗

k u∗
k

)(
αk

β
†
−k

)
, (A6)

where uk = cosh(rk ) and vk = sinh(rk )eiφk with

rk = tanh−1

[
1 −

√
1 − |	k|2
|	k|

]
� 0,

φk = π − arg[	k], 	k = 2gk

ωak + ωb−k

= gk

εk
, (A7)

we obtain the following diagonal form of the Hamiltonian:

Hk = ωαkα
†
kαk + ωβ−kβ

†
−kβ−k (A8)

with magnon dispersion relation

ωαk = ε̃k − B, ωβ−k = ε̃k + B,

ε̃k = cosh(2rk )εk + sinh(2rk )Re(gkeiφk ) (A9)

provided |	k| < 1. The SU(1,1) condition |uk|2 − |vk|2 = 1
assures that αk and β−k for all k also define independent
families of bosonic operators.

APPENDIX B: DESCRIPTION OF MAGNON-MAGNON
ENTANGLEMENT IN TERMS OF THE ENTANGLEMENT

PARAMETER

From the diagonal expression in Eq. (A8), the ground state
of the Hamiltonian Hk in the (α, β ) mode reads

|ψ0〉 = |0; αk〉|0; β−k〉, (B1)

where |0; αk〉 and |0; β−k〉 are vacuum states of αk and β−k,
respectively, i.e.,

αk(|0; αk〉|0; β−k〉) = β−k(|0; αk〉|0; β−k〉) = 0. (B2)

By expressing the product vacuum state as a linear combina-
tion of |n; ak〉 and |n; b−k〉, which are the occupation number
bases for the bosonic operators ak and b−k, respectively, i.e.,

|0; αk〉|0; β−k〉 =
∞∑

n=0

pn;k|n; ak〉|n; b−k〉, (B3)

and by inserting it into Eq. (B2), we find

pn+1;k = vk

u∗
k

pn;k, (B4)

where vk and uk are given by Bogoliubov transformation in
Eq. (A6). By solving this recursive equation with normaliza-
tion constraint

∑∞
n=0 |pn;k|2 = 1, the probability amplitudes in

the superposed coherent state of Eq. (B3) become

pn;k = einφk

cosh rk
tanhn rk. (B5)
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Therefore, in the (a, b) modes, the ground state magnetic
modes can be written as a vector-valued function of (rk, φk ):

|ψ0(rk, φk )〉 = 1

cosh rk

∞∑
n=0

einφk tanhn rk|n; ak〉|n; b−k〉.

(B6)

Note that we have in fact performed the inverse of the trans-
formation in Eq. (A6) to derive Eq. (B6) from Eq. (B1).

Equations (B1) and (B6) indicate that while the ground
state is a product state in (α, β ) modes, it is an entangled
state when expressed in (a, b) modes with the entanglement
entropy given by

E [|ψ0(rk, φk )〉] = [cosh2(rk ) log cosh2(rk )

− sinh2(rk ) log sinh2(rk )]. (B7)

A hierarchy of magnon-mode entanglement in antiferromag-
nets has been studied in Ref. [11]. Note that the entanglement
is quantified by the parameter rk, or equivalently |	k|. This is
indeed true for the complete energy eigenbasis states, which
take the form (α†

k )x(β†
−k )y|ψ0〉 = √

x!y!|x; αk〉|y; β−k〉 for any
positive integer powers of x and y that, although each of them
is disentangled in the (α, β ) modes, are entangled states in the
(a, b) magnon modes with an entanglement entropy that only
depends on the parameter rk, or equivalently |	k|. To see this,
we note that

(α†
k )x(β†

−k )y|ψ0〉 ≡
∞∑

n=0

p(x,y)
n;k |n + δm; ak〉|n; b−k〉, x � y,

(α†
k )x(β†

−k )y|ψ0〉 ≡
∞∑

n=0

p(x,y)
n;k |n; ak〉|n + δm; b−k〉, x � y,

(B8)

by induction and δm = |x − y|. Here, the probability ampli-
tudes are given by

p(x,y)
n;k = 1√

x!y!

(
1

u∗
k

)δm(
1

u∗
kvk

)m

q(m,δm)
n;k pn;k, (B9)

where m = min{x, y} and pn;k is the expansion coefficient
given in Eq. (B5). q(m,δm)

n;k satisfies the following recursive

relations:

q(m,δm>0)
n;k = |uk|2

√
n + δmq(m,δm−1)

n;k

−|vk|2
√

n + 1q(m,δm−1)
n+1;k ,

q(m>0,0)
n;k = n|uk|4q(m−1,0)

n−1;k − (2n + 1)|ukvk|2q(m−1,0)
n;k

+(n + 1)|vk|4q(m−1,0)
n+1;k , (B10)

with initial value condition q(0,0)
n;k = 1 for each n.

Since |uk|, |vk|, and the probabilities |pn;k|2 are only func-
tions of rk, the probabilities |p(x,y)

n;k |2 are only functions of
rk. This demonstrates that the entanglement entropies of all
energy eigenbasis states in the (a, b) modes, i.e.,

E [(α†
k )x(β†

−k )y|ψ0〉] = −
∞∑

n=0

∣∣p(x,y)
n;k

∣∣2
log

∣∣p(x,y)
n;k

∣∣2
, (B11)

are only functions of the single squeezing parameter rk. For
this reason we identify rk, or equivalently |	k|, as the magnon-
magnon entanglement parameter of the system.

Note that H1 = 0 corresponds to rk = 0 and trivial Bo-
goliubov transformation in Eq. (A6). In this case the (a, b)
and (α, β ) modes coincide and therefore both Hamiltonians
in Eqs. (3) and (5) describe two separate noninteracting fer-
romagnets with opposite magnetizations. Moreover, the full
energy spectra are given by product states |n; ak〉|m; b−k〉,
which indicate n and m ferromagnetic magnons in the bosonic
modes of a ≡ α and b ≡ β, respectively. However, for H1 
=
0, the nontrivial transformation in Eq. (A6) combines the two
oppositely magnetized ferromagnetic magnon modes of a and
b, which represent two ferromagnetic sublattices, into anti-
ferromagnetic magnon modes (α, β ). Thus, in the presence
of antiferromagnetic interaction H1, the trivial entanglement
entropy between α and β modes means no entanglement
between antiferromagnetic magnons in the system while
nonzero entanglement entropy in (a, b) modes indicates en-
tanglement between the two ferromagnetic magnons or the
two ferromagnetic sublattices.
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