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Possible realization of a phononic tsunami in a wedge-shaped sample
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Exploiting the theory of solitons in a nonlinear elastic medium we predict a phenomenon called a phononic
tsunami, which is characterized by the dramatic increase of the local amplitude of phonon modes. To elucidate the
possible experimental detection of this phenomenon we propose to use a wedge-shaped sample in which a sharp
edge serves for the emulation of the shoaling effect and such a local enhancement can be observed. Together with
eigenfrequencies of transverse and longitudinal phonon modes of a system we find the characteristic dispersion
relations that can be considered as a hallmark of a phononic tsunami. We justify our predictions by means of
analytical calculations and numerical simulations showing a possible realization of this nonlinear effect in such
a geometry. Our results provide the framework for the implementation of kind experiments aimed at realizing
and investigating a phononic tsunami phenomenon in relevant materials.
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I. INTRODUCTION

A tsunami is a sporadic powerful water wave triggered
by a shock external force (usually an earthquake) that can
travel for thousands of kilometers from the disturbance across
deep ocean. In the open ocean the tsunami does not have a
significantly large amplitude, but its wavelength is extremely
long. Due to these properties, it is difficult to detect a tsunami
before it nears shore. However, on approaching the coast,
when the effect of shoaling becomes crucial, a small am-
plitude open-ocean tsunami evolves into a large amplitude
wave, with the bottom topography altering considerably its
characteristics. Tsunami at intermediate depth is described by
the dispersion relation ω2 = gk tanh(kh) that can be obtained
from the Airy wave theory [1,2] (here k is the wavenumber,
h is the equilibrium water depth, and g is the gravitational
acceleration constant).

A series of different approaches related to tsunami wave
propagation have been discussed in literature. Most of them
include nonlinearly dispersive water wave models based on
the soliton theory, like the Korteweg de Vries, and Boussinesq
equations. Later the Boussinesq-type model was reformulated
by Peregrine for long waves in shallow waters of varying
depth. However, it is worth noting that the consideration of the
tsunami as a manifestation of soliton physics is still debated
and controversial topic [3–5].

Since sound propagation and heat diffusion can both be
described as mechanical vibrations transmitted through a
crystal exploiting the phonon picture, the emergence of sim-
ilar complex phenomena and related topological effects, like
a phononic tsunami in the lattice, can be anticipated. From
the theoretical point of view some progress in that direction
has been achieved already with the aim to show the possible

diversity and plenty of extraordinary nonlinear phenomena
occurring with phonons. It was shown by means of a diagram
technique that the classical vibrational degrees of freedom
of a solid, being sufficiently far from equilibrium, can be
evolved into the phononic turbulence due to nonlinear in-
teractions between long-wavelength modes [6]. Later on, it
was found that in a cylindrical quantum wire embedded in
another material acoustic phonon modes give rise another
hydrodynamic-like nonlinear topological excitation known as
a phonon vortex with nonzero angular momentum along the
wire axis [7]. Moreover, based on two different approaches,
the homogeneous Fermi-Pasta-Ulam-Tsingou model and the
nonlinear Schrödinger equation, the formation of phononic
rogue waves in phononic lattices was predicted [8]. Along
with this prediction different theoretical studies and sub-
sequent experimental observations show that hydrodynamic
phonon transport occurs in materials with a high Debye
temperature and large anharmonicity. Interestingly, that this
hydrodynamic-like phenomenon can be described by the
macroscopic transport equation similar to the Navier-Stokes
equation [9].

Recent technological progress on newly developed
phononic crystals and devices, combined with theoretical
modeling, enabled control over material properties providing
unique opportunities to manage and manipulate the phononic
spectrum and other characteristics of these systems [10,11].
As a result, a large variety of experiments can be designed
to verify the theoretical predictions of the above-mentioned
effects in the field of nonlinear phononics [12]. A recent
possible confirmation of the existence of novel nonlinear
phenomena, namely phononic solitons, was obtained in trav-
eling four-wave mixing experiments with incorporation of
chirped input pulses into nonlinear phononic crystal [13].
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FIG. 1. Sketch of the sample geometry and the adopted reference
system.

Undoubtedly, this experiment opens up the possibility of the
observing not only phononic solitons but also another closely
related effect, the phononic tsunami.

To this end, the goal of the present paper is to provide
a theoretical background and a description of the phononic
tsumani phenomenon for its possible detection in relevant ma-
terials. It is worth noting that the study of strongly nonlinear
elastic waves propagating in a wedge-shaped waveguide and
known as wedge waves is longstanding challenge [14–19].
After the theoretical prediction of wedge waves subsequent
experiments confirmed presence of nonlinearities induced by
the laser-based pump-probe excitations [20–22].

In turn, we propose to use a wedge-shaped sample to
emulate the tsunami shoaling when by means of the shock
wave pulse applied to a small side of the wedge, the phonon
excitations approach its sharp edge (see Fig. 1). Since phonons
can demonstrate hydrodynamic-like behavior (turbulence,
hydrodynamic transport, rogue waves) we define such a phe-
nomenon in spirit of an ocean-wave tsunami. In other words,
the phononic tsunami is characterized by the dramatic en-
hancement of the displacement field in a narrow edge of
a wedge. It can be induced by the correspondingly applied
shock wave in the specific geometry of the wedge-shaped
sample. In this case the narrow edge of a wedge replicates
the shoaling effect for the ocean tsunami wave, which runs
from deep to shallow water. The energy of the tsunami wave is
concentrated at the edge tip and as a result high displacement
amplitude is achieved. Exploiting the equation for modeling
of solitons in a nonlinear elastic media, we find dispersion
relations that can be considered as a hallmark of the phononic
tsunami occurrence [23].

The paper is organized as follows. In Sec. II we present the
model and determine the eigenfrequencies for transverse and
longitudinal phonon modes of a wedge-shaped sample. The
equation describing propagation of the phononic tsunami is
presented and discussed in Sec. III, where we also find cor-
responding dispersion relations. Numerical simulations of the
phenomenon based on the introduced equation for the wedge-
shaped geometry are presented in Sec. IV. In Sec. V we study
analytically the dynamical behavior of a phononic tsunami

induced the excitation of the specific form of a short Gaussian
pulse. The results obtained are summarized in Sec. VI.

II. MODEL AND EIGENFREQUENCIES
OF PHONON MODES

The system under consideration is modeled as a wedge
with the length l , the height h, the width w, and the angle
θ = arctan h

l (Fig. 1).
Before the description of a phononic tsunami phenomenon

the identification of the eigenfrequencies of all possible
phonon modes for this geometry is required. One has to
distinguish the longitudinal and transverse modes and their
eigenfrequencies corresponding to the different boundary
conditions. This information is necessary for the possible
experimental identification of a phononic tsunami by means
of dispersion relations describing its propagation in a wedge-
shaped sample (see Sec. III). From the formal point of view,
we suggest using the same strategy as it is usually proposed
for the ocean tsunami early warning system.

We introduce the coordinate system as shown in Fig. 1. To
characterize transverse phonon modes in a wedge we define
the displacement field as a vector u directed along the z axis,
yet independent on z [i.e., u has only one component uz =
u(x, y)]. What concerns the longitudinal phonon modes the
vector u of corresponding displacement field belongs to the
x-y plane. Without loss of generality one can assume that it
has only single component ux = u(x, y). Finally, to simplify
the model we consider it without defects [24,25].

A. Eigenfrequencies of transverse phonon modes

When the phonon wavelength is larger than the width of a
wedge, the transverse phonon modes dominate and the bihar-
monic equation should be applied for their description [26,27]

ρ
∂2u

∂t2
= −D

w
�2u, (1)

where the material dependent parameters ρ and D = Ew3

12(1−ν2 )
denote mass density and flexural rigidity of the material, E is
the Young’s modulus, ν is Poisson’s ratio, and �2u = ∇4u is
the bi-Laplacian operator. The displacement field for transver-
sal phonon modes is calculated within the approximation that
the width w of a wedge is much smaller than its length and the
height. Due to this assumption the consideration of transverse
phonon modes for the three-dimensional geometry (see Fig. 1)
is reduced to the quasi-two-dimensional system (triangle).

Corresponding boundary conditions depend on the fact
whether the wedge edges are clamped (fixed) or free. In the
case of fixed edges the boundary conditions are

u|x=0,x=l = 0,
∂u

∂x

∣∣∣∣
x=0,x=l

= 0,

u|y=0,y=h = 0,
∂u

∂y

∣∣∣∣
y=0,y=h

= 0. (2)
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In turn, the boundary conditions for the wedge with the free
edges imply

u|x=0,x=l = 0,
∂2u

∂x2

∣∣∣∣
x=0,x=l

= 0,

u|y=0,y=h = 0,
∂2u

∂y2

∣∣∣∣
y=0,y=h

= 0. (3)

It is important to emphasize that one has to distinguish
between conditions u = 0 for free edges and u = 0 for the
clamped edges. In the first case u = 0 means that edges of a
system under consideration rest on a fixed support but are not
clamped to it. In the second case the condition u = 0 expresses
the fact that the edges of a wedge undergo no transversal
displacement in the deformation, i.e., the edges are rigidly
fixed.

We are searching for a solution in the form

u(x, y, t ) = U (x, y) cos (ωt t + ϕ), (4)

that after the straightforward substitution Eq. (1) transforms
to stationary biharmonic equation

�2U = κ4U, (5)

with κ4 = 12(1−ν2 )ρ
Ew2 ω2

t . Here ωt is the eigenfrequency of trans-
verse phonon modes and ϕ is the arbitrary phase.

The case of vibration of the wedge with free edges [the
boundary conditions are given by Eq. (3)] allows the analyti-
cal solution, which acquires the form:

u(x, y, t ) = A

(
sin

mπx

l
sin

nπy

h
− sin

nπx

l
sin

mπy

h

)

× cos (ωt t + ϕ), (6)

where A and ϕ are the arbitrary amplitude and phase. The set
of nonzero integer numbers m and n numerates the harmonics
of the displacement field along the x and y axis respectively.
Corresponding eigenfrequencies for m and n with m > n are
given by the expression

ωt = π2

√
E

12ρ(1 − ν2)

w

h2
(m2tan2θ + n2). (7)

Equation (5) for the wedge-shaped geometry under con-
sideration is solved by subtracting of the two solutions of
the same equation but for a rectangular membrane with the
reversed indices m and n. Since the displacement field on
diagonals which is equidistant from the center must have the
same expression (because of symmetry) this procedure gives
a solution which vanishes along the diagonal as long as m and
n are both even or odd. The lowest frequency corresponds to
m = 3 and n = 1

ω
(min)
t = π2

√
E

12ρ(1 − ν2)

w

h2
(9tan2θ + 1). (8)

In the case of the wedge vibrations with clamped edges
[boundary conditions are given by Eq. (2)], analytical solution
of the biharmonic Eq. (1) does not exist and numerical meth-
ods should be applied. However, for the elongated wedge,
when h � l , one can reduce the two-dimensional biharmonic
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FIG. 2. Eigenfrequencies of transverse phonon modes in a quartz
wedge with the clamped edges when h � l in a dependence of the
length and the width. (a) Curves corresponding to different mode
numbers are shown and numerated. (b) The three-dimensional plot
of eigenfrequencies dependence as a function of the length and the
width of a wedge.

equation to the quasi-one-dimensional one and find the solu-
tion of Eq. (5) in the form [26]

u(x, y, t ) = A[(sin κl − sinh κl )(cos κx − cosh κx)

−(cos κl − cosh κl )(sin κx − sinh κx)] cos (ωt + ϕ), (9)

with the eigenfrequencies obeyed the transcendental equation

cos κ (ωt )l cosh κ (ωt )l = 1. (10)

The minimal eigenfrequency can be found by means of the
expansion of the left-side part of Eq. (10) in series with respect
to the ωt up to the third order of smallness. This gives

ω
(min)
t ≈ 6w

l2

√
E

ρ(1 − ν2)
. (11)

In Fig. 2 one can see the results of a numerical solution
of Eq. (10) for the eigenfrequencies as a function of com-
bination its length and the square root of the width (l/

√
w)

with the numerical values for parameters ρ = 2650 kg/m3,
E = 76.5 GPa, and ν = 0.07 appropriate to quartz [Fig. 2(a)].
For the sake of visibility we plot a 3D dependence vs geo-
metrical parameters to show explicitly its dependence on the
length and the width of a quartz wedge [Fig. 2(b)].

B. Eigenfrequencies of longitudinal phonon modes

If a wedge is no more thin and its width larger than phonon
wavelength (see the section above) the longitudinal phonon
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modes are localized in a “bulky” system. In this case for the
eigenfrequency problem the wave equation can be used

ρ
∂2u

∂t2
= (λ + 2μ)�u, (12)

where λ and μ are Lamé parameters.
Since we are interested in eigenfrequencies only, for both

cases of clamped and free boundary conditions separated con-
siderations are not required [28]. To this end without loss of
generality one can consider the case of fixed edges:

u|x=0,x=l = 0, u|y=0,y=h = 0. (13)

The previously introduced constraint that the displacement
field has only single component ux = u(x, y) should imply an
additional boundary condition in the form of a certain stress
at the inclined edge of the wedge to satisfy this assumption.
However, as stated above, the subject of our consideration
is the eigenfrequencies only, thus such a condition will not
affect the result. The solution of Eq. (12) with the boundary
conditions Eq. (13) is similar to Eq. (6)

u(x, y, t ) = A

(
sin

mπx

l
sin

nπy

h
− sin

nπx

l
sin

mπy

h

)
× cos (ωt + ϕ), (14)

where ωl is the eigenfrequency of longitudinal phonon modes,
A and ϕ are the arbitrary amplitude and phase, and the set
of nonzero integer numbers m > n numerates the harmonics
of u(x, y, t ) along the x and y axis respectively, like for the
transverse modes (see subsection A above). However, in this
case, the eigenfrequencies are given by the expression

ωl = π

h

√
E

ρ

√
m2tan2θ + n2, (15)

that differs from Eq. (7) for the eigenfrequencies of transverse
phonon modes. The minimal frequency in this case is

ω
(min)
l = π

h

√
E

ρ

√
9tan2θ + 12. (16)

III. DISPERSION RELATIONS
FOR A PHONONIC TSUNAMI

A. The governing equation

The occurrence of phononic tsunami in a wedge-shaped
sample can be described by means of a nonlinear partial
differential equation [29]

1

c2

∂2u

∂t2
= ∂2u

∂x2
+ ∂2u

∂y2
+ γ1

(
∂4u

∂x4
+ ∂4u

∂y4

)
+ γ2

∂4u

∂x2∂y2

+ α

((
∂u

∂x

)2
∂2u

∂x2
+

(
∂u

∂y

)2
∂2u

∂y2

)

+ β

((
∂u

∂y

)2
∂2u

∂x2
+ 4

∂u

∂x

∂u

∂y

∂2u

∂x∂y
+

(
∂u

∂x

)2
∂2u

∂y2

)
.

(17)

It was firstly introduced for the description of solitons in a
nonlinear elastic medium and was derived in the frameworks

of the microscopic scalar model considering the interact-
ing particles with quartic polynomial potential. Within this
approximation dimensionless coefficients α and β can be in-
terpreted as the rescaled parameters that take into account the
effect of anharmonicity, while dimensional coefficients γ1 and
γ2 (dim γi = L2) are responsible for the harmonic contribution
to the potential. The coefficients γ1 and γ2 are chosen to be
positive in order to stabilize the relative displacements be-
tween atoms of the medium from equilibrium. In turn α and β

can be positive or negative, resulting in additive or competitive
contributions to the polynomial potential, correspondingly.
The parameter c can be considered as the longitudinal velocity
of sound in a wedge-shaped sample. Also, within the deriva-
tion procedure c plays role of the normalization factor in the
definition of parameters α, β, γ1, and γ2. The displacement
field u has a single component that is directed along the z
axis and it does not depend on z, whereby the width of a
wedge is not small in comparison with its length and height
(see Fig. 1).

It should be noted that Eq. (17) does not include the
terms that are responsible for the long-range interaction. The
model under consideration and the corresponding Hamilto-
nian, which is the starting point for the derivation of Eq. (17),
stipulates a short-range elasticity only. This means that the
emergence of the nonlinear phenomenon like a phononic
tsunami starts within a single-connected component, created
by neighboring particles of the elastic media. If one were use
the Hamiltonian with long-range kernel then one could trigger
such a kind of instability in several connected components,
spatially separated in the space that in the end can lead to even
more stable nonlinear phenomenon manifestation. Therefore,
results that will be discussed below remain the same on the
qualitative level.

The presence of the higher derivatives of the displacement
in Eq. (17) may look rather surprising and the optional com-
plication of the model. The emergence of a phonon tsunami
implies the occurrence of sufficiently high strain levels in
the wedge-shaped sample. In this case the continuum me-
chanics described by Eqs. (1) and (12) fails and the discrete
structure of a media should be taken into account. However,
the discreteness of a crystal structure has the consequence
that the relation between stress and strain in it can acquire
a nonlocal character. Such a nonlocal relation between stress
and strain leads to the spatial dispersion of phonon modes in
the media. This results in the need to take into account higher
order derivatives of the displacement field function. Using
the continuum approximation when the crystallographic frac-
tional coordinates can be considered as continuous variables,
where the typical wavelength is much larger than the distance
between the coupled objects and where no longer need to refer
to the displacement of each interacting object, one can expand
the displacement around the given atom in the lattice under
consideration in Taylor series up to the fourth order and obtain
Eq. (17) (see details of the derivation in Ref. [29]).

Moreover, the geometric nonlinearity of the system in-
duced by the wedge-shaped sample dictates the strong
necessity of the nonlinear potential for our model and con-
sequently stresses out the importance of the higher order
derivatives in Eq. (17) for the description of a phononic
tsunami in such a geometry.
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It is noteworthy that Eq. (17) can be derived also in the
framework of nonlinear elasticity theory [30]. Using the long
wave limit of the equation of motion of a simple crystal with
nearest and next nearest neighbor central and noncentral force
interactions between atoms, equations of motion for the stress
tensor can be expanded in series up to fourth derivative terms
for the displacement vector components.

When γ1 = γ2 = 0 and α = β = 0 (i.e., the lack of an-
harmonicity), we arrive to the well-known wave equation
Eq. (12).

It is worth noting also that recently the simplified version
of Eq. (17) with α = 0, β = 0, and γ2 = 2γ1 was used for
the prediction of a class of phononic metamaterials, in which
the phonon band dispersion can be changed from an acoustic
to an optical type by modulating a uniform stress [31]. In this
work it was demonstrated theoretically how to stop and switch
signals in a tunable metamaterial by changing the dispersion
relation of an entire band.

B. Dispersion relations

Based on the hydrodynamic-like behavior of phonons (see
Introduction) one can extend to our model the concept of the
Airy wave linear theory. It is well known that the latter is the
cornerstone for the derivation of the dispersion relation for an

ocean tsunami at the intermediate depth. To avoid confusions,
we would like to recall that this hydrodynamic similarity
is based on the formal analogy between an ocean tsunami
and its phononic counterpart. The constitutive equation is
still Eq. (17), obtained within the nonlinear elasticity theory.
Based on this approach we calculate dispersion relations of a
phononic tsunami far away from the narrow edge of a wedge-
shaped sample. Under such a condition, the nonlinear effects
induced by the geometry of a system can be neglected and
anharmonic effects are vanishing α = β = 0. This implies the
linear structure of the wave packet along the x axis and allows
to seek the solution of Eq. (17) in the form:

u(x, y, t ) = u0(y)eikx−iωt . (18)

Substitution of Eq. (18) into Eq. (17) yields an ordinary dif-
ferential equation

γ1
d4u0

dy4
+ (1 − k2γ2)

d2u0

dy2
+

(
γ1k4 + ω2

c2
− k2

)
u0 = 0,

(19)
which solution is

u0(y) = C1e−q1y + C2eq1y + C3e−q2y + C4eq2y, (20)

where Ci are constants and

q1 = 1

2

√
2γ1

(
γ2k2 − 1 −

√
−4γ 2

1 k4 + γ 2
2 k4 − 4γ1

ω2

c2 + 4γ1k2 − 2γ2k2 + 1
)

γ1
, (21)

q2 = 1

2

√
2γ1

(
γ2k2 − 1 +

√
−4γ 2

1 k4 + γ 2
2 k4 − 4γ1

ω2

c2 + 4γ1k2 − 2γ2k2 + 1
)

γ1
. (22)

1. Clamped edges

The boundary conditions for the case of clamped edges
given by Eq. (2) are transformed to a more amenable form:

u0|y=0 = u0|y=h = 0,

du0

dy

∣∣∣∣
y=0

= du0

dy

∣∣∣∣
y=h

= 0. (23)

Taking into account boundary conditions Eq. (23) one can
rewrite the solution of Eq. (20) in the form

u0(y) = C[sinh (q1(y − h)) + sinh q1h cosh q2y

+sinh q1y cosh q2h]q2 + C[sinh (q2(y − h))

+sinh q2y cosh q1h + sinh q2h cosh q1y]q1, (24)

where C is an arbitrary constant.
The dispersion relation ω = ω(k) for a phononic tsunami

is determined by the solvability condition for the constants Ci

in Eq. (20) and is given by the implicit expression

2q1q2

(
1 − 1

cosh (q1h) cosh (q2h)

)

= (
q2

1 + q2
2

)
tanh (q1h) tanh (q2h), (25)

where ω and k are included in Eqs. (21) and (22). It is in-
teresting to note that, due to the presence of the hyperbolic
tangent function, the dispersion relation given by Eq. (25)
formally reminds of the analogous “simplified” characteristic
of a tsunami wave in the ocean ω2 = gk tanh(kh) (see Intro-
duction).

-1 -0.5 0 0.5 1
k

0
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10

15

20

/c
  (

m
-1

)

  (m-1)

FIG. 3. The dispersion relation for a phononic tsunami in
a wedge with clamped edges for γ1 = 0.01 m2, γ2 = 5 m2, and
h = 0.05 m.
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FIG. 4. The dispersion relation for a phononic tsunami in a
wedge with free edges for γ1 = 0.01 m2, γ2 = 5 m2, and h = 0.05 m.

The numerical solution of Eq. (25) is shown in Fig. 3. The
remarkable feature of the dispersion relation for the given
set of parameters is the appearance of a gap in momentum
space. Such a kind of the dispersion relation with k gap
is not a new one and was predicted for different liquids
and supercritical fluids [32], plasma [33,34], and for certain
holographic models of quantum field theory [35,36]. Direct
experimental evidence for the k-gap has been obtained for the
phonon spectra in a monolayer dusty plasma [37]. Therefore,
we can consider gapped momentum states in corresponding
experiments as a fingerprint of the phononic tsunami.

2. Free edges

In the case of free edges, where the boundary conditions

u0|y=0 = u0|y=h = 0,

d2u0

dy2

∣∣∣∣
y=0

= d2u0

dy2

∣∣∣∣
y=h

= 0. (26)

are imposed, the y-component of the displacement field is
described by the function

u0(y) = C[sinh(q1(y − h)) + sinh q1h cosh q2y

+ sinh q1y cosh q2h]q2
2 + C[sinh(q2(y − h))

+ sinh q2y cosh q1h + sinh q2h cosh q1y]q2
1 (27)

where C is an arbitrary constant. The dispersion relation has
the form of a multi-valued function that assumes two distinct
values for the given value of k

ω2

c2
=

(
γ 2

2 − 4γ 2
1

)
k4 − 2(γ2 − 2γ1)k2 + 1

4γ1
,

ω2

c2
= (

1 − γ 2
1 k2

)
k2. (28)

It is worth noting that at qualitative level Eq. (28) is nothing
else than the first two terms in the series expansion of the
dispersion relation of the ocean tsunami ω2 = gk tanh(kh)
(see Introduction). The dispersion relation given by Eq. (28)
is shown in the Fig. 4.

Another striking feature of our analytical consideration is
that the y-component of the displacement amplitudes repre-
sented by Eqs. (24) and (27) are similar to the expression

for the deviation of the water surface from the undisturbed
state, obtained within Airy wave theory for a ocean tsunami
(see, e.g., Ref. [38]).

IV. NUMERICAL RESULTS FOR A STATIONARY CASE

To justify our predictions we performed numerical cal-
culations of the stationary Eq. (17) for boundary conditions
corresponding to free edges to show the possibility of realiz-
ing of a phononic tsunami in a wedge-shaped sample:

∂2u

∂x2
+ ∂2u

∂y2
+ γ1

(
∂4u

∂x4
+ ∂4u

∂y4

)
+ γ2

∂4u

∂x2∂y2

+ α

((
∂u

∂x

)2
∂2u

∂x2
+

(
∂u

∂y

)2
∂2u

∂y2

)

+ β

((
∂u

∂y

)2
∂2u

∂x2
+ 4

∂u

∂x

∂u

∂y

∂2u

∂x∂y
+

(
∂u

∂x

)2
∂2u

∂y2

)
= 0.

(29)

Due to highly nonlinearity of Eq. (29) we cannot apply the
same procedure with the subtraction of two solutions with
indices reversed as it was performed for Eqs. (1) and (12)
to satisfy the boundary conditions for the inclined wedge
edge. Generally speaking, the boundary conditions should be
written in the following way:

∂2u

∂n2
= 0, (30)

where d/dn denote differentiation along the outward normal
to the slope of a wedge-shaped sample [26]. However, accord-
ing to our numerical simulations the imposing of Eq. (30)
lead to significant increase of the calculation time. To avoid
such a problem and speed up numerical solution the inclined
edge is treated as the stress free (see details of the numerical
simulation in Appendix A). This assumption does not change
essentially the results on qualitative and quantitative level and
preserves our further conclusions (see below) regardless of
the boundary conditions selection for the inclined edge of a
wedge.

First of all we show the importance of the system geometry
and the shoaling effect for the observation of a phononic
tsunami. To this end we solved numerically Eq. (29) for a
rectangular cuboid with the same dimensions as in the case
of a wedge. Asymmetric structure of a displacement field in
Fig. 5(a) is connected to the significant difference between
coefficients γ1 = 0.01 m2 and γ2 = 5 m2 and the simultane-
ous lack of the “stabilizing” parameters α = 0 and β = 0
and, as a consequence, an amplification of nonlinear effects.
Introduction of α = 1 and β = 1 leads to the smoothing on
nonlinear effects [Fig. 5(b)] and the transformation to the
symmetric shape of the displacement field.

In the case of a wedge-shaped sample one can see from
Figs. 5(c) and 5(d) that there are solutions with a significant
enhancement of the displacement in a wedge, which can be
attributed to the emergence of a tsunami phononic wave.
Moreover, Figs. 5(c) and 5(d) show the amplitude of u approx-
imately 10 nm, which agrees with the experimental results for
the peak value of the displacement arising from of phonon
solitons occurrence in a 1D phononic crystal waveguide [13].
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FIG. 5. Displacement amplitudes in a rectangular cuboid [(a),(b)] and a wedge [(c),(d)] with the height h = 0.1 m and the length l = 0.2 m
for the set of parameters γ1 = 0.01 m2, γ2 = 5 m2, α = 0, β = 0 [(a),(c)], and γ1 = 0.01 m2, γ2 = 5 m2, α = 1, β = 1 [(b),(d)].

Justification of the observed data in the above-mentioned
experiment was done within the dynamic Euler-Bernoulli
equation (Euler-Bernoulli beam theory) with the subsequent
reduction to the nonlinear Schrodinger equation. It is interest-
ing to note that under certain conditions Eq. (17) also can be
transformed to the nonlinear Schrodinger equation.

V. DYNAMICAL BEHAVIOR OF A PHONONIC TSUNAMI
INDUCED BY A SHORT GAUSSIAN PULSE EXCITATION:

ANALYTICAL APPROACH

Before we restricted our study to the consideration of the
stationary Eq. (29). We have shown the possibility of gener-
ation of the topological excitation in the form of a phononic
tsunami and have provided detectable signatures of this effect.
Until now we excluded from investigation the dynamics of
this phenomenon in a wedge-shaped sample. However, from
the theoretical point of view it can be done by solution of
the time-dependent Eq. (17) with introduced of a short Gaus-

sian pulse f (t ) =
√

ln 2
π

f0

t1/2
exp [ − t2 ln 2

t2
1/2

] to the right side of

Eq. (17). The parameter t1/2 is the pulse half width at half
maximum and f0 is its strength, applied to the vertical edge
of the wedge.

When t1/2 is close to zero one can induce a phononic
tsunami. The vanishing value of t1/2 mimics a sudden displace-
ment of the ocean needed for the generation of tsunami wave.
Very recently, the similar strategy was proposed for the induc-
ing another interesting topological effect in phononic systems.
By means of appropriately tuned AC acoustic sources located
on the boundary of the body the dissipative-free motion of
lattice defects can be observed [39].

To illustrate the phononic tsunami emergence together with
its dynamical evolution and to avoid extremely extensive nu-
merical simulations of the time-dependent Eq. (17), one can
proceed to the analytical consideration. With this in mind,
we adopt several reasonable assumptions. Firstly, due to a
wedge-shaped geometry for the imitation of the shoaling

effect of the tsunami wave we expect the dramatic growth
of the displacement amplitude near the narrow edge of the
horizontal side. Secondly, within formulated theoretical ap-
proach one can assume the initial existence of the nonlinear
wave excitation in a system. Using the similarity of the ocean
tsunami behavior near the coast these two assumptions allow
to determine the boundary conditions for Eq. (17) for the
right edge of the wedge and put u|x=l tends to be large and
d2u
dx2 |x=l → 0. From the physical point of view such conditions
correspond to the significant enhancement of the amplitude
with the decrease of the curvature of the displacement field.
The latter is equivalent to the “vertical sea wall” of the ocean
tsunami near the coastline. Finally, the last assumption is that
the rest of boundaries are treated as stress free.

These simplifications allow to naively decompose the dis-
placement field u(x, y) on x and y axis independently, using
the ansatz

u(x, y, t ) = Au0(x) + B(y − Vgt ) + F (t ). (31)

Here A and B are the amplitudes of the displacement field
along the x and y axis respectively and Vg ≡ ∂ω

∂k is the group
velocity. The function F (t )

F (t ) = 1

2
f0t1/2c2

(
t

t1/2
erf

(√
ln 2

t

t1/2

)

+ 1√
π ln 2

exp

(
− ln 2

t2

t2
1/2

))
, (32)

represents the result of double integration of f (t ) over t ,
where erf(z) is the error function. The specifics of this anzats
is that a tsunami wave arises “from nothing”, following the
terminology of Ref. [40]. The existence of such an class of
solutions is not new and was introduced, for instance, for the
construction of the Boussinesq equation [41] for the descrip-
tion of shallow-water waves.

By means of the ansatz Eq. (31) we proceed to the ordinary
nonlinear differential equation of the 4th order instead of
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FIG. 6. The plot of the function u0(x) with the dramatic en-
hancement at the narrow edge of a wedge x = l , which imitates
the “vertical wall” of a ocean tsunami wave. The set of parame-
ters are γ1 = 0.18 m2, α = −4.5×108, and β = 108, also Vg ≈ c =
5800 m/s.

Eq. (17):

γ1
d4u0

dx4
+ αA2 d2u0

dx2

(
du0

dx

)2

+ (1 + βB2)
d2u0

dx2
= 0. (33)

The ansatz Eq. (31) eliminates in Eq. (17) the term with the
coefficient γ2. Roughly speaking, it means that the interaction
between atoms of the elastic media along x axis is signifi-
cantly stronger than along y and z directions. Simultaneously
to preserve the total contributions of other coefficients we
suppose that second-, third-, and fourth-order elastic constants
are nonzero and, therefore, cannot be ignored.

Equation (6) can be solved in terms of the incomplete
elliptic integral of the third kind �(z, ν, m) and the elliptic
Jacobi function sn(z, m). The list of solutions with the de-
tails of derivation are given in Appendix B. The choice of
an appropriate solution is governed solely by the behavior
of u0(x). The plot of this function must contain pronounced
spikes, identified with the unique feature of tsunami known
as the dramatic increase of the amplitude of the wave near
the coastline. As it is shown in the Appendix B the selection
procedure is based on the behavior of the composite function
�( sn(x, m), ν, m). For the certain interval of x the u0(x)
acquires a significant enhancement only in the case when the
characteristic of the elliptic integral of the third kind ν is larger
than zero. It is this criterion that is used to select solution to
describe of a phononic tsunami dynamics.

Based on this criterion and choosing the corresponding
expression for u0(x) one obtains

u0(x) = 1

λ
(r1 − r2)�

(
sn(λx, q′),

r1 − r4

r2 − r4
, q′

)
+ r2x. (34)

Here r1 � r2 � 0 � r3 � r4 are the real roots of the de-
pressed quartic equation [see Appendix B and Eq. (B8)],

λ = 1
2

√
|α|
6γ1

√
(r1 − r3)(r2 − r4) and the modulus of the Jacobi

elliptic sine q′ =
√

1 − q2 with q =
√

(r1−r2 )(r3−r4 )
(r1−r3 )(r2−r4 ) . Figure 6

shows the plot of the function u0(x) with the characteristic
pronounced growth at the narrow edge of a wedge.

FIG. 7. The dynamics of the displacement field in a wedge-
shaped sample induced by Gaussian pulse with t1/2 = 1 μs and the
amplitude f0 = 4×10−7m−1s at the initial moment of time (a) and at
t = l

c ≈ 34.48 μs (b) for the set of parameters of the elastic media
γ1 = 0.18 m2, α = −4.5×108, and β = 108.

Therefore, the final expression for the function u takes the
form

u(x, y, t ) = A

λ
(r1 − r2)�

(
sn(λx, q′),

r1 − r4

r2 − r4
, q′

)

+ r2x + B(y − Vgt ) + F (t ). (35)

Equation (35) shows the dynamical behavior of the dis-
placement field in a wedge that can be attributed to a phononic
tsunami occurrence, namely the shoaling effect with the sig-
nificant increase in the amplitude at the narrow edge (see
Fig. 7). Comparing displacement fields at the initial moment
of time t = 0 shown in Fig. 7(a) and after applying the input
Gaussian pulse at t = l/c in Fig. 7(b) one can see the peak
value of u ≈ 6×10−4 m in the narrow edge of a wedge-shaped
sample. This value is much larger than obtained within numer-
ical simulations in Figs. 5(c) and 5(d), where the maximum of
the displacement reaches 10 nm.

The advantage of the analytical solution given by Eq. (35)
is that it can be used for the description and the fitting of data
in future experiments on the detection of a phononic tsunami
phenomenon in a more effective way without extensive time-
dependent numerical simulations of Eq. (17).

VI. CONCLUSIONS

In this article the way of realization of a phononic
tsunami in a crystal lattice as a nonlinear phenomenon is
proposed. The experimental conditions for the observation
of such an effect are also delineated. We outline the par-
ticular potential of wedge-shaped samples use to generation
of phononic tsunami waves. The dispersion relations that
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have been calculated within a theory of solitons in a non-
linear elastic medium can be considered as a hallmark of a
phononic tsunami. The occurrence of such a kind of non-
linear phononic excitations in wedge-shaped geometry has
been demonstrated by numerical simulations and by analytical
calculations. Such predictions can be verified by means of
measurements of the displacement field induced by Gaussian
short pulse in relevant materials including phononic crystals
and acoustic metamaterials. Another experimental possibil-
ity is the determination of the dispersion relations predicted
as a signature of the phononic tsunami in corresponding
systems.

ACKNOWLEDGMENT

This work was supported by the CarESS project.

APPENDIX A: DETAILS OF THE
FINITE-ELEMENT ANALYSIS

The numerical simulation of Eq. (29) was performed in
COMSOL Multiphysics. For the solution of the fourth-order
partial differential equation the general form PDE module was
applied.

For further implementation of the finite-element method
we rewrite Eq. (29) in the form

∂

∂x

[
∂u

∂x
+γ1

∂

∂x

(
∂2u

∂x2

)
+γ2

∂

∂x

(
∂2u

∂y2

)
+1

3
α

(
∂u

∂x

)3

+β
∂u

∂x

(
∂u

∂y

)2]
+ ∂

∂y

[
∂u

∂y
+γ1

∂

∂y

(
∂2u

∂y2

)
+ 1

3
α

(
∂u

∂y

)3

+ β
∂u

∂y

(
∂u

∂x

)2]
= 0.

(A1)

Introducing new functions P = ∂2u
∂x2 and Q = ∂2u

∂y2 we reduce
Eq. (A1) to the system of differential equations of the second
order

∂

∂x

[
∂u

∂x
+ γ1

∂P

∂x
+ γ2

∂Q

∂x
+ 1

3
α

(
∂u

∂x

)3

+ β
∂u

∂x

(
∂u

∂y

)2]

+ ∂

∂y

[
∂u

∂y
+ γ1

∂Q

∂y
+ 1

3
α

(
∂u

∂y

)3

+ β
∂u

∂y

(
∂u

∂x

)2]
= 0,

P = ∂2u

∂x2
,

Q = ∂2u

∂y2
, (A2)

which is adapted now for the numerical solution in COMSOL
Multiphysics.

The Dirichlet boundary conditions u = 0, P = 0 and Q =
0 were imposed for a wedge except the inclined edge that is
treated as the stress free.

A predefined mesh calibrated for fluid dynamics was used
for the simulation procedure. Element size parameters for
this mesh are as follows: maximum element size = 0.0028,
minimum element size = 4×10−5, maximum element growth
rate = 1.1, curvature factor = 0.25, and resolution of narrow
regions = 1. The convergence criterion is set to 10−6.

APPENDIX B: ANALYTICAL SOLUTIONS

We redefine α̃ ≡ αA2 and β̃ ≡ βB2 and rewrite Eq. (6) in
the main text of the paper, omitting tilde

d

dx

(
γ1

d3u0

dx3
+ (1 + β )

du0

dx
+ 1

3
α

(
du0

dx

)3)
= 0, (B1)

or

γ1
d3u0

dx3
+ (1 + β )

du0

dx
+ 1

3
α

(
du0

dx

)3

= C1, (B2)

where C1 is an arbitrary constant. To solve Eq. (B2) the sub-
stitution du0(x)

dx = ψ is applied that gives

γ1
d2ψ

dx2
+ (1 + β )ψ + 1

3
αψ3 = C1. (B3)

Since Eq. (B3) does not depend explicitly on the coordinate
x one can use a new change of variables dψ

dx = η such as d2ψ

dx2 =
η

dη

dψ

γ1η
dη

dψ
+ (1 + β )ψ + 1

3
αψ3 = C1. (B4)

The first integral is

1
2γ1η

2 + 1
2 (1 + β )ψ2 + 1

12αψ4 = C1ψ + C2, (B5)

where C2 is another arbitrary constant.
For α > 0 Eq. (B5) transforms to

6γ1

|α|
(

dψ

dx

)2

+ ψ4 + 6(1 + β )

|α| ψ2 − 12C1ψ − 12C2 = 0,

(B6)
and for α < 0 we have

−6γ1

|α|
(

dψ

dx

)2

+ ψ4 − 6(1 + β )

|α| ψ2 + 12C1ψ + 12C2 = 0.

(B7)

Let us assume that r1, r2, r3, and r4 are the real roots of the
depressed quartic equation for α > 0 and α < 0 respectively

ψ4 + 6(1 + β )

|α| ψ2 − 12C1ψ − 12C2 = 0,

ψ4 − 6(1 + β )

|α| ψ2 + 12C1ψ + 12C2 = 0, (B8)

that is satisfied the system of equations

r1 + r2 + r3 + r4 = 0,

r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4 = ±6(1 + β )

|α| ,

r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4 = ∓12C1,

r1r2r3r4 = ∓12C2. (B9)

1. α > 0

We proceed to solve Eq. (B6) putting the coefficient α

larger than zero. Assuming all roots of Eq. (B8) are real and
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have the order r1 � r2 � 0 � r3 � r4 the solution of Eq. (B6)
is expressed explicitly via the Jacobi elliptic sine function
sn(z)

ψ = r4 + (r1 − r4)(r2 − r4)

(r2 − r4) + (r1 − r2)sn2(λx, q)
, (B10)

where λ = 1
2

√
|α|
6γ1

√
(r1 − r3)(r2 − r4) and the modulus of the

Jacobi elliptic sine q =
√

(r1−r2 )(r3−r4 )
(r1−r3 )(r2−r4 ) . The subsequent inte-

gration of Eq. (B10) yields the final expression for function
u0(x)

u0(x) = 1

λ
(r1 − r4)�

(
sn(λx, q),− r1 − r2

r2 − r4
, q

)
+ r4x, (B11)

where �(z, ν, m) the incomplete elliptic integral of the third
kind.

For the case of the roots ordering r1 � r2 � r3 � r4 � 0
Eq. (B6) has another solution

ψ = r2 − (r2 − r3)(r2 − r4)

(r2 − r4) − (r3 − r4)sn2(λx, q)
, (B12)

and correspondingly

u0(x) = −1

λ
(r2 − r3)�

(
sn(λx, q),

r3 − r4

r2 − r4
, q

)
+ r2x. (B13)

When Eq. (B8) has the two real roots such as r1 � r2 and
two complex-conjugate roots r3,4 = ρ1 ± iρ2 one obtain

ψ = r1 − (r1 − r2)( 1 − cn(λx, q))

1 + δ − (1 − δ)cn(λx, q)
, (B14)

where we introduce another set of parameters δ=
√

(r2−ρ1 )2+ρ2
2√

(r1−ρ1 )2+ρ2
2

,

the coefficient λ=
√

|α|
6γ1

[((r1 − ρ1)2 + ρ2
2 )((r2 − ρ1)2 + ρ2

2 )]
1
4

and the modulus of the Jacobi elliptic cosine q =√
1
2 − (r1−ρ1 )(r2−ρ1 )+ρ2

2√
((r1−ρ1 )2+ρ2

2 )((r2−ρ1 )2+ρ2
2 )

. The straightforward integra-

tion of Eq. (B14) gives

u0(x) =
(

r1 + r1 − r2

1 − δ

)
x − (r1 − r2)

2λ

1 + δ

1 − δ

⎡
⎣�

(
sn(λx, q),− (1 − δ)2

4δ
, q

)

+1 − δ

1 + δ

√√√√ 1 − (
1−δ
1+δ

)2

q2 + (1 − q2)
(

1−δ
1+δ

)2 arctan

⎛
⎝

√√√√q2 + (1 − q2)
(

1−δ
1+δ

)2

1 − (
1−δ
1+δ

)2

sn(λx, q)

dn(λx, q)

⎞
⎠

⎤
⎦. (B15)

2. α < 0

For the negative value of α we need to solve Eq. (B7)
together with Eq. (B8) corresponding to the case of α < 0.
It is not necessary to repeat the solving procedure since one
can change λx for iλx due to the presence the sign “−” before
the square of the first derivative in Eq. (B7). The imaginary
argument transformation for the Jacobi elliptic functions can
be applied to Eqs. (B10), (B12), and (B14) [42] and we obtain
for real roots of Eq. (B8) with the order r1 � r2 � 0 � r3 � r4

ψ = r4 + (r1 − r4)(r2 − r4)

(r2 − r4) − (r1 − r2)tn2(λx, q′)
, (B16)

where tn(λx, q′) = sn(λx,q′ )
cn(λx,q′ ) and q′ =

√
1 − q2. Eq. (B16) ad-

mits the exact analytical integration

u0(x) = 1

λ
(r1 − r2)�

(
sn(λx, q′),

r1 − r4

r2 − r4
, q′

)
+ r2x, (B17)

The same procedure for Eq. (B12) yields

ψ = r2 − (r2 − r3)(r2 − r4)

(r2 − r4) + (r3 − r4)tn2(λx, q)
, (B18)

and correspondingly

u0(x) = 1

λ
(r3 − r4)�

(
sn(λx, q′),

r2 − r3

r2 − r4
, q′

)
+ r4x. (B19)

Finally, in the case of two real roots such as r1 � r2 and
two complex-conjugate roots r3,4 = ρ1 ± iρ2 in Eq. (B8) we
have

ψ = r1 − (r1 − r2)( 1 − nc(λx, q′))
1 + δ − (1 − δ)nc(λx, q′)

, (B20)

FIG. 8. The behavior of the function �(sn(x, m), ν, m) for m =
0.75 vs the coordinate x and the characteristic of the incomplete
integral of the third kind ν. The structure of the plot remains the
same on the qualitative level for all 0 < m < 1.
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where nc(λx, q′) = 1
cn(λx,q′ ) and therefore

u0(x) =
(

r1 + r1 − r2

1 + δ

)
x − (r1 − r2)

2λ

1 − δ

1 + δ

⎡
⎣�

(
sn(λx, q′),

(1 + δ)2

4δ
, q′

)

+1 + δ

1 − δ

√√√√ 1 − (
1+δ
1−δ

)2

q′2 + (
1 − q′2)( 1+δ

1−δ

)2 arctan

⎛
⎝

√√√√q′2 + (1 − q′2)
(

1+δ
1−δ

)2

1 − (
1+δ
1−δ

)2

sn(λx, q′)
dn(λx, q′)

⎞
⎠

⎤
⎦. (B21)

As one can see for all types of solutions we have similar structure that is characterized by the presence of the composite
function �( sn(x, m), ν, m). The selection procedure is based on the plot of this function in a dependence of the coordinate x and
the characteristic of the incomplete integral of the third kind ν (Fig. 8). Figure 8 clearly demonstrates the dramatic enhancement
with pronounced spikes occurs when ν > 0. Thus, among the plenty of solutions we need to choose those which have positive
value of ν > 0.
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