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Josephson junctions (JJs), where both time-reversal and inversion symmetry are broken, exhibit a phase shift
ϕ0 in their current-phase relation. This allows for an anomalous supercurrent to flow in the junction even in the
absence of a phase bias between the superconductors. We show that a finite phase shift also manifests in the
so-called Andreev interferometers—a device that consists of a mesoscopic conductor coupled to the ϕ0 junction.
Due to the proximity effect, the resistance of this conductor is phase sensitive—it oscillates by varying the phase
of the JJ. As a result, the quasiparticle current Iqp flowing through the conductor has an anomalous component,
which exists only at finite ϕ0. Thus, the Andreev interferometry could be used to probe the ϕ0 effect. We consider
two realizations of the ϕ0 junction and calculate Iqp in the interferometer: a superconducting structure with
spin-orbit coupling and a system of spin-split superconductors with spin-polarized tunneling barriers.
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I. INTRODUCTION

The dc Josephson effect establishes that the current
flowing between two superconductors with a phase differ-
ence ϕ, obtained for instance by applying a magnetic flux
to the closed circuit, is given as IJ = Ic sin ϕ. Here Ic is
the critical current of the junction. In such junctions the
phase difference of the ground state is ϕ = 0. In a sys-
tem where (only) time-reversal symmetry is broken, such as
superconductor/ferromagnet/superconductor (S/F/S) struc-
tures, it was shown that the current-phase relation can acquire
a phase shift of π , and therefore such junctions are called π

junctions [1–4].
In junctions where both time-reversal and inversion sym-

metries are broken the current-phase relation takes a more
general form [5]

IS = Ic sin (ϕ + ϕ0) = IS
0 sin ϕ + IS

an cos ϕ. (1)

Such JJs are known as ϕ0 junctions by analogy. This effect
is referred to as the anomalous Josephson effect (AJE). In
general, the current-phase relation of a JJ given by Eq. (1)
can be decomposed into the usual current IS

0 and anomalous
current IS

an. IS
an is nonzero only if the appropriate symmetries

are broken, leading to a finite supercurrent even at zero phase
difference between the superconductors.

AJE reflects the interplay between spin-dependent fields
and superconductivity. This interaction is the basis of several
effects and applications that are attracting the interest of a
large community, such as topological [6–8] and unconven-
tional [9,10] superconductivity, superconducting spintronics
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[11], and novel superconducting electronic elements [12]. The
most well-known proposals for AJE involve superconduct-
ing structures with spin-orbit interaction [5,13–20], some of
which have been successfully tested in experiment [21–24].
Other theoretical studies have proposed numerous alternative
realizations of AJE: in S/F/S junctions with a nonhomoge-
neous magnetization texture [25–32], junctions of unconven-
tional superconductors [33–36], and between topologically
nontrivial superconducting leads [37]. An anomalous current-
phase relation can also be obtained under non-equilibrium
situation in multiterminal structures [38–40]. ϕ0 junctions
could prove to be a key component for quantum electronics,
as they can provide a stable phase bias to quantum circuits,
and could therefore be particularly useful in phase-coherent
superconducting electronics and spintronics [11,23].

In this paper, we consider a ϕ0 junction coupled to a
mesoscopic conductor, in a device known as Andreev interfer-
ometer [41–44]. The basic physical idea behind such devices
is the following: Superconducting correlations are induced in
the conductor by the proximity effect, and as a consequence,
its resistance becomes sensitive to the phase of the Josephson
junction. This means that a simple resistance measurement
performed on the conductor can reveal details about the phase
dynamics of the adjacent superconducting structure. In the 90s
this topic was particularly active, and several types of Andreev
interferometers were theoretically proposed [45–48] and ex-
perimentally realized [49,50]. Andreev interferometers have
been used to study the magnetoresistance oscillations [51],
electric transport [43,52–57], and thermopower and thermal
transport [58–61] in S/N structures.

Our goal is to establish how the anomalous phase shift
ϕ0 manifests on the quasi-particle transport through the
Andreev interferometer shown in Fig. 1(a). An important ad-
vantage of this geometry is that it allows for a decoupling
of the superconducting loop with the ϕ0 junction, and the
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FIG. 1. (a) Schematic structure of the Andreev interferometer.
(b) S/F/S structure. Here, F is a wire with Rashba spin-orbit cou-
pling, and a spin-splitting field h. (c) S/FI/F/FI/S structure. FI
layers act as spin-filtering barriers with polarizations Pr/l , and they
induce spin-splitting fields hr/l in adjacent S layers. F is a ferromag-
net with an exchange field h.

normal wire where the conductance measurement is done,
such that the noise associated with the measurement process
does not perturb the ϕ0 junction. Our main result is that the
phase-dependent contribution to the dissipative (quasiparticle)
current through the vertical arm of the interferometer can be
written as

δIqp(ϕ) = Iqp
c cos

(
ϕ + ϕ

qp
0

) = Iqp
0 cos ϕ + Iqp

an sin ϕ. (2)

Therefore, this current also exhibits an anomalous phase shift
ϕ

qp
0 . Here Iqp

0 is the usual component, which exists in An-
dreev interferometers with conventional junctions. Iqp

an is the
anomalous component, which can only exist in the presence
of a ϕ0 junction. Note that the phase shift in the Josephson
current ϕ0 and in the quasiparticle current ϕ

qp
0 are in general

not equal, but they have similar magnitude and can be directly
related to each other (see the Fig. 2). Our result suggests a
way to experimentally obtain the value of of ϕ0 from ϕ

qp
0 by

performing conductance measurements.
We study the two main realizations of ϕ0 junctions.

Namely, Josephson junctions with Rashba spin-orbit coupling

(SOC) and multilayer ferromagnetic structures [Figs. 1(b) and
1(c)]. In both cases the anomalous phase is related to the exis-
tence of a Lifshiftz invariant in the free energy [62–64]. In the
first example such invariant stems from an interplay between
a Zeeman field and the SOC, whereas in the second example it
stems from non-coplanar magnetizations of magnetic layers.

II. THE SETUP

We consider the geometry shown in Fig. 1(a). The ϕ0 junc-
tion lies along the x direction, and consists of a ferromagnetic
wire placed between two superconducting reservoirs. These
superconductors are connected in a loop (not shown), so that
when a magnetic field is applied through the loop, the result-
ing flux creates a phase difference between them and leads to
a Josephson current flowing along the x wire. An additional
normal wire (N) is placed perpendicularly to the F wire (on
the y direction). N is connected to two normal reservoirs. We
assume that the F and N wires intersect at their midpoints.
A voltage difference between the normal electrodes leads
to a quasiparticle current Iqp in the y wire, which can be
decomposed in two contributions: Iqp = I� + δIqp(ϕ), where
I� is the usual Ohmic contribution, whereas δIqp(ϕ) is the
phase-dependent part given in Eq. (2). The latter is affected
by the proximity effect with the x wire.

In the rest of this paper we determine the usual and anoma-
lous components of δIqp(ϕ) for two different realizations of a
ϕ0 junction: a S/F/S junction with Rashba SOC [Fig. 1(b),
Sec. III] and a S/FI/F/FI/S junction, where FI stands for
a ferromagnetic insulator [Fig. 1(c), Sec. IV]. In the first
example, a magnetic field and a spin-orbit coupling provide
time-reversal and inversion symmetry breaking, respectively,
which leads to the anomalous phase shift [5,17]. Here the
anomalous Josephson current is IS

an ∝ hκα , with κα being a
parameter associated with singlet-triplet conversion due to the
SOC, and h is a weak exchange or Zeeman field [see Eq. (3)].
In the second example, the ϕ0 effect occurs if the FI tunneling
barriers are spin-polarized, so that the barrier polarizations
Pr/l and the magnetization direction in the F layer h are

FIG. 2. (a) Component of the quasiparticle current odd in flux, which corresponds to Iqp
an , for the configuration shown in Fig 1(b). θ is

an angle between the in-plane exchange field in the F layer and the x axis. The Josephson phase is given by ϕ = 2π	/	0, where 	 is the
applied flux and 	0 is the flux quantum. (b) Quasiparticle current along the y wire for different magnetization directions for the configuration
shown in Fig 1(c). The exchange fields on the S electrodes hr/l are taken to be perpendicular to the exchange field on the F wire in order
to maximize the current, while they form an angle β. (c) Relation between the anomalous phase shifts in the Josephon current ϕ0 and in
the quasiparticle current ϕ

qp
0 for the junction with Rashba SOC (solid) and S/FI/F/FI/S junction (dashed), calculated from the expressions

provided in Appendices A and B, respectively. In the first case, the value of the exchange field is h = 0.1� and the Rashba coupling constant
ranges from καξ0 ∈ [−0.5, 0.5]. In the second case, the exchange field is h = 0.1� and the splitting of the superconducting electrodes are
hr/l = 0.1�, where they form an angle β ∈ [−π/2, π/2]. The temperature is T = 0.01Tc0 in both cases.
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noncoplanar, and therefore the magnetization inversion sym-
metry is broken [25–32]. The anomalous Josephson current
is IS

an ∝ χ , where χ = nh · (nl × nr ) is the so-called chirality
of the junction (see Fig. 1). Here, nh and nr/l are the unit
vectors along the exchange field and polarization directions.
We will show that in both examples, the interferometer quasi-
particle anomalous current Iqp

an has the same dependence on
the spin-dependent fields as the anomalous Josephson current
IS
an; namely, Iqp

an ∝ hκα in the first example, and Iqp
an ∝ χ in the

second example.

III. JOSEPHSON JUNCTION WITH RASHBA SOC

We first study a S/F/S structure, shown in Fig. 1(b). Here,
F is a wire with Rashba spin-orbit coupling (SOC), and an
exchange field h, which comes either from intrinsic magne-
tization (F is a ferromagnet) or from an externally applied
magnetic field. For this configuration, the anomalous Joseph-
son current is only affected by the component of the exchange
field perpendicular to the current direction x, so we consider
a field oriented along the y direction h = hy in order to maxi-
mize the ϕ0 effect [17].

We describe the system using the quasiclassical Green’s
function (GF) formalism [65]. In the diffusive limit, GFs are
obtained as a solution of the Usadel equation [66]. SOC can
be included as a background SU(2) field [67–69]. Supercon-
ducting correlations are described by the condensate GF, f̂ ,
which is a 2 × 2 matrix in spin space that consists of a singlet
component, f0 and, in general, three triplet components, f jσ j ,
where j = 1, 2, 3 and σ j are the three Pauli matrices. We
assume that the proximity effect in the F wire is weak due,
for example, to low S/F transmission coefficient. In this case,
the Usadel equation can be linearized [17]. For the situation
under consideration, transport in x direction and h field in y
direction, only the condensate components f0 and f2 are finite
and satisfy:

±∂2
xx f R/A

0 + iκ2
ε f R/A

0 − iκ2
F f R/A

2 − κα∂x f R/A
2 = 0 (3a)

±∂2
xx f R/A

2 + iκ2
ε f R/A

2 − iκ2
F f R/A

0 − κα∂x f R/A
0 = 0 (3b)

where κ2
ε = 2ε/D, κ2

F = 2h/D and κα = 4α3τ/m. Here, ε is
the energy, D is the diffusion constant, h is the exchange field,
and α is the Rashba coupling constant. The upper and lower
sign correspond to the retarded and advanced condensate GFs
f̂ R/A respectively. In the following we omit the superscript to
simplify the notation. Moreover, to simplify the calculation, in
Eq. (3) we have neglected the renormalization of the exchange
field by the SOC, and the relaxation of the triplet component
due to SOC [23].

The Usadel equation (3) is supplemented by boundary
conditions describing the interfaces between different ma-
terials. The S/F junctions are described by the generalized
Kuprianov-Lukichev conditions [70]

±∂n f0,r/l + ηr/lκα f2,r/l = ∓ 1

γ
F0eiηr/l ϕ/2 (4a)

∂n f2,r/l = 0. (4b)

Here, F0 = �/
√

�2 − ε2 is the anomalous GF of the su-
perconducting electrode, ∂n is the normal derivative at the
surface and γ = σF Rb is the parameter describing the barrier

strength, where Rb is the normal-state tunneling resistance per
unit area and σF is the conductivity of the ferromagnet. ηr/l =
±1 for the right (x = Lx/2) and left boundaries (x = −Lx/2).

The condensate function in the y wire f̂y is induced by the
proximity effect with the x wire. To find f̂y, we start from
the Kuprianov-Lukichev condition describing the interface
between the two wires, and the Usadel equation in the y wire.
Provided that the widths of the wires wx,y are much smaller
than the superconducting coherence length, we can integrate
the Usadel equation over the cross-section of the wire. If the
interface resistance is much larger than the resistance of the
wires, RB � Lx,y/σF,N , we find the equation determining f̂y:

±∂2
yy f̂y + iκ ′ 2

ε f̂y = −wx

γ 2
0

f̂ (0)δ(y). (5)

Here, γ 2
0 = RBσNwy and κ ′ 2

ε = 2ε/Dy, with RB being the re-
sistance per unit area of the interface of the x and y wires
and σN is the normal-state conductance of the y wire. The
Dirac delta term describes the proximity effect, and is a source
term. The contact of the y wire with the normal reservoirs is
assumed to be ideal so that the condensate functions vanish at
the ends of the wire is f̂y(±Ly/2) = 0.

A voltage bias V is applied between the normal electrodes.
Due to our assumption of large RB we can neglect the inverse
proximity effect. Thus, in leading order the phase-dependent
correction to the quasiparticle current is given by [71–73]

δIqp = −σN

16eLy

∫
dεFT (ε,V/2)

〈
Tr

(
f̌ R
y − f̌ A

y

)2〉
. (6)

Here 〈...〉 = 1/Ly
∫ Ly/2
−Ly/2 dy (...) denotes average over the

length, f̌ R/A is the 4 × 4 matrix GF in Nambu-spin space [see
Eq. (A1) in the Appendix] and FT is defined as FT (ε,V ) =
1
2 [tanh ε+eV

2T − tanh ε−eV
2T ]. Solving the boundary value prob-

lem, Eqs. (3) and (4), we first calculate the f̂ for the x-wire,
and then f̂y for the y-wire from Eq. (5). Using Eq. (6) we then
obtain the usual and anomalous quasiparticle currents entering
Eq. (2).

Up to the leading order terms in exchange field and Rashba
SOC, the quasiparticle current takes the following form:

Iqp
0 = c1, (7)

Iqp
an = c2hκα. (8)

The factors c1 and c2 depend on T and Lx,y, and their exact
form is given by Eqs. (A14) and (A15) in the Appendix.
Both components of the quasiparticle current depend on the
spin-dependent fields in the same way as the components
of Josephson current [17]: IS

0 and Iqp
0 are independent of

these fields, whereas IS
an, Iqp

an ∼ hκα . Note that the result for
the anomalous current, Eq. (8), also holds in the case when
exchange field in the F layer is not fully aligned with the
y-direction, by taking h = htot sin θ . Here htot is an arbitrarily
oriented in-plane field, and θ is an angle between the field
and the x direction. To illustrate this, in Fig. 2(a) we plot
the odd component of the anomalous quasiparticle current,
Iqp
an sin ϕ = 1

2 [Iqp(ϕ) − Iqp(−ϕ)], for different values of θ . The
current is normalized with respect to its maximum value for
clarity. For θ = 0, the exchange field is parallel to the wire,

214515-3



HIJANO, ILIĆ, AND BERGERET PHYSICAL REVIEW B 104, 214515 (2021)

so there is no anomalous phase shift and Iqp
an vanishes. The ϕ0

effect is maximized for θ = π/2, where the exchange field
is perpendicular to the wire. In Fig. 2(c) we plot the rela-
tion between the ϕ0 phase-shift in the Josephson current, and
the phase-shift measured in the quasiparticle current ϕ

qp
0 . All

expressions presented in this paper are valid for arbitrary tem-
perature. For the numerical computations however, we only
focus on low temperatures, T = 0.01Tc0, where the magnitude
of the quasiparticle current is maximized.

IV. S/FI/F/FI/S JUNCTION

Another configuration to obtain a ϕ0 junction is a
S/FI/F/FI/S junction with noncoplanar magnetizations
[Fig. 1(c)]. This configuration has not yet been realized in
experiment, but has been theoretically predicted to show AJE
[25–32]. In these structures, the role of the FI layers is two-
fold: firstly, they induce an exchange field hr/l in the adjacent
S layer, and secondly, they act as spin-polarized tunneling bar-
riers with a polarization Pr/l . The linearized Usadel equation
in the F layer reads

±∂2
xx f̂ + iκ2

ε f̂ − i
κ2

F

2
{σ3, f̂ } = 0, (9)

where {., .} is an anticommutator. We have assumed, without
loss of generality, that the exchange field in the F-wire points
on the z direction.

The S/F junctions with spin-filtering barriers are described
by the generalized Kuprianov-Lukichev boundary condition
[74,75]. The exchange fields hr/l induced via the magnetic
proximity effect in the S electrodes point in the same direc-
tion as the polarization vectors Pr/l . The linearized boundary
conditions read

±γ ∂n f̂r/l = 1

2
[Ĝr/l Pr/l · σ, f̂r/l ]

+ 1

2
{Ĝr/l , f̂r/l} ∓

√
1 − P2

r/lF̂r/l e
iηr/l ϕ/2. (10)

Here, Ĝr/l and F̂r/l are the normal and anomalous GFs of the
spin-split superconducting electrode, respectively. In the weak
exchange field limit, they are given by

Ĝr/l = G0 − hr/l · σ
dG0

dε
(11a)

F̂r/l = F0 − hr/l · σ
dF0

dε
(11b)

with G0 = −iε/
√

�2 − ε2.
Generally, the coherence length in the ferromagnetic layer

is much shorter than in a normal metal κ−1
F � κ−1

N , where
κN = √

2T/D. We assume the long-junction regime, so that
κ−1

F � Lx � κ−1
N . In this regime the length of the x wire Lx is

much longer than the penetration length of the Cooper pairs
κ−1

F in the F layer, so that the condensate functions f̂ and f̂y

are mediated primarily by the long-range triplet superconduct-
ing correlations [9,76,77], whereas the singlet and short-range
triplet correlations decay over the length κ−1

F .
To calculate the interferometer current, we proceed sim-

ilarly as in the previous example. First, from Eqs. (9) and
(10), we find f̂ in the x wire, and then calculate the current

in the y wire from Eqs. (5) and (6). The usual and anomalous
quasiparticle currents are given by [32]

Iqp
0 = c3

√
1 − P2

r

√
1 − P2

l γ −2hl⊥ · hr⊥ (12)

Iqp
an = c4

√
1 − P2

r

√
1 − P2

l γ −3(Plhr + Prhl )z · (nl × nr ),

(13)

where hr/l⊥ = hr/l − (hr/l · h)h/h2 are the components of
hr/l perpendicular to h [see Eqs. (B12) and (B13) in the
Appendix for the exact form of the coefficients c3 and c4].

From Eq. (13), we see that the anomalous quasiparticle
current is proportional to the scalar triple product of the
magnetizations Iqp

an ∝ χ = z · (nl × nr ) [32]. Here, χ is the
junction chirality, and it is nonzero only if the barrier po-
larizations and the magnetization direction are noncoplanar.
As in the previous example, the quasiparticle current and the
Josephson current have the same dependence on the spin-
dependent fields: for the usual components IS

0 , Iqp
0 ∝ hl⊥ ·

hr⊥, and for the anomalous components IS
an, Iqp

an ∝ χ .
Usually, Iqp

0 is the dominant contribution to the interferom-
eter current, as it is of the lower order in the small barrier
parameter γ −1, namely Iqp

an /Iqp
0 , IS

an/IS
0 ∼ γ −1 � 1. However,

if hl⊥ · hr⊥ = 0 the usual component vanishes and only the
anomalous current contributes. In other words, the measured
quasiparticle current is directly linked to the ϕ0 effect. To
illustrate this point further, in Fig. 2(b) we use the analytical
formulas (B12) and (B13) to plot the normalized quasiparticle
current for different magnetic configurations. Here, β is the
angle formed by the exchange fields on the S electrodes hr/l ,
which are taken to be perpendicular to h. Unlike in panel (a),
here we plot the total anomalous quasiparticle current Iqp

an to
stress the shift from an even-in-phase to odd-in-phase behav-
ior when the angle between the electrode magnetizations in-
creases. For β = 0, there is no ϕ0 effect, so the current is even
in the phase. Iqp

0 decreases with increasing β and vanishes for
β = π/2. In this case, the oscillation of δIqp are given by the
anomalous quasiparticle current, so that δIqp becomes odd in
ϕ. In Fig. 2(c) we plot the relation between the ϕ0 and ϕ

qp
0 .

It is worth mentioning, that to simplify equations and
obtain analytical solutions, we have assumed a low barrier
transmission at the S/F interfaces and between the x and y
wires. Consequently, the obtained quasiparticle current, be-
ing proportional to powers of a small interface parameter, is
also small. However, the findings of our work should still
hold qualitatively in setups with smaller interface resistances,
where the quasiparticle currents should be significantly larger.
In other words, our results give a lower bound of the current
amplitude. Moreover, the expressions for the quasiparticle
current, Eqs. (7), (8), (12), and (13) are valid for all tem-
peratures. Indeed, the temperature dependence enters the
coefficients ci, (i = 1, 2, 3, 4), given in Eqs. (A14), (A15),
(B12), and (B13). From these expressions one can show that
the quasiparticle current amplitudes are maximized at low
temperatures, and they decrease monotonically towards zero
at the superconducting critical temperature. This behavior of
δIqp is in contrast with the temperature behavior of the critical
Josephson current, whose sign may be reversed by changing
the temperature [2] (i.e., when a 0-π transition occurs).
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V. CONCLUSION

In summary, we have studied the current-phase relation
of an Andreev interferometer with an anomalous Joseph-
son junction. We have shown how the quasiparticle current
through the normal arm of the interferometer is affected by
the appearance of an anomalous phase ϕ0. Specifically, we
have studied the AJE in S/F/S structures with spin-splitting
field and Rashba SOC or spin-filtering barriers. Our results
show that there is also an anomalous contribution to the
phase-dependent part of the quasiparticle current proportional
to sin ϕ when ϕ0 is different from 0 and π . Moreover, the
usual and anomalous quasiparticle currents have the same
dependence on the spin-dependent fields as the anomalous
Josephson current. Suitable materials for the realization of
the anomalous Andreev interferometer are InSb [21], Bi wires
[78], Bi2Se3 [22], and InAs [24,79] due to the large spin-orbit
coupling, in combination with conventional superconductors
and normal metals. In particular, in systems with InAs a large

phase shift ϕ0 ≈ π/2 was experimentally observed [23] in
the Josephson current, and based on our findings, we expect
equally strong effect in the Andreev interferometer geometry.
For the ferromagnetic interferometers we propose EuS/Al
structures to engineer a ϕ0 junction in a S/FI/F/FI/S junction
due to the well-defined splitting and strong barrier polariza-
tion [80], while the F layer can consist of a Co wire [81,82].
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APPENDIX A: JOSEPHSON JUNCTION WITH RASHBA SOC

In this Appendix we present a detailed derivation of the expressions used in the main text for the currents in the presence of
Rashba SOC. In Sec. A 1 we first present the derivation of the Josephson current in the x wire, followed by the derivation of the
quasiparticle current in the y wire in Sec. A 2.

1. Current along the x wire

We start by solving the linearized Usadel equation, Eq. (3), with the appropriate boundary conditions—Eq. (4). First, let us
note that the retarded and advanced anomalous Green’s functions (GFs) in Nambu-spin space have the following structure

f̌ =
(

0 f̂ (ε)

f̂ (−ε) 0

)
, (A1)

where ˆ̄X = T X̂T −1, and T = iσ2K is the time-reversal transformation, with K being the complex conjugate operation.
Moreover, we can relate f̌ A to f̌ R as

f̌ A(ε, h, α) = f̌ R(−ε,−h,−α). (A2)

In the following we only write the retarded GF and omit the superscript to simplify the notation.
We find the condensate function f̂ perturbatively in κα , keeping terms up to the first order in this parameter. The solution is

f0 =
[((

1 + καx

2

)
A1,+ + B1,+

)
eiϕ/2 +

((
1 + καx

2

)
A2,+ + B2,+

)
e−iϕ/2

]
eκ+x

+
[((

1 + καx

2

)
A2,+ − B2,+

)
eiϕ/2 +

((
1 + καx

2

)
A1,+ − B1,+

)
e−iϕ/2

]
e−κ+x

+
[((

1 − καx

2

)
A1,− − B1,−

)
eiϕ/2 +

((
1 − καx

2

)
A2,− − B2,−

)
e−iϕ/2

]
eκ−x

+
[((

1 − καx

2

)
A2,− + B2,−

)
eiϕ/2 +

((
1 − καx

2

)
A1,− + B1,−

)
e−iϕ/2

]
e−κ−x, (A3)

f2 =
[((

1 + καx

2

)
A1,+ + B1,+

)
eiϕ/2 +

((
1 + καx

2

)
A2,+ + B2,+

)
e−iϕ/2

]
eκ+x

+
[((

1 + καx

2

)
A2,+ − B2,+

)
eiϕ/2 +

((
1 + καx

2

)
A1,+ − B1,+

)
e−iϕ/2

]
e−κ+x

−
[((

1 − καx

2

)
A1,− − B1,−

)
eiϕ/2 +

((
1 − καx

2

)
A2,− − B2,−

)
e−iϕ/2

]
eκ−x

−
[((

1 − καx

2

)
A2,− + B2,−

)
eiϕ/2 +

((
1 − καx

2

)
A1,− + B1,−

)
e−iϕ/2

]
e−κ−x, (A4)

where κ± =
√

−iκ2
ε ± iκ2

F , and the coefficients are given by

A1,± = F0

4γ κ±

eκ±Lx/2

sinh κ±Lx
, (A5a)
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A2,± = F0

4γ κ±

e−κ±Lx/2

sinh κ±Lx
, (A5b)

B1,± = καF0

8γ κ±

1

sinh κ±Lx

(
1

κ∓ sinh κ∓Lx
(e−κ±Lx/2 − eκ±Lx/2 cosh κ∓Lx ) − Lx

2
eκ±Lx/2

)
, (A5c)

B2,± = καF0

8γ κ±

1

sinh κ±Lx

(
1

κ∓ sinh κ∓Lx
(−eκ±Lx/2 + e−κ±Lx/2 cosh κ∓Lx ) + Lx

2
e−κ±Lx/2

)
. (A5d)

Having found the condensate function, we proceed to calculate the Josephson current in the F wire, which is given as

IS = πσF T

e

∑
ω

Im( f ∗
0 (∂x f0 − κα f2) − f ∗

2 ∂x f2). (A6)

Note that in Eq. (A6) we introduce the Matsubara frequencies ω = 2π (n + 1/2)T . The Matsubara GF is obtained by analytic
continuation of f̌ to the complex plane ε → iω. We can use the boundary conditions (4) to simplify the previous equation:

IS = 2πT

eRb

∑
ω>0

Im f ∗
0 (Lx/2)F0eiϕ/2. (A7)

After substitution the Eqs. (A3) and (A4) in Eq. (A7), we find the Josephson current:

IS = 2πσST

eγ 2

∑
ω>0

F2
0

[
Re

1

κ+ sinh (κ+Lx )
sin ϕ + καIm

( −Lx/2

κ+ sinh (κ+Lx )
+ cosh (κ+Lx )

|κ+|2| sinh (κ+Lx )|2
)

cos ϕ

]
. (A8)

Here we identify the usual I0 and anomalous Ian components of the Josephson current as the terms proportional to sin ϕ and
cos ϕ, respectively. The usual component is independent of the SOC strength, while the anomalous current is proportional to κα

and is nonvanishing if the exchange field h is finite.

2. Current along the y wire

Starting from Eq. (5), and imposing f̌y(±Ly/2) = 0, we find the condensate function in the y wire

f̌y = wx

2γ 2
0

√−iκ ′
ε cosh (

√−iκ ′
εLy/2)

f̌ (0) sinh (
√−iκ ′

ε(Ly/2 − |y|)), (A9)

where f̌ (0) is the condensate function for the x wire (found in Sec. A 1), evaluated at the intersection of x and y wires. Next, we
use f̌y to calculate the quasiparticle current δIqp from Eq. (6). We decompose this current as δIqp = δI1 + δI2, where

δI1 = − σN

eLy

∫
dεFT (ε,V/2)

1

16
〈Tr(( f̌ R)2 + ( f̌ A)2)〉 = πT σN

2eLy
Im

∑
ω>0

〈Tr f̌ (ω + ieV/2)2〉, (A10)

δI2 = 4σN

eLy

∫ ∞

0
dεFT (ε,V/2)

1

16
〈Tr( f̌ R f̌ A)〉. (A11)

Using solution (A9), the summands in Eq. (A10) can be written as

〈Tr f̌ (ω + ieV/2)2〉 = w2
x

γ 4
0 κ ′

ω
2 cosh2 (κ ′

ωLy/2)

(
sinh (κ ′

ωLy)

2κ ′
ωLy

− 1

2

)
(| f0(0)|2 − | f (0)|2)

∣∣∣∣
ω=2π (n+1/2)T +ieV/2

, (A12)

where f0(0) and f (0) are the singlet and triplet component of the GF of the x wire at the crossing point. Similarly, the integrand
in Eq. (A11) can be written as

〈Tr( f̌ R f̌ A)〉 =
w2

x

(
sinh (

√
2κ ′

εLy/2)√
2κ ′

εLy
− sinh (

√
2iκ ′

εLy/2)√
2iκ ′

εLy

)
2γ 4

0 |κ ′
ε|2| cosh (

√−iκ ′
εLy/2)|2 ( f0(ε, h, α) f0(ε,−h,−α)∗

+ f0(−ε, h, α)∗ f0(−ε,−h,−α) − f (ε, h, α) · f (ε,−h,−α)∗ − f (−ε, h, α)∗ · f (−ε,−h,−α)). (A13)

Finally, the usual (Iqp
0 ) and anomalous (Iqp

an ) quasiparticle currents are

Iqp
0 = πσN T

2eLy
Im

∑
n�0

w2
x

(
sinh (κ ′

ωLy )
2κ ′

ωLy
− 1

2

)
γ 4

0 κ ′
ω

2 cosh2 (κ ′
ωLy/2)

F2
0

4γ 2

(
1

κ2+ sinh2 (κ+Lx/2)
+ 1

κ2− sinh2 (κ−Lx/2)

)∣∣∣∣
ω=2π (n+1/2)T +ieV/2

+ σN

4eLy

∫ ∞

0
dεFT (ε,V/2)

w2
x

(
sinh (

√
2κ ′

εLy/2)√
2κ ′

εLy
− sinh (

√
2iκ ′

εLy/2)√
2iκ ′

εLy

)
γ 4

0 |κ ′
ε|2| cosh (

√−iκ ′
εLy/2)|2

|F0|2
4γ 2
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×
(

1

|κ+|2| sinh (κ+Lx/2)|2 + 1

|κ−|2| sinh (κ−Lx/2)|2
)

, (A14)

Iqp
an = κα

πσN T

2eLy
Im

∑
n�0

w2
x

(
sinh (κ ′

ωLy )
2κ ′

ωLy
− 1

2

)
γ 4

0 κ ′
ω

2 cosh2 (κ ′
ωLy/2)

F2
0

4γ 2

(
Lx

2κ2+ sinh2 (κ+Lx/2)
− Lx

2κ2− sinh2 (κ−Lx/2)

+ tanh (κ−Lx/2)

κ2+κ− sinh2 (κ+Lx/2)
− tanh (κ+Lx/2)

κ2−κ+ sinh2 (κ−Lx/2)

)∣∣∣∣
ω=2π (n+1/2)T +ieV/2

+ κα

σN

4eLy

∫ ∞

0
dεFT (ε,V/2)

w2
x

(
sinh (

√
2κ ′

εLy/2)√
2κ ′

εLy
− sinh (

√
2iκ ′

εLy/2)√
2iκ ′

εLy

)
γ 4

0 |κ ′
ε|2| cosh (

√−iκ ′
εLy/2)|2

|F0|2
4γ 2

× Im

{
tanh (κ−Lx/2)

|κ+|2κ−| sinh (κ+Lx/2)|2 − tanh (κ+Lx/2)

|κ−|2κ+| sinh (κ−Lx/2)|2
}
. (A15)

The factors c1 and c2 defined in Eqs. (7) and (8) of the main text can be extracted from Eqs. (A14) and (A15) by assuming the
limit of weak exchange field h.

APPENDIX B: S/FI/F/FI/S JUNCTION

In this Appendix we present a detailed derivation of the expressions used in the main text for the currents in the S/FI/F/FI/S
geometry. In Sec. B 1 we first present the derivation of the Josephson current in the x wire, followed by the derivation of the
quasiparticle current in the y-wire in Sec. B 2.

1. Current along the x wire

The general solution of Eq. (9) for the condensate function in the x wire reads

f̂ = (A + Aσ3)eκ+x + (B + Bσ3)e−κ+x + (C − Cσ3)eκ−x + (D − Dσ3)e−κ−x + Eσ1eiκεx + Fσ1e−iκεx + Gσ2eiκεx + Hσ2e−iκεx.

(B1)
Coefficients in Eq. (B1) can be found by applying the boundary conditions [Eq. (10)]. In the ferromagnetic wire, the supercurrent
is given as

IS = πσF
T

e

∑
ω

Im{ f ∗
0 ∂x f0 − f ∗ · ∂x f }, (B2)

where f̂ω = f0 + f · σ is decomposed into the scalar singlet amplitude f0 and the vector of triplet states f . Assuming κ−1
F �

Lx � κ−1
ω , we can substitute the long range components f1 and f2 by their average values, given by

〈 f1/2〉 = ∂x f1/2|x=−Lx/2 − ∂x f1/2|x=Lx/2

κ2
ωLx

. (B3)

Then, using the boundary conditions [Eq. (10)], the long range triplet components are given by

〈 f1/2〉 = 1

κ2
ωLxγ

(
iGl,0(Pl,2/3 f3/1(−Lx/2) − Pl,3/1 f2/3(−Lx/2)) −

√
1 − P2

l Fl,1/2e−iϕ/2

+ iGr,0(Pr,2/3 f3/1(Lx/2) − Pr,3/1 f2/3(Lx/2)) −
√

1 − P2
r Fr,1/2eiϕ/2

)
, (B4)

where Ĝr/l and F̂r/l are given by Eq. (11). Using solution (B1), we can calculate the f0 and f3 near each boundary independently
without overlapping. To first order in γ −1, we obtain:

f (1)
0,r/l =

√
1 − P2

r/l

2γ

(Fr/l,0 + Fr/l,3

κ+
e−κ+(Lx/2∓x) + Fr/l,0 − Fr/l,3

κ−
e−κ−(Lx/2∓x)

)
eiηr/l ϕ/2 (B5)

f (1)
3,r/l =

√
1 − P2

r/l

2γ

(Fr/l,0 + Fr/l,3

κ+
e−κ+(Lx/2∓x) − Fr/l,0 − Fr/l,3

κ−
e−κ−(Lx/2∓x)

)
eiηr/l ϕ/2. (B6)

The second-order terms in γ −1 are also important to obtain the anomalous Josephson effect:

f (2)
0,r/l = −iGr/l,0

2γ
(Pr/l,1〈 f2〉 − Pr/l,2〈 f1〉)

(
e−κ+(Lx/2∓x)

κ+
− e−κ−(Lx/2∓x)

κ−

)
(B7)
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f (2)
3,r/l = −iGr/l,0

2γ
(Pr/l,1〈 f2〉 − Pr/l,2〈 f1〉)

(
e−κ+(Lx/2∓x)

κ+
+ e−κ−(Lx/2∓x)

κ−

)
. (B8)

To lowest order in γ −1, the current (B2) can be written as

IS = πσF T

eγ

∑
ω

Im ±
√

1 − P2
r/l ( f ∗

0 Fr/l,0 − f ∗ · F r/l )e
iηr/l ϕ/2|x=±Lx/2. (B9)

Finally, we find the usual and anomalous Josephson currents:

IS
0 = − 2π

eRb
(hl⊥ · hr⊥)

√
1 − P2

r

√
1 − P2

l√
2Lxγ 2

∑
ω>0

TF ′2
0

κ2
N

(B10)

IS
an = − 2π

eRb
(χl − χr )

√
1 − P2

r

√
1 − P2

l

κF hLxγ 3

∑
ω>0

TG0F0F ′
0

κ2
ω

. (B11)

For simplicity we have assumed the same amplitude of the order parameter in the two electrodes. The chiralities are defined as
χr/l = h · (Pr/l × hl/r), and hr/l⊥ = hr/l − (hr/l · h)h/h2 are the components of hr/l perpendicular to h.

2. Current along the y wire

We obtain the quasiparticle current in the y-wire by following the same procedure as in Sec. A 2. The coefficients c3 and c4

in Eqs. (12) and (13) are

c3 = −πT σN

2eLy
Im

∑
n�0

w2
x

(
sinh (κ ′

ωLy )
2κ ′

ωLy
− 1

2

)
γ 4

0 κ ′
ω

2 cosh2 (κ ′
ωLy/2)

2(F ′
0)2

κ4
ωL2

x

∣∣∣∣
ω=2π (n+1/2)T +ieV/2

+ σN

4eLy

∫ ∞

0
dεFT (ε,V/2)

w2
x

(
sinh (

√
2κ ′

εLy/2)√
2κ ′

εLy
− sinh (

√
2iκ ′

εLy/2)√
2iκ ′

εLy

)
γ 4

0 |κ ′
ε|2| cosh (

√−iκ ′
εLy/2)|2

2|F ′
0|2

|κε|4L2
x

, (B12)

c4 = πT σN

2eLy
Im

∑
n�0

w2
x

(
sinh (κ ′

ωLy )
2κ ′

ωLy
− 1

2

)
γ 4

0 κ ′
ω

2 cosh2 (κ ′
ωLy/2)

√
2G0F0F ′

0

κF κ4
ωL2

x

∣∣∣∣
ω=2π (n+1/2)T +ieV/2

+ σN

4eLy

∫ ∞

0
dεFT (ε,V/2)

w2
x

(
sinh (

√
2κ ′

εLy/2)√
2κ ′

εLy
− sinh (

√
2iκ ′

εLy/2)√
2iκ ′

εLy

)
γ 4

0 |κ ′
ε|2| cosh (

√−iκ ′
εLy/2)|2

−√
2Re{G∗

0F∗
0F ′

0}
κF |κε|4L2

x

. (B13)
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