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Symmetry and polarity of antiphase boundaries in PbZrO3
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The polar properties of antiphase boundaries (APBs) in PbZrO3 are analyzed in detail using a recently
developed layer group approach in order parameter (OP) space and compared with the results from Landau-
Ginzburg free energy description. It is shown that the former approach reveals the properties of the microscopic
APBs and predicts polar APB structures at particular positions inside the unit cell, which agree very well with
recent experimental observations [Wei et al., Nat. Commun. 5, 3031 (2014), Wei et al., Mater. Res. Bull. 62,
101 (2015)]. The systematic usage of the method is developed. In contrast with it, the commonly used free
energy description obscures the microscopic features but still can reflect the macroscopic properties of the APBs
by considering the bilinear coupling of polarization and OP gradients. The relation between the layer group
approach and the Landau-Ginzburg free energy description is discussed, and two mechanisms of polarization
switching inside the APBs are distinguished. It is illustrated that the polar APBs observed in PbZrO3 are
consistently and naturally explained by the layer group approach. This analysis is expected to have a significant
impact also in other materials.
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I. INTRODUCTION

The perovskite oxide PbZrO3 is usually considered the pro-
totypic antiferroelectric (AFE) material. Its bulk and surface
properties have been studied in detail by ab initio calcula-
tions [1–6], but to the best of our knowledge, domain wall
(DW) properties have not been treated by atomistic simula-
tions. DWs in ferroic materials became recently of increasing
interest due to the substantial improvement of experimental
techniques allowing their observation [7–10] and unveiling
their potential for applications [11–13]. The tensor properties
of DWs and, in particular, of antiphase boundaries (APBs)
in perovskites were studied by several authors [10,14–18].
The occurrence of polarization inside the DWs in otherwise
nonpolar samples was predicted based on symmetry analy-
sis using the layer-group method [19,20] and also described
by the phenomenological Landau-Ginzburg approach [18,21–
25]. In the latter case, it is explained by flexoelectricity oc-
curring at the center of the DWs due to the coupling of
polarization and the strain gradient [16,26,27]. It turned out
that, in addition to flexoelectricity, the so-called rotopolar
effect can also be responsible for polarization, which is driven
by the coupling of polarization and a Lifshitz-like gradient
term of the order parameter (OP) [17,23]. A general approach
based on the combination of OP symmetry and layer-group
analysis was suggested and demonstrated for the study of the
properties of DWs in KSCN [28], SrTiO3 (STO) [29], and
PbZrO3 (PZO) [30]. The observation and modeling of the mi-
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croscopic polar structure of APBs in AFE PZO are presented
in Refs. [18,31,32], and the appearance of polarization at the
APB center was explained by a biquadratic coupling between
OP and polarization [18].

In this paper, we present an analysis of the polar properties
of the APBs in PZO, especially linking between microscopic
and macroscopic properties, and a manifestation of the micro-
scopic symmetry in the phenomenological Landau-Ginzburg
description.

II. SYMMETRY AND DOMAIN STATES
IN LEAD ZIRCONATE

The AFE phase transition in lead zirconate at Tc = 505 K
transforms the crystal from the cubic perovskite phase Pm3̄m
(Z = 1) to the orthorhombic phase Pbam (Z = 8), with an
eightfold multiplication of the cubic unit cell [33,34].

The unit cell (Fig. 1) of the AFE Pbam phase with lat-
tice vectors ao, bo, and co is related to the cubic phase with
ac = (a, 0, 0), bc = (0, a, 0), and cc = (0, 0, a) as ao = ac −
bc, bo = 2(ac + bc), and co = 2cc, with the origin shifted
to ( a

2 , 0, a
2 ). This unit cell corresponds to the orthorhombic

domain states (DSs) 1i described below. Other orientational
domains are obtained by appropriate rotations.

The soft mode behavior [2,27,36] is rather complicated
and involves many modes. However, the space-group sym-
metry change can be well understood [37,38] as a result of
the condensation of two OPs. The lead displacements are
described by the condensation of a wave with a propagation
vector k� = 2π

a ( 1
4 , 1

4 , 0), with the following 12-component
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FIG. 1. Structure of PbZrO3 [35]. (a) Crystal structure of the
Pbam unit cell of PbZrO3. (b) Projection of the Pbam structure
onto the (x, y) plane. The arrows indicate the displacements of
the Pb cations in the �2 mode. These Pb displacements along
the pseudocubic [11̄0] direction can be written [18] as rPb ∝
(1, −1, 0)cos[ π

2ac
(xc + yc ) + ϕ].

eigenvector:

η = {η1, η2, η3, η4, η5, η6, η7, η8, η9, η10, η11, η12}, (1)

which transforms according to the irreducible representation
[39] �2. There are six orientational DSs, each described by
one pair of OP components, as shown in Table I. Since the
condensation of �2 is associated with a fourfold increase
in the number of atoms in the unit cell, every orientational
DS can exist in four different translational DSs with re-
spect to lead displacements [40], numbered by i-index in
Table I, i = 1, . . . , 4. The equilibrium values of the OP pair
(η1, η2) are (η,−η), (−η,−η), (−η, η), and (η, η) for DSs

TABLE I. Symmetry-allowed OP components ηi in the six ori-
entational DSs and corresponding octahedral tilts φi.

DSs η φ

1i η1 η2 0 0 0 0 0 0 0 0 0 0
φ1 φ2 0

2i 0 0 η3 η4 0 0 0 0 0 0 0 0

3i 0 0 0 0 η5 η6 0 0 0 0 0 0
0 φ2 φ34i 0 0 0 0 0 0 η7 η8 0 0 0 0

5i 0 0 0 0 0 0 0 0 η9 η10 0 0
φ1 0 φ36i 0 0 0 0 0 0 0 0 0 0 η11 η12

FIG. 2. Translational domain states (DSs) and antiphase bound-
aries (APBs) in order parameter (OP) space. Mapping of the
translational DSs and APBs within a single orientational DS of
PbZrO3 in the subspace (η1, η2) of the OP space η. Circles represent
the four different DSs 11, 12, 13, and 14, and lines describe some
possible pathways of the corresponding APB in the OP space, e.g.,
line 1 represents an Ising wall between 11 and 13, and line 2 is an
improper Néel wall of the corresponding domain pair.

11, 12, 13, and 14, respectively. It is analogous for the re-
maining DSs.

The translational DSs within a given orientational state
can be transformed from one to another by shifting the
lattice by lost translations, e.g., DSs 1i are related by
(a, 0, 0), (2a, 0, 0), or (3a, 0, 0), which after application of
the matrix element (1|t1, t2, t3), (t1 = na, t2 = ma, t3 = la) of
the irrep �2 leads to the following identification:

11 −
(

ac,
π

2

)
→ 12,

11 − (2ac, π ) → 13, (2)

11 −
(

3ac,
3π

2

)
→ 14,

where it is shown that the corresponding lead displacement
modes in different translational DSs are phase-shifted by
�ϕ = π/2, π and 3π/2, respectively (Fig. 2). The orienta-
tional DSs are related by rotations, DSs 1 and 2 by π/2
rotation about cc, 3 and 4 about ac, and 5 and 6 about bc.
The AFE lead displacements are along cubic (1,−1,0) in 1i

and (1,1,0) in 2i DSs, (1,0,−1) in 3i and (1,0,1) in 4i DSs, and
(0,1,−1) in 5i and (0,1,1) in 6i DSs.

A condensation of the �2 mode alone would lead [38] to a
Pbam(4V ) phase with a change of the unit cell volume by a
factor of 4. To get the Pbam(8V ) phase, one has to consider
the antiphase rotations of the oxygen octahedra, which are de-
scribed by the condensation of a wave with kR = 2π

a ( 1
2 , 1

2 , 1
2 ),

with OP φ = (φ1, φ2, φ3) transforming under the irrep R+
4 and

yielding a doubling of the unit cell in the c direction. Here,
φ1, φ2, and φ3 represent octahedra rotations about x, y, and z,
respectively. The equilibrium OP for PbZrO3 has always one
0 component, and it has two possible values, e.g., for DSs 1i

and 2i, (φ1, φ2, 0) = (φ,−φ, 0) or (−φ, φ, 0), see Table I.
The symmetry breaking Pm3̄m(V ) → Pbam(8V ) leads to

48
8 × 8 = 48 DSs. Further, the symmetry of the π/2 and π
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APBs is studied to find out the polar properties of the APBs
and compare them with recent experimental results and simu-
lations [18,31]. We use the approach based on the layer group
analysis and Landau theory as it was suggested in previous
papers.

III. SYMMETRIES OF OBJECTS RELATED TO DWs

The symmetry of the DW is closely related to other math-
ematical objects such as DSs, domain pairs (DPs), domain
twins, etc., and for further calculations, it is convenient to
introduce the following sequence of objects built from DSs
A and B with lowering symmetry: Symmetry of unordered DP
⊃ symmetry of oriented DP ⊃ union of symmetries of DWs
at all positions ⊃ symmetry of a single DW at position p. It
can be formally written as

(A, B) + (B, A) ⊃ (A, B)(n) + (B, A)(−n)

⊃
∑

p′
[(A, B)(n) + (B, A)(−n)](p′)

⊃ [(A, B)(n) + (B, A)(−n)](p), (3)

and in short notation

S0 ≡ {A, B} ⊃ S1 ≡ (A|n|B) ⊃ S2

≡
∑

p′
(A|n, p′|B) ⊃ S3 ≡ (A|n, p|B). (4)

The symmetries S1, S2, S3 are used in the next sections. Note
that the above description is related to the DW of two DSs
A and B separated by a plane with the normal vector n and
position p. Since such a wall contains only two domains, we
refer to it as a simple DW.

In more complex DWs, a precursor (nucleus) of an ad-
ditional DS, say C, may occur at the DW center [22,23].
The symmetry operations of C yield further restrictions on
symmetry, and it is encountered in the expression in Eq. (3)
as

[(A, B) + (B, A)](C) ⊃ [(A, B)(n) + (B, A)(−n)](C)

⊃
{∑

p′
[(A, B)(n) + (B, A)(−n)](p′)

}
(C)

⊃ [(A, B)(n) + (B, A)(−n)](C)(p). (5)

Note that the last expression in Eq. (5) in principle describes
the DW between A and B separated by the plane with normal
n and position p and with C at the center. Its short notation can
be (A|C, n, p|B) [compare with Eq. (4)]. It should be stressed
that we always consider a single DW with one plane n and
one position p. For comparison, note that one can also study a
structure of two separated DWs: (A|n1, p1|C) + (C|n2, p2|B).
Here, C denotes a fully developed DS, while C above means
a nucleus of C at the center. In the next sections, it will
also be shown that the symmetry S2 is reflected in the free
energy gradient invariants, while the microscopic positions of
DWs inside the unit cell are invisible by the Landau-Ginzburg
approach.

To avoid misunderstanding, we further use the following
naming of the APBs. The APB (A|B) composed of two trans-
lational DSs is mentioned as Ising-like. The APB (A|C|B)

FIG. 3. Unit cell of the 11 domain state (DS) and potentially
significant positions of the antiphase boundary (APB). The position
p is determined by the intersection of the APB plane (color lines)
with the x axis. The set of blue domain walls (DWs; if any) possess
the same point symmetry, and the same applies to the set of red DWs
(examples are in Secs. IV and V). The cubic coordinates are used.

with nucleus (precursor) of the translational DS C with respect
to A and B is called improper Néel-like (see the path 2 in
Fig. 2). If C represents a different orientational DS, then
(A|C|B) is called a (proper) Néel structure.

IV. ON THE POLARIZATION IN (11|12) APB

Let us consider the π/2-type APB between the DSs 11

and 12 (Fig. 2), which were defined in the previous section.
Here, 11 = (η,−η, 0, . . . , 0) and 12 = (−η,−η, 0, . . . 0),
both with octahedra rotations (φ,−φ, 0), see Table I. The
normal of the DW plane n can be taken arbitrarily; here, we
consider n = (1, 1, 0) since it was recently discussed by sev-
eral authors. The microscopic position of the APB inside the
unit cell is denoted as p, and for the moment, it is left arbitrary.
All possible positions and corresponding symmetries will be
generated during the calculation, Fig 3. The APB between
DSs 11 and 12, with the normal n and position p is denoted as
(11|n, p|12). For further analysis, we consider the symmetries
of the following three objects (see (4)):

(i) The symmetry S1 of the object (11|n|12) [note that
(11|n|12) ≡ (12|−n|11)] consists of all operations which ei-
ther leave the DSs and the normal invariant or interchange
DSs and, at the same time, reverse the normal vector. All
operations from S1 keep the orientation of the DW plane fixed,
but some of them can move the plane along the normal n.

(ii) Symmetry S2 of object (11|n, parb|12), where the ar-
bitrary position parb of the APB is considered (all possible
positions are considered). Here, S2 is obtained from S1 by
choosing only operations which do not move the DW plane
along n. The position of the DW is defined as the point where
the plane intersects the x axis, p = (p, 0, 0), see Fig. 3. The
point (x, y, z) lies in the plane positioned at p = (p, 0, 0),
when n · (x, y, z) = n · p. In our case, it yields x + y = p.
The transformed point (x′, y′, z′) lies in the same plane if
n · (x′, y′, z′) = n · p, i.e., x′ + y′ = p. We can apply these
equations to the elements of S1 [see (iii) below] and obtain
the positions p, e.g., for the first operation, the equation of the
plane reads (−x + 1) + (−y + 1) = p, and since x + y = p,
it yields the position p = 1. The positions of planes invariant
with respect to individual operations are listed in Eq. (6)
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just behind S1. Here, p = p means that any position is pos-
sible, while p =′ −′ indicates no solution, i.e., the last two
operations shift the plane along n. Now it is clear that S2

corresponds to the union of symmetry operations of APBs
at all positions. In this way, we automatically obtained all
possible positions of the APBs, two special positions p = 0, 1
(high symmetric) and a general position p (low symmetric,
neither 0 nor 1), see below. The average symmetry S2 deter-
mines whether a macroscopic polarization can exist. Since its
point group contains the inversion element, the macroscopic
polarization does not exist, and therefore, there are no Landau
free energy expansion terms which could generate it (see the
next section).

(iii) The microscopic symmetries S3 (the layer groups) of
the APB (11|n, p|12) at particular microscopic positions p are
obtained from S2 by extracting the operations with particular
values of p:

S1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̄ + 1 ȳ + 1 z̄

x̄ + 1 ȳ + 1 z + 1

x y z̄ + 1

x y z

ȳ x̄ z̄

ȳ x̄ z + 1

y + 1 x + 1 z̄ + 1

y + 1 x + 1 z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

p

p

0

0

−
−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̄ + 1 ȳ + 1 z̄

x̄ + 1 ȳ + 1 z + 1

x y z̄ + 1

x y z

ȳ x̄ z̄

ȳ x̄ z + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

p

p

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

S3(p = 0) =

⎛
⎜⎜⎜⎜⎝

ȳ x̄ z̄

ȳ x̄ z + 1

x y z̄ + 1

x y z

⎞
⎟⎟⎟⎟⎠,

S3(p = 1) =

⎛
⎜⎜⎜⎜⎝

x̄ + 1 ȳ + 1 z̄

x̄ + 1 ȳ + 1 z + 1

x y z̄ + 1

x y z

⎞
⎟⎟⎟⎟⎠, (7)

S3(p = gen) =
(

x y z̄ + 1

x y z

)
.

Here, S3(p = 0) allows P = (P,−P, 0); S3(p = 1) is nonpo-
lar; S2 is average symmetry (we can call it macroscopic), and

it is nonpolar, in agreement with invariants, as will be shown
below.

Allowed translations corresponding to S1, S2, and S3 are

T1 = [k(0, 0, 2), l (1,−1, 0), m(2, 2, 0)],

T2 = T3 = [k(0, 0, 2), l (1,−1, 0)].

Let us note that, in general, there are symmetrically equiv-
alent APBs at positions p = . . . ,−3,−1,+1,+3, . . . , and
another set of APBs at p = . . . ,−2, 0,+2, . . . . The symme-
try operation x̄ + 1, ȳ + 1, z + 1 of APB(p = 1) transforms
the APB(p = 0) with +P to the APB(p = 2) with reversed
polarization −P. The last two operations in the matrix S1 have
a similar effect. The graphical representation of the Ising-like
APB (11|12) at the possible positions discussed before is
shown in Fig. 4. The polarization at the center is reversed
when shifting the APB from p = 0 to 2. The polarization
profiles at these positions have the form of a single peak,
while the profile at p = 1 has an antisymmetric shape. The
polarization averaged over all positions is zero, as predicted
by S2. Let us mention in advance that the symmetry S2 also
indicates that the macroscopic polarization profile obtained
from the free energy description is exactly zero, see curve 1 in
Fig. 8.

To get a macroscopic polarization, an additional symmetry
lowering of (11|n|12) is needed. It can be achieved in the
APB of the Néel type with a nucleus of another DS at the
center, which can occur due to a local phase transition in the
DW [22,23,41]. We consider (11|21, n, p|12), i.e., there is in
addition the nucleus 21 (orientational DS) at the APB center,
see Sec. III and comments therein. The procedure outlined
above yields

S1 = S2 = S3(p = 0) =

⎛
⎜⎜⎜⎜⎝

x y z̄ + 1

x y z

ȳ − 1 x̄ + 1 z̄

ȳ − 1 x̄ + 1 z + 1

⎞
⎟⎟⎟⎟⎠p =

⎛
⎜⎜⎜⎜⎝

p

p

0

0

⎞
⎟⎟⎟⎟⎠,

(8)
and S3(p = gen) is the same as in Eq. (7). In this case, the
APB is (macroscopically) polar, P = (P,−P, 0), and note that
there is only one set of positions of the APB with high symme-
try, p = . . . ,−2, 0, 2, . . . . The APBs at p = 0 and 2 have the
same symmetry-allowing polarization (P,−P, 0), but they are
not related by any operation, and therefore, their polarization
vectors cannot cancel.

Allowed translations corresponding to S1, S2, and S3 are

T1 = [k(0, 0, 2), l (2,−2, 0), m(2, 2, 0)],

T2 = T3 = [k(0, 0, 2), l (2,−2, 0)].

To be more precise and avoid misunderstanding concerning
Eq. (8), let us note that the full symmetries are related as

(S1 ⊕ T1) ⊃ (S2 ⊕ T2)

= [S3(p = 0) ⊕ T3] ⊃ [S3(p = gen) ⊕ T3].

The Néel-like APB (11|21|12) with the nucleus 21 is il-
lustrated in Fig. 5. Note that the polarizations at positions
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FIG. 4. π/2 antiphase boundary (APB) (11|12) (Ising-like type) at different positions. (a) The APBs at p = 0 and 2 are symmetry related
and have opposite polarizations. The APB at p = 1 has higher symmetry with an antisymmetric polarization profile. (b) The polarization
profiles of the APBs were obtained by the sliding unit cell method. The macroscopic polarization is an average over all positions and
yields 0.

p = 0 and 2 have again opposite signs, but the mean value is
nonzero. It means a nonzero macroscopic polarization, quali-
tatively shown in curve 3 of Fig. 8.

V. SYMMETRY OF (11|13) APB

Here, the procedure outlined in the previous section is
used to study the symmetry and polarity of the APBs

FIG. 5. π/2 antiphase boundary (APB) with a nucleus: (11|21|12) (Néel-like type). (a) There are only two high-symmetric positions
p = 0, 2 (see dotted green lines) as compared with Fig. 4, and they are not related by any symmetry operation. The nucleus 21 shows the
left-oriented wedge pattern. (b) The nucleus 22 with the right-oriented wedge pattern. The switching from 21 to 22 in (a) is accomplished by
the reversal of arrows in the central row. (c) The sliding unit cell calculation of the polarization profiles of (11|21|12). The double peak reflects
the presence of two interfaces 11|21 and 21|12 at the center of the wall. The polarizations at p = 0 and 2 are still opposite and seemingly equal,
as in Fig. 4, but in reality, they differ since symmetry S2 dictates a nonzero average of in-plane polarization P.
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FIG. 6. Selected π antiphase boundaries (APBs). Left: The green lines show the positions of the APBs. The APBs discussed in
Refs. [18,31] are indicated by the symbols at the bottom. The symbol * denotes symmetrically equivalent APBs at different positions than in
Ref. [18,31], e.g., III-2 is at p = − 1

2 , while III-2* is at p = 3
2 . Right: The polarization profiles of the APBs were obtained by the sliding unit

cell method. The double peak is caused by a nucleus at the center of the APB.

between 11 and 13 DSs with Ising-like and Néel-like structures
(Fig. 2). The symmetries related to the Ising-like (11|13) APB
read

S1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̄ + 1 ȳ + 2 z̄ + 1

x̄ + 1 ȳ + 2 z

x y z̄ + 1

x y z

ȳ + 1 x̄ z̄ + 1

ȳ + 1 x̄ z

y + 1 x + 1 z̄ + 1

y + 1 x + 1 z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
2

3
2

p

p

1
2

1
2

−
−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̄ + 1 ȳ + 2 z̄ + 1

x̄ + 1 ȳ + 2 z

x y z̄ + 1

x y z

ȳ + 1 x̄ z̄ + 1

ȳ + 1 x̄ z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
2

3
2

p

p

1
2

1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

S3

(
p = 1

2

)
=

⎛
⎜⎜⎜⎜⎝

ȳ + 1 x̄ z̄ + 1

ȳ + 1 x̄ z

x y z̄ + 1

x y z

⎞
⎟⎟⎟⎟⎠,

S3

(
p = 3

2

)
=

⎛
⎜⎜⎜⎜⎝

x̄ + 1 ȳ + 2 z̄ + 1

x̄ + 1 ȳ + 2 z

x y z̄ + 1

x y z

⎞
⎟⎟⎟⎟⎠. (10)

S3(p = gen) =
(

x y z̄ + 1

x y z

)
,

T1 =[k(0, 0, 2), l (1,−1, 0), m(2, 2, 0)],

T2 =T3 = [k(0, 0, 2), l (1,−1, 0)].

The APBs at positions p = . . . ,− 3
2 , 1

2 , 5
2 , . . . have the same

symmetry and allow the polarization along (1,−1, 0) but
with alternating sign, e.g., if the APB(p = 1

2 ) has polar-
ization (P,−P, 0), then the APB(p = 5

2 ), which is obtained
from APB(p = 1

2 ) using either of the two last opera-
tions in S1, e.g., (y + 1, x + 1, z) [or using (x̄ + 1, ȳ + 1, z)
from S2] possesses polarization (−P, P, 0). All the APBs at
p = · · · ,− 1

2 , 3
2 , 7

2 , . . . are nonpolar (antisymmetric profiles).
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FIG. 7. The schematic η1η2 profiles of the antiphase boundary
(APB). In the APBs with the nucleus 22, the profiles consist of two
curves: η1η2 and η3η4. All curves are either even or odd functions.

The corresponding Ising-like APBs at the three significant
positions are depicted as (a), (d), and (f) in Fig. 6 together
with their microscopic polarization profiles. The macroscopic
polarization profile determined by the S2 symmetry is identi-
cally zero, as shown by curve 1 in Fig. 8.

A. Symmetry of (11|12|13) = symmetry of (11|13)

Interestingly enough, it turns out that the symmetry prop-
erties of the improper Néel-type APB (11|12|13) are identical
with the Ising-like (11|13). Its structures at three symmetric
positions are illustrated as pictures (b), (e), (g) in Fig. 6. Note
that the polarization profiles reveal a double peak due to the
two interphases 11|12 and 12|13 nearby the center of the APB.
The macroscopic polarization profile is, as in the previous case
(11|13), identically zero.

B. Symmetry of (11|22|13)

The appearance of the orientational/translational nucleus
22 at the center of (11|13), with the Pb displacements along
(1, 1, 0), results in the symmetry lowering; the only high-
symmetry positions p = . . . ,− 1

2 , 3
2 , 7

2 , . . . correspond to the

FIG. 8. The schematic polarization Pa(b) profiles. 1: An-
tiphase boundaries (APBs) (11|12), (11|13), and (11|12|13); 2: APB
(11|22|13); and 3: APB (11|22|12).

nonpolar APBs, compare with Eqs. (9) and (10):

S1 = S2 = S3

(
p = 3

2

)
=

⎛
⎜⎜⎜⎜⎝

x̄ + 1 ȳ + 2 z̄ + 1

x̄ + 1 ȳ + 2 z

x y z̄ + 1

x y z

⎞
⎟⎟⎟⎟⎠

p =

⎛
⎜⎜⎜⎜⎝

3
2
3
2

p

p

⎞
⎟⎟⎟⎟⎠, (11)

S3(p = gen) =
(

x y z̄ + 1

x y z

)
, (12)

T1 =[k(0, 0, 2), l (2,−2, 0), m(2, 2, 0)],

T2 =T3 = [k(0, 0, 2), l (2,−2, 0)].

Note that there is only one high-symmetry position at p = 3
2 .

We do not plot the structure of this APB explicitly, but one can
find that the microscopic sliding-cell profile is antisymmetric
[it is qualitatively like the profile of (11|13) at p = 3

2 in Fig. 6].
It is interesting that, in this case, the symmetry S2 allows the
macroscopic polarization profile, which is antisymmetric, see
curve 2 in Fig. 8, Sec. VI.

C. Symmetry of (11|32|13)

Note that the Pb displacements in all DSs 11, 12, 13, and 22

considered so far in the APBs lie in the xy plane. Unlike
the previous walls, the nucleus 32 has the Pb displacements
lying in the yz plane, inclined π/4 rad from the xy plane. The
symmetries are

S1 = S2 = S3

(
p = 3

2

)
=

(
x̄ + 2 ȳ + 1 z̄ + 1

x y z

)

p =
( 3

2

p

)
, (13)

S3(p = gen) =
(

x y z̄ + 1

x y z

)
, (14)

T1 =[k(2,−2, 2), l (−2, 2, 2), m(2, 2,−2)],

T2 =T3 = [k(2,−2, 2), l (−2, 2, 2)].

The high-symmetric positions p = . . . ,− 1
2 , 3

2 , 7
2 , . . . corre-

spond again to the nonpolar APBs.

VI. FREE ENERGY INVARIANTS AND PROFILES

The macroscopic properties of DWs can be described by
the Landau-Ginzburg free energy, and it is interesting to com-
pare it with the layer-group approach discussed in the previous
section. The polarization in the DWs is described by the free
energy invariants, which couple the polarization and OP as
well as gradient terms. In general, there is a large number of
invariants, and they are shown in Appendix.

224107-7



RYCHETSKY, SCHRANZ, AND TRÖSTER PHYSICAL REVIEW B 104, 224107 (2021)

Tagantsev et al. [18] proposed a biquadratic coupling of
polarization and OP to explain the polarization in APBs.
However, it is clear that the biquadratic coupling terms alone
cannot explain the wealth of observed polarization profiles.
Here, we focus on bilinear couplings of polarization and
gradients of OP. The biquadratic and bilinear cases will
be compared in terms of their implications to explain the
observations. The APBs in the previous sections have the
DW normal n ⊥ z and the only nonzero OP components
η1, . . . , η6. Therefore, it is enough to assume ∂z(·) = 0 and
η7 = · · · = η12 = 0. If we further consider only 1 and 2 ori-
entational states, then also η5 = η6 = 0 and the number of
nonzero invariants reduces to 12. Only the following two of
them give the in-plane polarization P ⊥ n = 0:

UL5 = (Px∂x − Py∂y)(η1η2η3η4)

= (Pa∂b + Pb∂a)(η1η2η3η4) = Pa∂b(η1η2η3η4), (15)

VT 1 = η3η4(Py∂x − Px∂y)(η1η2) + η1η2(Px∂y − Py∂x )(η3η4)

= η1η2(Pa∂b − Pb∂a)(η3η4) − η3η4(Pa∂b − Pb∂a)(η1η2)

= Pa[η1η2∂b(η3η4) − η3η4∂b(η1η2)], (16)

where the orthorhombic axis b is along n = (1, 1, 0), a is
along (1,−1, 0), and b = 1√

2
(x + y), and a = 1√

2
(x − y), see

also insets in Figs. 4 and 5. The simplest profiles of quadratic
terms ηiη j satisfying the boundary conditions of individual
APBs are sketched in Fig. 7. The polarization profiles of APBs
can be obtained from the invariants in Eqs. (15) and (16),
considering that the quadratic forms ηiη j are either odd or
even functions as shown in Fig. 7, e.g., η1η2 is an odd profile
in (11|12) APB, while it is an even function in (11|13) APB.

Their properties also follow from the symmetries S2. Using
the symmetry operations S2 in Eqs. (6) and (9), the profiles
of the APBs (11|12), (11|13), and (11|12|13) satisfy Pa(b) =
−Pa(−b) = Pa(−b) ≡ 0, in agreement with curve 1 in Fig. 8.
The polarization profile of (11|22|13) according to S2 in
Eq. (11) is asymmetric (odd): Pa(b) = −Pa(−b), as shown in
curve 2. Finally, based on S2 in Eq. (8), the APB (11|22|12) has
symmetrical (even) profile since Pa(b) = Pa(−b) (see curve
3), i.e., the only case with macroscopic in-plane polarization.

VII. DISCUSSION

The symmetry and properties of DWs on the microscopic
level, i.e., in the sense that the position of the DW inside the
unit cell is also important, can be well described by layer
groups [19,28–30]. Here, this method was systematically ap-
plied to PZO by using the irreps of OPs to calculate the
symmetries of the planar APBs. This method unveils that the
microscopic polar properties of APBs depend on the APB
type and their position. The APBs composed of the transla-
tional domains 1i only, i.e., (11|12), (11|13), (11|12|13), and
(11|14|13), possess three high-symmetry positions; two of
them at p = 1

2 and 5
2 are polar with opposite polarizations,

while the central position of higher symmetry in-between
has an antisymmetric polarization profile, see Figs. 4 and 6.
Several APBs of this kind were observed and analyzed by
Wei et al. [18,31], and their properties can be understood
using our approach, e.g., they measured and modeled the APB

denoted as III-1 (fig. 1 in Wei et al. [31]) and observed a
double peak of polarization. We identify it as the improper
Néel-type APB (11|14|13) at p = 1

2 with nonzero polarization
of the double peak shape, Fig. 6. The double peak arises from
two interfaces 11|14 and 14|13 near the boundary center. There
exists, as mentioned above, an equivalent position of the APB
p = 5

2 with opposite polarization. In agreement with this,
the observation of polar (11|14|13) APB at two microscopic
positions was reported [31]. For comparison, APBs I-1, I-2
in Ref. [31] are identified here as (11|12) at two positions
(Fig. 4), II-1 and II-2 are (11|14) at two positions, and III-2
and III-3 are (11|13) at two positions (Fig. 6). The polarization
profiles at the right side of Figs. 4–6 were calculated using the
method of sliding orthorhombic unit cell [18], but it should be
treated only as an approximate visualization, e.g., the average
in-plane polarization in the APB (11|21|12) shown in Fig. 5
is not zero. The decisive element for the microscopic polar
properties is the layer-group symmetry S3 of each APB.

The DWs are also often described by Landau-Ginzburg
theory. Here, we argue that such a coarse-grained theory can-
not explain all features of the APBs because their properties
depend on the microscopic position inside the unit cell, which
cannot be fully accounted by the phenomenological approach.
In previous Secs. III–V, we have demonstrated that the polar-
ization (including its sign) in some APBs is obtained simply
by appropriate choice of the APB position inside the unit cell.
In general, the microscopic properties of APBs are properly
described by the layer groups (S3) only, but still there is a
connection with the phenomenological description, which is
determined by the average symmetry S2. For that, we use
the following notation: P̄a is an average in-plane polarization,
which is the same for both the layer group description and
the phenomenological description, and Pa(b) is a macroscopic
(Landau-Ginzburg) polarization profile allowed by S2 and de-
scribed by Eqs. (15) and (16). Let us summarize the behavior
of macroscopic in-plane polarization Pa determined by the
symmetry S2 for three instructive examples:

(i) In purely translational APBs (11|12), (11|13), and
(11|12|13): P̄a = 0, Pa(b) ≡ 0.

(ii) In the APB with two different orientational states
(11|21|13): P̄a = 0, Pa(b) = −Pa(−b) 
= 0.

(iii) In the APB with two different orientational states
(11|21|12): P̄a 
= 0, Pa(b) = Pa(−b) 
= 0.

The corresponding macroscopic profiles are plotted in
Fig. 8.

This entitles us to conclude that the macroscopic in-plane
polarization (symmetric or antisymmetric profiles) can exist
only in the APBs with a different orientational state at the
center. It is in agreement with the macroscopic polarization
Pa described by the free energy invariants in Eqs. (15) and
(16); the latter is sometimes called rotopolar. For comparison,
the biquadratic coupling P2

i η2
j proposed in Ref. [18] implies

P̄a 
= 0 for the APB (11|13), but it contradicts with point (i).
The polarization of the APBs observed in Ref. [31],

which contain only translational DSs, cannot be described
by the (continuous) Landau-Ginzburg theory but only by the
layer-group approach. It is worth mentioning that one can dis-
tinguish two types of APBs with the nucleus (DS precursor)
at the center (Sec. III). The first one is an improper Néel-type
structure in the sense that the APB contains only translational
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DSs [e.g., (11|14|13) displayed as path 2 circumventing the
origin in Fig. 2, in which all Pb displacements are parallel],
and its symmetry is identical with (11|13). The second one
is a proper Néel-type structure with a different orientational
state at the center [e.g., (11|21|13)], in which the symmetry is
lowered compared with the APB (11|13). Such a Néel struc-
ture can develop by means of the phase transition in the APB,
and its properties (e.g., symmetric in-plane polarization) can
be well described by the Landau-Ginzburg theory, which are
fully in accord with the layer-group theory.

The symmetry properties of the APBs determine possibil-
ities of the (in-plane) polarization reversal in both types of
APBs by reversing the homogeneous electric field Ea applied
along the a axis. Two cases can be distinguished. The reversal
of the in-plane microscopic polarization in the macroscopi-
cally nonpolar APBs is accompanied with the shift of the APB
position within the unit cell, e.g., the polarization +P of the
APB (11|13) at p = 1

2 is reversed to −P via a shift to p = 5
2

(or − 3
2 ). The polarization switching in the macroscopically

polar APBs is rendered by the transformation of the nucleus
(DS precursor) at the center to a new DS, e.g., +P in the APB
(11|21|12) is switched to −P in the APB (11|22|12), as can also
be seen from Eq. (16). The switching mechanism is illustrated
in Fig. 5.

The method used in this contribution for APBs in PZO is
readily applicable for DWs in other materials.
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APPENDIX: THE FREE ENERGY INVARIANTS

The occurrence of polarization in the DWs can be de-
scribed by the free energy invariants with bilinear coupling
of polarization and OP gradients. In general, there is a huge
number of invariants, but it can be simplified considering DWs
from previous sections with the DW normal n ⊥ z and the
only nonzero OP components η1, . . . , η6. Therefore, in the
following text, we assume ∂z = 0 and η7 = · · · = η12 = 0.
The are only three lowest order invariants with quadratic OP
components:

T1 = Py∂x
(
η2

1 + η2
2 − η2

3 − η2
4

) + Px∂y
(
η2

1 + η2
2 − η2

3 − η2
4

)
+ Pz∂x

(
η2

5 + η2
6

)
, (A1)

T2 = Py∂y
(
η2

5 + η2
6

)
, (A2)

T3 = Px∂x
(
η2

1 + η2
2 + η2

3 + η2
4 + η2

5 + η2
6

)
+ Py∂y

(
η2

1 + η2
2 + η2

3 + η2
4

)
. (A3)

The next lowest invariants are those with quartic coupling
of the OP components. There are in total 39 invariants, or 25
when using the above assumptions, see Tables II and III. No-
tations U,V, and W correspond to the columns in Table III;
subscripts L and T denote longitudinal and transverse invari-

TABLE II. Total number of invariants. The invariant forms and
their count are indicated, e.g., in the first column: number of invari-
ants of type Pm∂m(ηiη jηkηl ) is 15 (longitudinal); number of invariants
of type Pn∂m(ηiη jηkηl ) is 5 (transverse); in total, it is 20.

Number of invariants
39

∂m(ηiη jηkηl ) ηiη j∂m(ηkηl )-ηkηl∂m(ηiη j ) ηiη j∂m(ηkηl )
20 7 12

Pi∂i 15 0 6
Pi∂ j 5 7 6

ant type and correspond to the last two rows in the tables. The
invariants V are Lifshitz-like. The invariants are

UT 1 = Pz∂y
[(

η2
1 + η2

2 − η2
3 − η2

4

)(
η2

5 + η2
6

)]
, (A4)

UT 2 = Py∂x
[(

η2
1 + η2

2 − η2
3 − η2

4

)(
η2

5 + η2
6

)]
+ Pz∂x

[(
η2

1 + η2
2 + η2

3 + η2
4

)(
η2

5 + η2
6

)]
, (A5)

UT 3 = Px∂y
[(

η2
1 + η2

2 − η2
3 − η2

4

)(
η2

5 + η2
6

)]
, (A6)

UT 4 = Py∂x
(
η2

1η
2
2−η2

3η
2
4

)+Px∂y
(
η2

1η
2
2 − η2

3η
2
4

)+Pz∂x
(
η2

5η
2
6

)
,

(A7)

UT 5 = Py∂x
(
η4

1 + η4
2 − η4

3 − η4
4

) + Px∂y
(
η4

1 + η4
2 − η4

3 − η4
4

)
+ Pz∂x

(
η4

5 + η4
6

)
, (A8)

UL1 = Py∂y
(
η2

5η
2
6

)
, (A9)

UL2 = Py∂y
(
η4

5 + η4
6

)
, (A10)

UL3 = Py∂y
[(

η2
1 + η2

2 + η2
3 + η2

4

)(
η2

5 + η2
6

)]
, (A11)

UL4 = Px∂x
[(

η2
1 + η2

2 + η2
3 + η2

4

)(
η2

5 + η2
6

)]
, (A12)

UL5 = Px∂x(η1η2η3η4) − Py∂y(η1η2η3η4), (A13)

UL6 = Px∂x
(
η2

2η
2
3 + η2

1η
2
4

) + Py∂y
(
η2

2η
2
3 + η2

1η
2
4

)
, (A14)

UL7 = Px∂x
(
η2

1η
2
3 + η2

2η
2
4

) + Py∂y
(
η2

1η
2
3 + η2

2η
2
4

)
, (A15)

TABLE III. Total number of invariants under assumptions ∂z =
0, ηi = 0, i = 7, . . . , 12. The invariant forms and their count are
indicated, e.g., in the first column: number of invariants of type
Pm∂m(ηiη jηkηl ) is 9 (longitudinal); number of invariants of type
Pn∂m(ηiη jηkηl ) is 5 (transverse); in total, it is 14.

Number of invariants (∂z = 0, ηi = 0, i = 7, . . . , 12)
25

∂m(ηiη jηkηl ) ηiη j∂m(ηkηl )-ηkηl∂m(ηiη j ) ηiη j∂m(ηkηl )
14 3 8

Pi∂i 9 0 2
Pi∂ j 5 3 6
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UL8 = Px∂x
(
η2

1η
2
2 + η2

3η
2
4 + η2

5η
2
6

) + Py∂y
(
η2

1η
2
2 + η2

3η
2
4

)
,

(A16)

UL9 = Px∂x
(
η4

1 + η4
2 + η4

3 + η4
4 + η4

5 + η4
6

)
+ Py∂y

(
η4

1 + η4
2 + η4

3 + η4
4

)
, (A17)

VT 1 = Py[η3η4∂x(η1η2) − η1η2∂x(η3η4)]

+ Px[η1η2∂y(η3η4) − η3η4∂y(η1η2)], (A18)

VT 2 = Py
[
η2

1∂x
(
η2

4

) − η2
4∂x

(
η2

1

) + η2
2∂x

(
η2

3

) − η2
3∂x

(
η2

2

)]
+Px

[
η2

1∂y
(
η2

4

) − η2
4∂y

(
η2

1

) + η2
2∂y

(
η2

3

) − η2
3∂y

(
η2

2

)]
,

(A19)

VT 3 = Py
[
η2

1∂x
(
η2

3

) − η2
3∂x

(
η2

1

) + η2
2∂x

(
η2

4

) − η2
4∂x

(
η2

2

)]
+Px

[
η2

1∂y
(
η2

3

) − η2
3∂y

(
η2

1

) + η2
2∂y

(
η2

4

) − η2
4∂y

(
η2

2

)]
,

(A20)

WT 1 = Pz
(
η2

1 + η2
2 − η2

3 − η2
4

)
∂y

(
η2

5 + η2
6

)
, (A21)

WT 2 = Py
(
η2

5 + η2
6

)
∂x

(
η2

1 + η2
2 − η2

3 − η2
4

)
+ Pz

(
η2

1 + η2
2 + η2

3 + η2
4

)
∂x

(
η2

5 + η2
6

)
, (A22)

WT 3 = Pz
(
η2

5 + η2
6

)
∂y

(
η2

1 + η2
2 − η2

3 − η2
4

)
, (A23)

WT 4 = Px
(
η2

5 + η2
6

)
∂y

(
η2

1 + η2
2 − η2

3 − η2
4

)
, (A24)

WT 5 = Pz
(
η2

5 + η2
6

)
∂x

(
η2

1 + η2
2 + η2

3 + η2
4

)
+ Py

(
η2

1 + η2
2 − η2

3 − η2
4

)
∂x

(
η2

5 + η2
6

)
, (A25)

WT 6 = Px
(
η2

1 + η2
2 − η2

3 − η2
4

)
∂y

(
η2

5 + η2
6

)
, (A26)

WL1 = Py
(
η2

5 + η2
6

)
∂y

(
η2

1 + η2
2 + η2

3 + η2
4

)
, (A27)

WL2 = Py
(
η2

1 + η2
2 + η2

3 + η2
4

)
∂y

(
η2

5 + η2
6

)
. (A28)
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