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We investigate the response of a doped topological insulator Bi2Se3 with spin-triplet nematic superconductiv-
ity to external magnetization. We calculate the Zeeman part of the magnetic susceptibility for nematic and chiral
superconducting phases near Tc in the Ginzburg-Landau formalism. The superconducting order parameter from
the Eu representation has nontrivial coupling with the transversal Zeeman field that results in a paramagnetic
response to magnetization. The topology of a Fermi surface has a strong influence on magnetic susceptibility.
The Lifshitz transition from a closed to open Fermi surface eventually leads to a phase transition from the
nematic to chiral phase. At the transition point, magnetic susceptibility diverges. Also, we study the effects
of the electron-electron interaction on the competition between nematic and chiral phases. We find that in a
real system, electron-electron interaction can drive the nematic to chiral phase only in the vicinity of the phase
transition. We compare our results with the existing experimental data.
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I. INTRODUCTION

Several years ago topological superconductivity in the bulk
of the doped topological insulator (TI) AxBi2Se3 was discov-
ered [1–3]. Dopant atom A can be Cu [1–7], Sr [8–13], or
Nb [14–17]. The superconducting phase in these materials
shows C2 rotational symmetry that breaks the C3 symme-
try of the normal state. Such rotational symmetry breaking
was observed in measurements of specific heat [5], magnetic
resonance [16], the in-plane upper critical field [10,12], and
the vortex core form [6]. Observation of nuclear magnetic
resonance indicates the spin-triplet character of this supercon-
ductivity [7].

Such C2 rotational symmetry is possible due to the real-
ization of the superconducting vector order parameter that
belongs to the Eu representation of the crystalline D3d point
group [18,19]. One possible solution within such a represen-
tation is a nematic order parameter that is a two-component
real vector η = η(cos θ ; sin θ ). The direction of this vector
is associated with the nematicity axis. The orientation of
the nematicity axis shows the direction of twofold symmetry
breaking [11,20]. The nematic order parameter brings sev-
eral interesting features such as vestigial nematic order [21],
surface Andreev bound states [22], the unconventional Higgs
mode [23], and quasiparticle interference [24,25].

Another possible solution for the order parameter is called
chiral and corresponds to the vector with an imaginary compo-
nent η ∝ (1; ±i). This order parameter spontaneously breaks
time-reversal symmetry, keeping rotational crystalline sym-
metry intact [26]. In NbxBi2Se3 such spontaneous breaking
of the time-reversal symmetry was found [14]. A muon spin
rotational experiment showed time-reversal symmetry break-
ing in the Sr0.1Bi2Se3 superconductor [13]. However, another
study on NbxBi2Se3 showed the presence of time-reversal

symmetry in the superconducting phase [15–17]. Theoretical
calculations predict the chiral phase is the ground state in
two-dimensional (2D) films of doped Bi2Se3 [26,27], while in
a three-dimensional (3D) system with a closed Fermi surface,
the nematic phase has lower free energy than the chiral state
[28–30]. Experimentally, the Fermi surface of doped Bi2Se3

with superconductivity has the topology of an open cylinder
[31,32], which is an intermediate case between 2D and 3D
Fermi surfaces. This transition to the open Fermi surface leads
to the phase transition from the nematic to chiral phase [33].

Near the critical temperature, the physical properties of the
superconducting state are described by the Ginzburg-Landau
(GL) functional, which for the nematic superconductor was
obtained in Refs. [19,20]. One of the interesting features of
this functional is the coupling between the first power of
magnetization and the superconducting order parameter. Such
coupling can lead to the transition from the nematic to chiral
state with spontaneous magnetization [34]. It was predicted
that the transition from the nematic to chiral state occurs upon
doping by magnetic ions [28,29].

Magnetization measurements show the presence of the dia-
magnetic Meissner effect [17]. A muon spin rotational (μSR)
experiment can be used to determine local magnetic moments
in superconductors [35–38]. A recent μSR experiment did not
find time-reversal breaking in superconducting Nb0.25Bi2Se3

in the absence of magnetic field [17]. However, μSR shows
that the superconducting state has an additional paramagnetic
magnetization compared to the normal state in the magnetic
field. In this work, we show how nontrivial coupling between
magnetization and the nematic superconductivity can explain
such a paramagnetic response.

In this paper, we calculate the magnetic susceptibility of
the nematic superconductor near the critical temperature Tc.
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We start with the microscopic derivation of the GL free energy
of the doped topological insulator with the open Fermi surface
and finite magnetization that is induced by the magnetic field
following the common procedure [20,28,29]. We solve GL
equations for the order parameter and find that the magnetic
field influences the form of the order parameter for the ground
state. We calculate the ground-state free energy as a function
of magnetic field. Using this free energy, we find that in both
nematic and chiral states a paramagnetic contribution to the
magnetic susceptibility exists in the system. We interpret this
phenomenon as a Pauli paramagnetism of spin-1 Cooper pairs
of the nematic superconductor. Such magnetic susceptibility
diverges near the transition from the nematic to the chiral
state. In addition, we show that coupling between magnetism
and superconductivity is rather weak and electron-electron
interaction cannot cause the phase transition between nematic
and chiral superconductivity.

This paper is organized as follows: in Sec. II we de-
scribe the normal and superconducting states in the presence
of an external Zeeman field and calculate GL coefficients.
Section III is dedicated to the Zeeman susceptibility of the
superconductor. In Sec. IV we consider the possibility of
the phase transition due to electron-electron interaction. We
discuss and summarize the obtained results in Sec. V.

II. MODEL

A. Normal phase

We describe bulk electrons in a doped topological insulator
in the Bi2Se3 family by a low-energy k · p two-orbital Hamil-
tonian [39]:

Ĥ0(k) = −μ + mσz + vzkzσy + v(kxsy − kysx )σx, (1)

where μ is the chemical potential, 2m is a single-electron
gap at the zero chemical potential, and Fermi velocities v

and vz describe motion in the (�K ; �M ) plane and along
the �Z direction, respectively. Pauli matrices si act in spin
space, while matrices σi act in the space of Bi and Se or-
bitals p = (P1, P2), where i = {x, y, z} and Planck’s constant
h̄ = 1. The Hamiltonian (1) obeys time-reversal symmetry
T̂ Ĥ0(k)T̂ −1 = Ĥ0(−k), where T̂ = isyK̂ , T̂ 2 = −1 is the
time-reversal operator and K̂ provides complex conjugation.
Also, this Hamiltonian has inversion symmetry P̂Ĥ0(k)P̂ =
Ĥ0(−k), where P̂ = σz and P̂2 = 1 is the operator of the in-
version [39]. Angle-resolved photoemission spectroscopy and
measurements of Shubnikov–de Haas oscillations show that
the Fermi surface in doped Bi2Se3 is open in the �Z direction
[31,32]. An increase in the chemical potential by doping trans-
forms the closed ellipsoid Fermi surface of undoped samples
to a corrugated cylinder Fermi surface of doped samples. For
a high chemical potential, dispersion in the z direction disap-
pears, and the system becomes quasi-2D. We introduce a finite
length of the 001 lattice constant c into the model. Momentum
is bounded by the Brillouin zone’s (BZ) size |kz| < π/c, or in
elliptical coordinates (vkx, vky, vzkz ) the polar angle stays in
the range θ ∈ [θ0; π − θ0], where we define the cutoff angle
θ0 as follows:

cos(θ0) = min

(
1,

πvz

c
√

μ2 − m2

)
. (2)

FIG. 1. Fermi surface before and after the Lifshitz transition in
dimensionless coordinates. The dashed blue line gives the bound-
aries of the first BZ (white background) and second BZ (yellow
background). (a) The gray curve gives the closed Fermi surface at
μ = 1.2 m. (b) The gray line gives the open Fermi surface at μ =
1.4 m; the cutoff angle θ0 is defined by Eq. (2). (c) The same Fermi
surface as in (a), where parts of the Fermi surface with |kz| < q/2
are highlighted by thick red lines. In these red sheets of the Fermi
surface, the electron-phonon coupling is the strongest; see Ref. [41]
for details.

In this model, the Fermi surface is closed at a low chemical
potential μ. When the chemical potential reaches a critical
value μLT = √

π2v2
z /c2 − m2, the Fermi surface reaches the

boundary of the first BZ and changes topology from ellipsoid
to open cylinder, that is, the Lifshitz transition (LT) [40]. We
show closed and open Fermi surfaces in Figs. 1(a) and 1(b),
respectively.

An experiment with inelastic neutron scattering [41]
showed the linewidth of phonon spectra has a singularity for
phonon momentum q oriented along the �Z direction while
q → 0. The attraction between electrons with momenta k and
−k in the Cooper channel occurs only for electrons whose
kz components are close enough to each other. Thus, only
electrons with momentum |kz| < q/2 participate in supercon-
ducting pairing. This singular coupling can be modeled by
the Heaviside step function θ (q − 2kz ), and the Fermi surface
where Cooper pairs can be formed is effectively cut off. This
new effective Fermi surface has the topology of an open
cylinder (see Fig. 1).

B. Superconducting phase

We describe superconductivity in the Nambu II basis,
where the wave function is

�k = (φt
k,−iφ†

ksy)t , (3)

where φk = (φ↑,1,k, φ↓,1,k, φ↑,2,k, φ↓,2,k )t , the symbol t indi-
cates transpose, and the symbol † indicates the Hermitian
conjugate. Operator φ

(†)
↑(↓),σ,k annihilates (creates) electrons

with up (down) spin on the orbital σ = P1, P2 with mo-
mentum k. The superconducting order parameter from the
Eu representation of the D3d crystalline point group has the
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TABLE I. GL coefficients A, B1, B2, g, and a for systems with different Fermi surfaces and different magnetic interactions. The second
column describes the 3D system with a closed FS. Coefficients in the quasi-2D system are shown in third column. The fourth column gives the
general case of an open FS. Coefficient j = 2

π
ec, where c is the Euler-Mascheroni constant and ζ is the Riemann zeta function.

GL
coefficient θ0 = 0: closed FS θ0 = π/2: cylindrical FS 0 < θ0 < π/2: open FS

A
√

μ2−m2
3

(T −Tc )

3π2μTcv2vz

(μ2−m2 )(T −Tc )
4πcμTcv2

√
μ2−m2

3
(T −Tc ) cos(θ0 )[7+cos(2θ0 )]

24π2μTcv2vz

B1
7ζ (3)

√
μ2−m2

5

30π4T 2
c μ3v2vz

21ζ (3)(μ2−m2 )
128πcT 2

c μ3v2
7ζ (3) cos(θ0 )

√
μ2−m2

5
[427+76 cos(2θ0 )+9 cos(4θ0 )]

15360π2T 2
c μ3v2vz

B2
7ζ (3)

√
μ2−m2

5

60π4T 2
c μ3v2vz

− 7ζ (3)(μ2−m2 )
128πcT 2

c μ3v2
7ζ (3) cos(θ0 )

√
μ2−m2

5
[71+188 cos(2θ0 )−3 cos(4θ0 )]

15360π2T 2
c μ3v2vz

g f

√
μ2−m2

6π2μ2v2vz
[3m2 ln( jωD

Tc
) + 2(m2 − μ2)] 1

2πcv2μ2 × [m2 + (m2 − μ2) ln( jωD
Tc

)]
√

μ2−m2 cos(θ0 )

6π2v2vzμ2 × {m2[3 − cos2(θ0 )

+3 ln( jωD
Tc

)]

−μ2[2 cos2 θ0 + 3 sin2 θ0 ln( jωD
Tc

)]}

ga
m
√

μ2−m2

6π2μ3v2vz

×[3μ2 ln( jωD/Tc ) + μ2 − m2]

m
√

μ2−m2

2πcv2μ
− m

√
μ2−m2 cos(θ0 )

6π2v2vzμ3 × (m2 cos2(θ0 )

−μ2[2− cos(2θ0)+3 cos2 θ0 ln( jωD
Tc

)])

af ,z −
√

μ2−m2 (2m2+μ2 )

12π2v2vzμ
− m2

4πv2cμ
−

√
μ2−m2 cos(θ0 )[5m2+μ2+cos(2θ0 )(μ2−m2 )]

24π2v2vzμ

aa,z −
√

μ2−m2 (m2+2μ2 )

12π2v2vzμ
− μ

4πv2c
−

√
μ2−m2 cos(θ0 )[m2+5μ2−cos(2θ0 )(μ2−m2 )]

24π2v2vzμ

aa, f
m

π2μv2vz

m

πcμ
√

μ2−m2v2

m cos(θ0 )
π2μv2vz

following matrix structure [26]:

�̂ = ηxsxσy(τx + iτy) + η∗
x sxσy(τx − iτy)

+ ηysyσy(τx + iτy) + η∗
y syσy(τx − iτy). (4)

The superconducting term depends on two components
of vector order parameters ηx = η sin(α)eiφ1 and ηy =
η cos(α)eiφ2 , where φ = φ1 − φ2. Matrices τi acts in electron-
hole space. We assume that only the electrons in the Debye
window participate in the superconductivity −ωD < εk < ωD,
where εk is the band’s dispersion of the Hamiltonian (1). This
order parameter violates inversion symmetry of the normal
state.

The Bogoliubov–de Gennes (BdG) Hamiltonian in the
Nambu II basis is [18]

ĤBdG(k) = τzĤ0(k) + �̂. (5)

We find the GL free energy from microscopic theory as
[20,28,29]

F = F0 − T
∑

ω

∫
dk3

(2π )3
Tr[ln(1 − Ĝ0�̂)], (6)

where F0 = −T
∑

ω

∫
dk3

(2π )3 Tr[ln(Ĝ−1
0 )] is the free energy of a

normal state and �̂ is the self-energy. The matrix Ĝ0 = (iω −
Ĥ0)−1 is the Matsubara Green’s function in the Nambu II ba-
sis, and the fermionic Matsubara frequency ω = (2n + 1)πT ,
where n is an integer. We take the trace Tr[·] over spin, orbital,
and electron-hole degrees of freedom. Then we expand the
logarithm from Eq. (6) into a Taylor series ln(1 − Ĝ0�̂) =
−∑

n
(Ĝ0�̂)n

n in powers of the perturbation �̂ and combine the
terms of the series in powers of order parameters. The calcu-
lated GL coefficients are given in Table I. Similar calculations
were provided in Refs. [26,28,29].

We start from �̂ = �̂ and obtain the superconducting part
of the GL free energy [26] up to terms ∝ η4,

Fsc(ηx, ηy) = A(|ηx|2 + |ηy|2)+B1(|ηx|2 + |ηy|2)2

+ B2|η∗
xηy − ηxη

∗
y |2. (7)

The coefficient A ∝ (T − Tc) changes sign from positive to
negative under cooling from a temperature above Tc to a
temperature under Tc, inducing the superconducting phase
transition [26].

In the chiral phase expression |η∗
xηy − ηxη

∗
y | = η2, while

in the nematic phase this expression is zero. Thus, the free
energy of the chiral phase has an additional term, B2η

4. There-
fore, in the system with positive B2 > 0, the nematic phase is
the ground state, while negative B2 < 0 promotes the chiral
phase. The sum of coefficients B1 + B2 is always positive.
Direct calculations using the model with an infinite Brillouin
zone and the Hamiltonian (1) show B2 > 0 in the 3D system
[28] and B2 < 0 in the 2D case [27].

In the absence of magnetism, the nematic phase has a
two-component vector order parameter with real components
η = η(cos α; sin α). In the chiral phase the order parameter
is a two-component vector again, with one real component
and one purely imaginary component η = η√

2
(1; ±i), which

breaks time-reversal symmetry.
We calculate coefficient B2 for an arbitrary lattice constant

c in a model with a finite BZ. The results are given in Table I.
The coefficient B2 is plotted as a function of the Fermi energy
μ in Fig. 2 for models with finite and infinite BZs. The Fermi
surface is closed at low chemical potential even when the BZ
is finite and both models are the same. In the model with
an infinite BZ, coefficient B2 > 0 grows with an increase in
Fermi energy. Thus, the nematic order parameter has lower
energy than the chiral one. The Lifshitz transition occurs at
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FIG. 2. GL coefficient B2(μ) in units of B2,LT at the Lifshitz
transition point vs the dimensionless chemical potential μ/m. The
solid red curve corresponds to B2 calculated in a model with a finite
BZ. The dashed red curve corresponds to B2 calculated in the model
with an infinite BZ. The dashed gray horizontal line corresponds to
B2 = 0. The vertical dashed blue line shows the transition between
the nematic phase with B2 > 0 and the chiral phase with B2 < 0.

μLT =
√

π2v2
z

c2 + m2 in the model with a finite BZ and leads to
a decrease in B2. This coefficient reaches zero at the point

μ∗ =
√

v2
z π

2

c2 cos2(θ∗
0 )

+ m2, (8)

where the angle θ∗
0 ≈ 0.985 does not depend on any param-

eters. The critical chemical potential μ∗ indicates the phase
transition between the nematic and chiral superconductivities.
In all numerical calculations we set superconducting critical
temperature Tc = 10−3m, in-plane velocity v = 1/3mc, and
�Z velocity vz = 2

3v. This choice of parameters is based on
the values m ≈ 0.3 eV, v ≈ 3 eV Å, and vz ≈ 2eV Å, which
are taken from Ref. [39]; Tc ≈ 3 K was measured in Ref. [17],
and the lattice constant c = 30 Å (the experimental value is
c = 28.64Å [42]).

C. Coupling between the magnetism and superconductivity

In the presence of transversal magnetic field electrons in
doped Bi2Se3 experience orbital-dependent Zeeman magneti-
zation. We decompose this magnetization into ferromagnetic
(FM) and antiferromagnetic (AFM), with corresponding
Landé factors β f and βa (see Ref. [39]) and write it down as

�̂m = μBβ f Hsz + μBβaHszσz. (9)

Magnetization order with the spin-orbital structure sασβ , with
α, β = {0, x, y, z}, that is different from Eq. (9) does not
couple with superconductivity in the lowest order of GL
expansion. Thus, we focus on the these two magnetic pertur-
bations that couple with the superconductivity in the lowest
order.

We calculate the free energy via Eq. (6), where the pertur-
bation is �̂ = �̂m + �̂. We expand ln(1 − Ĝ0�̂) in powers
of H and η up to O(�̂2). The free energy receives additional

FIG. 3. GL coefficients gf (μ) and ga(μ) in units of m
6π2v2vz

versus
the dimensionless chemical potential μ/m. Red curves correspond to
ferromagnetic coupling gf , while blue curves correspond to antifer-
romagnetic coupling ga. Solid lines correspond to calculations in a
model with a finite BZ. Dashed curves correspond to calculations in
a model with an infinite BZ. The dashed gray line indicates the zero
level. The green circles mark the Lifshitz transition.

terms [28,29],

Fα (H, ηx, ηy) = −2igαμBβαH (η∗
xηy − ηxη

∗
y )

+ aα (μBβαH )2, (10)

Fm(H ) = amβ f βaμ
2
BH2, (11)

where α = { f , a} refers to FM or AFM terms. Constants
a f , aa, and am describe the response of the normal state to
a transverse magnetization (see Table I). We combine terms
∝ H2 into one effective term, aeffμ

2
BH2 = (a f β

2
f + aaβ

2
a +

amβ f βa)μ2
BH2.

Coefficients g f and ga describe the coupling between
the magnetism and superconductivity. Note that in-plane
magnetization does not produce such terms. We calculate
these coefficients in models with finite and infinite BZs (see
Fig. 3). The ferromagnetic coefficient g f changes sign with
the increase of the chemical potential, while the antiferro-
magnetic coefficient ga is always positive. According to the
expression for g f at the arbitrary geometry of the Fermi sur-
face given in Table I, it changes to g f = 0 if cos2(θ∗∗

0 ) =
3(ln( jω/T )(m2−μ2 )+m2 )
−3μ2 ln( jω/T )+2μ2+m2 . At this point coupling between the su-
perconductivity and FM perturbation disappears. The total
coupling between the Zeeman field and superconductivity is
described by the effective coefficient geff = β f g f + βaga. We
plot geff (μ) in Fig. 4. The coefficient geff is negative at low
chemical potential since both FM and AFM Landé factors
are negative. Then geff changes sign from negative to positive
at some value of the Fermi energy. The zero point of geff

occurs at a higher chemical potential than the zero point of
g f in the model with an open FS. In numerical calculations
we set Landé factors β f = −5.3 and βa = −7.4, which were
calculated in Ref. [39].

III. MAGNETIC SUSCEPTIBILITY

The response of the superconductor to a magnetic field can
be decomposed into a response to the orbital and Zeeman
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FIG. 4. Effective coupling between superconductivity and Zee-
man field geff (μ) in units of m

6π2v2vz
versus the dimensionless

chemical potential μ/m. The solid red curve gives geff calculated in
a model with a finite BZ, while the dashed red curve corresponds to
calculations in a model with an infinite BZ. The dashed gray curve
indicates the zero level. The green circle marks Lifshitz’s transition.

parts of the magnetic field. The orbital part induces Meissner
currents and dominates the overall response. The Zeeman part
occurs due to a change in the order parameter in the case of
finite magnetization. In this paper, we focus only on the sec-
ond term. The total GL free energy of the Eu superconductor
in the Zeeman field is

F (H, ηx, ηy)=Fsc(ηx, ηy)−2igeffμBH (η∗
xηy−ηxη

∗
y )

+ aeffμ
2
BH2. (12)

The free energy depends on the value of the complex value
components of the order parameter ηx and ηy as well as on
the external magnetic field H . We minimize the free energy
(12) as a function of η and find the equilibrium free energy
in the given Zeeman field H . The exact expression for the
equilibrium free energy depends on the sign of the B2 co-
efficient. We start with the nematic case B2 > 0. Finite H
breaks the time-reversal symmetry, and for the ground state
sin(2α) sin(φ) ∝ H becomes nonzero; however, we still name
this phase nematic [34]. In this case, the free energy is written
as

F nem
min (H )=− A2

4B1
+aeffμ

2
BH2− g2

effH
2

B2

(
1− g2

eff

B2aeff

)
. (13)

The first term gives the free energy of the nematic phase in
zero field. The second term describes the diamagnetism of
the normal state. The third term appears due to the coupling
between the nematic superconductivity and Zeeman field
and describes the superconducting Pauli paramagnetism. We

set (1 − g2
eff

B2aeff
) ∼ (1 − T 2

c
μ2 ) � 1 since coupling geff is small

enough. This approximation is valid everywhere except the
small neighborhood of the point B2 = 0. Note that the fac-

tor (1 − g2
eff

B2aeff
) is always positive in Eq. (13). Otherwise, the

phase transition from the nematic to chiral phase occurs, and
Eq. (13) becomes invalid [34].

The Zeeman part of the magnetic susceptibility is

χns = −∂2F nem
min (H )

∂H2
= −2aeffμ

2
B + 2g2

eff

B2
. (14)

FIG. 5. Jump of the Zeeman susceptibility between supercon-
ducting and normal phases �χ f = χns − χn|βa=0 normalized by its
value �χ

f
LT = �χ f (μLT) at the Lifshitz transition point as a function

of the dimensionless chemical potential μ/m in the model with only
one Landé factor β f = −5.3. The red solid curve corresponds to a
finite BZ. The red dashed curve corresponds to an infinite BZ. The
green circle indicates the Lifshitz transition. The vertical blue dashed
line shows the transition between the nematic and chiral phases.

Here the first term corresponds to the Zeeman susceptibility
of the normal phase, and the second term arises due to the
coupling between the nematic superconductivity and mag-
netism. The Zeeman susceptibility has a jump under the phase
transition between the normal and nematic superconducting
phases,

χns − χn = g2
effμ

2
B

2B2
> 0. (15)

This jump is relatively small compared to the Pauli para-
magnetism of the normal phase χn with a small parameter
(χns − χn)/χn = g2

eff/(4B2aeff ) ∼ (Tc/μ)2. However, this ad-
ditional paramagnetism is enhanced close to the area B2 = 0,
where the phase transition between the nematic and chiral
phases occurs.

Now we minimize the free energy (12) as a function of ηx

and ηy for B2 < 0. In this case the order parameter chiral and
free energy is

F ch
min(H )= −A2

4(B1+B2)
+ Ageff H

B1+B2
− g2

eff H
2

B1 + B2
+aeffμ

2
BH2. (16)

The jump in susceptibility between the chiral superconducting
and normal phases is

χcs − χn = g2
effμ

2
B

4(B1 + B2)
> 0, (17)

which has no singularities, in contrast to χns, since
B1 + B2 > 0.

We calculate the Zeeman susceptibility as a function of the
Fermi energy. We consider two different cases when the Zee-
man field appears: (i) only in the FM channel with g f = −5.3
and ga = 0 (see Fig. 5) and (ii) in both the FM and AFM
channels with g f = −5.3 and ga = −7.4 (see Fig. 6). We see
that the inclusion of the AFM response in the magnetic field
significantly changes the magnetic susceptibility.

In the model with a finite BZ, the Lifshitz transition occurs
at μLT ≈ 1.25. Both susceptibilities �χ f and �χ eff diverge
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FIG. 6. Jump of the Zeeman susceptibility between supercon-
ducting and normal phases �χ eff = χns − χn in units of its value
�χ eff

LT = �χ f (μLT) at the Lifshitz transition point as a function of the
dimensionless chemical potential μ/m in the model with both Landé
factors β f = −5.3 and βa = −7.4. The red solid curve corresponds
to a finite BZ. The red dashed curve corresponds to an infinite BZ.
The green circle indicates the Lifshitz transition. The vertical blue
dashed line shows the transition between the nematic and chiral
phases.

at μ ≈ 1.6, where B2 changes sign and the phase transition
from the nematic to chiral phase occurs. These values of
the chemical potential depend on the lattice constant c. We
consider only c = 30 Å for the bulk sample. An increase in
the lattice constant c shifts both the Lifshitz transition and the
divergence point of the susceptibility to the area where the
chemical potential is low.

We also consider a limiting case with vzkc → 0. Dispersion
along Oz becomes negligible, and the system is a quasi-2D
system. We take this limit for each GL coefficient and find
these coefficients are finite; see the third column of Table I.
We use low-energy k · p expansion of the Hamiltonian. Dis-
persion along Oz can be described by only the linear term even
at high energy with enough accuracy. For more details, see the
comparison between the linear model and density functional
theory calculations in Fig. 4(b) of Ref. [39].

Susceptibility �χ f vanishes in the nematic phase at the
point μ ≈ 1.42, while �χ eff vanishes in the chiral phase at the
point μ ≈ 1.68. This disappearance of susceptibilities occurs
at points where g f and geff reach a zero value (see Figs. 5 and
6). The model with an infinite BZ system always stays in the
nematic phase. Thus, no divergence in susceptibility occurs.

A superconductor with Eu pairing has a triplet structure;
that is, Cooper pairs have spin equal to 1 [19]. It can be seen if
we write down the order parameter using the second quantiza-
tion form ηx ∝ c1↑c2↑ + c1↓c2↓ and ηy ∝ i(c1↑c2↑ − c1↓c2↓),
where cis is the operator of the annihilation of the electron
on the ith orbital with the spin projection s. We can see that
the order parameter represents two Cooper pairs with opposite
spins ±1. Each Cooper pair couples electrons with the same
spin on different orbitals. In the presence of the magnetic field
the numbers of spin up and spin down Cooper pairs are not
equal. Such a spin imbalance influences the form of the order
parameter that defines the response to the magnetic field.

The spin density of the system is expressed through
a full Green’s function as Sz = −T

∑
ω

∫
d3k

(2π )3 Tr[Ĝsz]. We

expand the superconducting Green’s function Ĝ ≈ Ĝ0 +
Ĝ0�̂Ĝ0 + Ĝ0�̂Ĝ0�̂Ĝ0 in powers of the superconducting or-
der parameter (4) that gives us Sz = −2igeff (η∗

xηy − ηxη
∗
y ) ∝

sin(2α) sin(φ) ∝ n↑1n↑2 − n↓1n↓2, where nsσ = φ†
sσ φsσ is the

density of electrons from orbital σ with spin s [19]. We see
that the parameter sin(2α) sin(φ) is responsible for the spin
imbalance of Cooper pairs. When the order parameter is real,
angle φ = 0, the spin density is zero, and the numbers of
spin up and spin down Cooper pairs are equal. Turning on
the Zeeman field makes the product sin(2α) sin(φ) ∼ H , and
the spin density that arises due to the imbalance between

spin up and spin down Cooper pairs becomes Sz = g2
eff μBH
2B2

∼
k3

F β2
eff (μBH/μ)(Tc/μ)2. Such a spin imbalance decreases the

energy of the system in a magnetic field similar to the Pauli
paramagnetism of the electrons. Thus, we refer to this effect
as Pauli paramagnetism of Cooper pairs.

The average spin density of Cooper pairs in the chiral phase
is Sz = geffη ≈ Ageff/(B1 + B2) ∼ βeffδT (Tck3

F /μ2). There-
fore, the chiral phase has nonzero magnetization even in the
absence of magnetic field. For comparison, the spin density of
(i) normal-phase Bi2Se3 and (ii) a fully spin polarized metal
in the Zeeman field H are of the order of (i) k3

F βeffμBH/μ

and (ii) k3
F , respectively. The density of Cooper pairs in the

chiral phase increases in the presence of the Zeeman field η =
A+2|geff H |
2(B1+B2 ) . Thus, the spin density receives the term g2

eff μBH
4(B1+B2 ) ,

and the sample receives extra polarization proportional to
the Zeeman field H . Therefore, the chiral phase has Zeeman
susceptibility despite been fully spin polarized.

IV. PHASE TRANSITION UNDER ELECTRON-ELECTRON
REPULSION

Coupling between the magnetic and superconducting or-
der parameters can lead to the emergence of a ferromagnetic
or antiferromagnetic phase in the superconducting state. We
consider the effects of direct and exchange pointlike electron-
electron repulsions. We treat this interaction in the mean-field
approach. Only FM and AFM order parameters with spin-
orbital structure proportional to sz and szσz couple with the Eu

superconductivity. These order parameters are Mz = 〈n↑〉 −
〈n↓〉 and Lz = 〈n↑,1〉 + 〈n↓,2〉 − 〈n↑,2〉 − 〈n↓,1〉, respectively.
They appear due to direct interaction. Exchange interaction
does not stimulate these order parameters. Here nsσ is the
local density of electrons with spin s from orbital σ . Both
order parameters enter the free energy in the same way as the
Zeeman field (10), where factors μBHβ f (a) should be replaced
by Vf (a)Mz(Lz ). Coefficients g f (a) and am do not change, while
the coefficient a f (a) → a f (a),e = a f (a) + 1/Vf (a) (see Table I).

Let us consider the system above the superconducting
critical temperature Tc. In the presence of only FM electron-
electron repulsion, the system stays in the ferromagnetic phase
when a f ,e < 0 and in the paramagnetic phase when a f ,e > 0.
When both FM and AFM orderings are allowed, one more
parameter, 4a f ,eaa,e − a2

m, appears. The negative value of the
expression even when both a f ,e > 0 and aa,e > 0 means both
the FM and AFM order parameters exist. Otherwise, the or-
der parameters Mz and Lz are zero. We present a magnetic
phase diagram in the absence of superconductivity in this
simple model in Fig. 7. The three curves in Fig. 7 give three
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FIG. 7. Phase diagram of the normal phase in coordinates
(

Vf

mc3 ; Va
mc3 ) for different values of the chemical potential, μ/m =

1.2, 1.4, 1.6. For any level of μ, magnetic ordering appears above
a phase boundary, while below the boundary the system is non-
magnetic. Note that the parameter mc3 ≈ 8 × 103eV Å. Red points
indicate values of interaction constants Vf and Va that are used in
Fig. 8.

phase diagrams at different levels of the chemical potential,
μ/m = 1.2, 1.4, 1.6. Each line separates the magnetic (above)
and nonmagnetic (below) phases. In all experiments with su-
perconductivity in the bulk of doped Bi2Se3, no spontaneous
magnetism above Tc was observed. Further, we focus on val-
ues of Vf and Va which give a paramagnetic phase above Tc.

The coupling between the magnetic order parameter and
superconductivity can induce the phase transition from the
nematic to chiral phase even under B2 > 0. Particularly,

when Va = 0, the phase transition occurs when
g2

f

a f ,eB2
> 1 (see

Ref. [34]). Direct calculations show this fraction has order
(T/μ)2 � 1. While both FM and AFM order parameters ex-
ist, we find a generalized condition on the phase transition
between the nematic and chiral states,

λ = aa,eg2
f − amg f ga + a f ,eg2

a(
4a f ,eaa,e − a2

m

)
B2

> 1. (18)

The above inequality is similar to the Stoner criterion [43].
We calculate the parameter λ as a function of the chemical

potential μ in Fig. 8. Different curves show the behavior of
λ(μ) at different electron-electron repulsion constants Va and
Vf . Even at a high value of the repulsion constants, the gener-
alized condition (18) is met only in the narrow neighborhood
of the point B2 = 0. Parameter λ ∼ 1 only in a narrow range
of chemical potentials even when magnetic electron-electron
interaction is strong and the system is close to the magnetic
phase transition.

Condition (18) can be met only via fine-tuning of the chem-
ical potential μ and the position of the system in the phase
diagram in Fig. 7. (i) The system should stay close to the ap-

FIG. 8. Parameter λ from Eq. (18) as a function of the di-
mensionless chemical potential μ/m. The dashed black curve
indicates level λ = 1, where the phase transition from the nematic
to chiral phase occurs. Blue, red, and green curves are plotted
at different electron-electron repulsion constants from FM Vf =
{0.1; 0.5; 1; 0.2}mc3 and AFM Va = {0.8; 0.3; 0.1; 0.2}mc3 channels.

pearance of the magnetic order parameters even above critical
temperature Tc, and (ii) coefficient B2 should be close to zero
(stay close to the phase transition between the nematic and
chiral phases). Only when these two conditions are met can
we expect electron-electron interaction to stimulate the phase
transition between the nematic and chiral phases. The needs of
such fine tuning impose strong conditions on electron-electron
interactions Vf and Va as well as at the chemical potential μ.
Therefore, the emergence of the chiral phase from the nematic
phase under electron-electron interaction in the absence of
magnetic ordering in the normal phase seems unlikely.

V. DISCUSSION

Recently, a superconducting powder of Nb0.25Bi2Se3 was
investigated in a μSR experiment [17]. The authors measured
the magnetization of a sample at different temperatures in the
external magnetic field. In contrast to a previous experiment
[14], there the authors found the system has time-reversal
symmetry in the absence of a magnetic field. In their Fig. 3(b),
the authors of Ref. [17] showed the temperature dependence
of magnetization in the superconducting phase counted from
magnetization in the normal phase at T = 5 K (above Tc).
Surprisingly, the magnetic moment of the superconducting
phase is higher than in the normal one, which indicates
the appearance of an additional paramagnetism associated
with superconductivity. We claim that Pauli paramagnetism
of triplet Cooper pairs is observed in this experiment. Note
that measurements of the magnetic susceptibility of the large
monocrystal Nb0.25Bi2Se3 using a superconducting quantum
interference device show a strong diamagnetic response that
is expected in superconductors [17].

Typically, superconductors in low magnetic fields demon-
strate diamagnetism due to the Meissner effect, which occurs
due to the response to an orbital part of a magnetic field
[44,45]. In this paper, we focus on the coupling between spin
and magnetization and do not take into account Meissner
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currents since they were calculated in previous works. Due to
rather weak coupling between magnetization and supercon-
ductivity, we expect that the diamagnetic susceptibility from
the Meissner effect will dominate paramagnetic susceptibility
for large samples. However, in a few regimes, the paramag-
netic part of the magnetic susceptibility can dominate. The
first regime is realized for a thin superconducting film of
thickness d � λ, where λ ∼ 104 Å is the penetration depth
[17]. The film is thin along the Ox or Oy axis, and a magnetic
field is applied along Oz. We estimate diamagnetic Meissner
susceptibility via the formula for an s-wave superconductor
χM = − d2

48πλ2 . The thickness of the film d should be a least
higher than the in-plane lattice constant a = 4.14 Å [46], and
the factor (d/λ)2 can be of the order of 10−6. Such geometry
was used to find the Clogston limit [47,48]. Recent studies
demonstrated the possibility of growing high-index films of
Bi2Se3 [49,50]. An in-plane field for such a film has a nonzero
z component, which makes it possible to observe the Pauli
paramagnetism of Cooper pairs.

The second possible regime is to investigate a 3D sam-
ple in a high magnetic field H ∼ Hc2. We again estimate
its Meissner diamagnetic susceptibility via the formula for
an s-wave superconductor χM = −Hc2−H

16πκ2 [51,52], where the
GL constant κ = λ/ξ ∼ 50 in doped Bi2Se3 [6,17]. In this
scenario, a superconducting fraction of a sample is propor-
tional to Hc2 − H , and thus, the paramagnetic susceptibility is
suppressed by the same factor, while Meissner diamagnetism
is suppressed much more strongly. Note that surface supercon-
ductivity appears here. It possibly brings another contribution
to the paramagnetism [53].

The third way is based on the presence of a spin imbal-
ance of the Coopers pair in the Zeeman field. The fraction
of imbalance is of the order of (βeffμBH )/μ ∼ 10−3–10−2

(see Sec. III). Therefore, we expect that the supercurrent in
such a system is partially spin polarized. Although similar
experiments were conducted recently, the topic needs deeper
investigation [54].

Magnetism can induce a phase transition between ne-
matic and chiral superconductivity [28,29]. We investigate
this phase transition, assuming magnetism appears because
of pointlike electron-electron repulsion. The interaction part
of the Hamiltonian consists of all four possible c opera-
tors, where two operators are creation and the other two are
annihilation. Some of these four describe the direct interac-
tion, while the others describe the exchange interaction. We
take into account both types of interaction in the mean-field
approach. Only order parameters Mz and Lz couple with su-
perconductivity in the lowest order of GL expansion. Thus,
we focus on these terms. Direct calculations show the ex-
change interaction does not contribute to both the Mz and
Lz order parameters. We find the general condition of the
phase transition (18). Since coupling between magnetism and
superconductivity is small, this condition is met only when the
system stays close to the magnetic phase transition above Tc

and close to phase transition between the nematic and chiral
phases below Tc simultaneously. Such requirements impose
strong conditions on the electron-electron repulsion constants
Vf and Va as well as on the chemical potential μ. We conclude

that in the considered model the electron-electron repulsion
is unlikely to induce the phase transition from the nematic to
chiral phase. The result of our calculations in the toy model
within the mean-field approximation shows the phase transi-
tion is suppressed by weak coupling of the superconductivity
and magnetism. The role of electron-electron repulsion can be
interesting in the context of samples with magnetic ordering
above Tc. In such a scenario more accurate calculations are
required.

We introduce the finite lattice constant c to our model.
Thus, the topology and shape of the Fermi surface can be con-
trolled by the chemical potential μ (see Fig. 1). We show the
coefficient B2(μ) in Fig. 2 and find that B2 changes sign from
positive to negative at the critical chemical potential (8). Thus,
one can induce a phase transition from the nematic to chiral
phase via an increase of the chemical potential. Although the
limiting case of the system with the pure cylindrical Fermi
surface coincides with a single-layer film, our model does not
describe an arbitrary several-layer film. A superconducting
thin film of doped Bi2Se3 was theoretically investigated in
Ref. [28]. The authors predicted the appearance of chiral
superconductivity in a single-layer film that coincides with
our results.

The lattice constant c also affects the shape of the Fermi
surface and the sign of B2 since it appears in Eq. (8). The
hopping integral depends on c, and thus, the Fermi velocity
vz = tc. A common way to change a lattice constant is to
apply hydraulic pressure to the sample. This pressure acts
spherically and changes all lattice constants, Fermi veloci-
ties v and vz, and the chemical potential. Moreover, strong
pressure causes a structural transition that can destroy the Eu

nematic superconductivity [55,56].
In Ref. [32] the evolution of the Fermi surface of Bi2Se3

upon doping was investigated. the authors showed that doping
increases carrier density, which leads to the transformation of
a closed Fermi surface to open. This transformation coincides
with the emergence of the superconductivity and occurs at
a carrier density of 2 × 1019 � n � 1020 cm−3. According to
Ref. [31], the Lifshitz transition occurs at carrier density n =
5 × 1019 cm−3. In Ref. [4] the authors investigated excessive
Cu doping in Bi2Se3. They obtained several samples with
Cu concentration in the range 0.28 < x < 0.54. According
to Knight shift measurements, the carrier density at x > 0.37
strongly increases, which perhaps turns the system to the
chiral phase. Thus, the realization of the chiral superconduc-
tivity in overdoped samples is possible in such samples. Since
doping is nonuniform in general, the macroscopic parts of the
superconductor can be in the vicinity of the nematic to chiral
phase transitions. Since paramagnetic susceptibility diverges
near the transition, such parts can provide a substantial con-
tribution to the susceptibility, which can be used to track the
phase transition.
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