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Theory of coupled dual dynamics of macroscopic phase coherence and microscopic electronic fluids:
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F. Yang* and M. W. Wu†

Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and CAS Key Laboratory of Strongly-Coupled
Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China

(Received 27 September 2021; revised 16 November 2021; accepted 14 December 2021; published 23 December 2021)

By using the gauge-invariant kinetic equation approach [Yang and Wu, Phys. Rev. B 98, 094507 (2018);
100, 104513 (2019)], we construct the coupled dual dynamics of macroscopic phase coherence and microscopic
electronic fluids in cuprate superconductors. We prove that the developed dual dynamics provides an efficient
and simplified approach to formulate the dephasing process of macroscopic superconducting phase coherence,
as well as its influence on microscopic electronic fluids (including gap, densities of superfluid and normal fluid,
and in particular, the transport property to determine superconducting transition temperature Tc). We then present
a theoretical description of the preformed Cooper pairs in a pseudogap state. The key origin of a pseudogap state
comes from the quantum effect of disorder, which excites the macroscopic inhomogeneous phase fluctuation
through the Josephson effect. Influenced by this phase fluctuation, there exist normal fluid and viscous superfluid
below Tc in cuprate superconductors, in addition to conventional nonviscous superfluid. The normal fluid always
emerges around nodal points even at zero temperature, whereas the viscous superfluid emerges due to the friction
between superfluid and normal fluids. Particularly, the nonviscous superfluid gets suppressed when the phase
fluctuation is enhanced by the increasing temperature, until vanishes at Tc. Then, the system enters the pseudogap
state, showing the nonzero resistivity as well as the finite gap from the viscous superfluid. By further increasing
temperature to T os, the viscous superfluid and hence gap vanish. An experimental scheme to distinguish the
densities of normal fluid as well as viscous and nonviscous superfluids is proposed. Finally, this theory is also
applied to low-dimensional disordered s-wave superconductors.
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I. INTRODUCTION

Within the framework of Bardeen, Cooper, and Schrieffer
(BCS) theory of conventional superconductivity [1], the
emergence of the superconducting order parameter by
forming Cooper pairs occurs upon cooling at the critical
temperature Tc, below which superconductivity (zero-
resistance) phenomenon occurs. The high-Tc superconducting
materials, like cuprates first discovered in 1986 [2,3],
are beyond the BCS mechanism [4–6]. Specifically, it is
established that the superconducting order parameter shows
up as an energy gap in spectroscopic probes of quasiparticle
energy spectrum. Whereas in cuprate superconductors,
detected most directly by angle-resolved photoemission
spectroscopy [7–9] and scanning tunneling microscope
[10–13], a finite normal-state gap (pseudogap) with d-wave
symmetry opens below a temperature T ∗, far above the
superconducting transition temperature Tc.

The origin of the pseudogap and its relationship to super-
conductivity have attracted extensive experimental and theo-
retical interest. Transport properties like electrical resistivity
[14,15], Hall conductivity [16,17], and Nernst coefficient
[18–23] that are remarkably affected by the opening of the
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pseudogap have been used to detect T ∗. While among various
theoretical models, significant superconducting phase fluctua-
tion is suggested to be a possible attribution [24–26]. Specif-
ically, the generation of the superconducting order parameter
breaks the continuous U(1) symmetry spontaneously [27], and
then, according to Goldstone theorem [28,29], a collective
gapless bosonic excitation that describes the phase fluctuation
of the order parameter emerges [27,30–32]. This excitation in
conventional bulk superconductors is inactive [30–32], since
its original low-energy spectrum is lifted to high-frequency
plasma energy by Anderson-Higgs mechanism [33], due to
the coupling to longitudinal electromagnetic field and hence
long-range Coulomb interaction [30–32]. Whereas in high-Tc

superconductors, an active phase fluctuation becomes in-
evitable because of the low-dimensional layered structure
[5,6]. Then, in one view, the pseudogap state is a incoherent
precursor of the superconducting state [26,34–38], reflecting a
state of preformed Cooper pairs without the phase coherence
necessary to achieve superconductivity. The superconducting
transition then occurs upon cooling below a lower temperature
where the long-range phase coherence is established. Tc is
therefore determined by the onset of the phase coherence
rather than the formation of the Cooper pairs [26,34–38].

The existence of the preformed Cooper pairing above
Tc received a number of experimental supports by various
approaches like diamagnetism probe [39–42], specific heat
[43] and paraconductivity [44] measurements, Nernst effect
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[45], ultrafast pump-probe spectroscopies [46,47], and angle-
resolved photoemission [48–51] as well as detection of optical
conductivity in the infrared [52–54], microwave [55–57], and
terahertz [58–61] frequency regimes. The most convincing
evidence so far comes from a recent observation of the col-
lective Higgs mode above Tc [62–64], since this excitation
describes the amplitude fluctuation of the order parameter [32]
and thus directly reflects the existence of the pairing. Never-
theless, most of these experiments [40–61,64] realized that the
regime of the significant superconducting phase fluctuation
is in fact a relatively narrow one that tracks Tc, whereas the
upper onset temperature of this regime T os lies well below
the pseudogap temperature T ∗ in the underdoped regime and
tends to coincide with T ∗ in overdoped regime [42–45,51,55–
61,64]. Then, in an alternative view, the pseudogap state
between T os and T ∗ in the underdoped regime, exhibiting
various intertwined orders (nematicity, charge-density-wave
and spin-density-wave orders), possibly represents another
state of matter that competes/couples with superconductiv-
ity [10,45,51]. Whereas the precursor of the superconducting
state with significant phase fluctuation (incoherent preformed
Cooper pair) actually begins upon cooling at T os.

The phenomenological preformed Cooper-pair model with
significant phase fluctuation is now widely accepted from
experimental findings, but its microscopic theoretical de-
scription is not yet developed. Interestingly, from earlier
thermodynamic [65] and recent optical [66] measurements,
substantial fraction of the uncondensed normal state, which
exhibits T -linear specific heat and Drude optical conductivity,
persists down to temperatures far below Tc. This suggests that
the phase fluctuation exists not only in the pseudogap state
but also in the superconducting one. Therefore, to achieve
superconductivity, the phase coherence must exceed a specific
nonzero threshold. The theory of determining this threshold
and in particular, Tc, requires coupled dual dynamics with
different scales, i.e., in different Hilbert spaces: macroscopic
phase-coherence dynamics and microscopic electronic fluid
(including superfluid and normal fluid [67]) dynamics. In
the early-stage works, without distinguishing the amplitude
and phase fluctuations, Ussishkin et al. [68,69] applied the
Gaussian approximation [70] to calculate the contribution
from the fluctuations of order parameter to Nernst signal.
After that, within the path-integral method to study thermo-
dynamics, Curty and Beck [71] treated separately amplitude
and phase fluctuations, and used the Monte Carlo proce-
dure and Wolff algorithm for simulations, respectively. But
in both approaches, the origin of the fluctuations is unclear.
Recently, Li et al. [72] suggested that in cuprate superconduc-
tors, the disorder effect at low temperature plays the crucial
role in determining the amplitude and phase fluctuations
of the order parameter. By using tight-binding model with
the random on-site potential (Anderson disorder) [72], they
numerically obtained granular superconducting islands to ex-
plain the substantial fraction of the normal state at T = 0, and
then, suggested that the strong phase fluctuation can emerge
in regions with small gap as a consequence. However, this
stationary-state calculation actually does not take account of
the phase-coherence dynamics seriously, and is hard to extend
for finite temperatures. Most importantly, the microscopic
electronic fluid dynamics is decoupled and overlooked in all

approaches above, inhibiting the deep insight into the key
issue, the difference between Tc and T os.

Actually, a microscopic gauge-invariant kinetic equation
(GIKE) approach has been developed in conventional s-
wave superconductors [73–75]. This approach, as analytically
demonstrated, not only involves both superfluid and normal-
fluid dynamics [73], but also is capable of formulating both
phase and amplitude fluctuations of the order parameter (i.e.,
Nambu-Goldstone and Higgs modes) [74]. The complete mi-
croscopic scattering is also constructed in GIKE [73,75]. Very
recently, this approach has also been extended into the d-
wave superconductors for studying the Higgs modes [76].
It is therefore natural to further use this approach to study
the phase-coherence dynamics and its influence on electronic
fluid dynamics in cuprate superconductors, and then, elucidate
the fundamental nature of the incoherent preformed Cooper
pairs.

In this work, by using the GIKE approach [73–76], we
construct the coupled dual dynamics of macroscopic phase
coherence and microscopic electronic fluids (consisting of
normal fluid and superfluid) in cuprate superconductors.
Then, both the dephasing process of macroscopic supercon-
ducting phase coherence from long range to short range with
the increase of temperature, and the influence of this dephas-
ing on microscopic electronic fluids (including gap, densities
of superfluid and normal fluid, and in particular, the transport
property to determine superconducting transition temperature
Tc) can be formulated.

Specifically, to develop the macroscopic phase-coherence
dynamics, the equation of motion of the superconducting
phase fluctuation, in which both disorder and long-range
Coulomb interaction effects are considered, is derived an-
alytically. We show that differing from the conventional
bulk superconductors with inactive phase fluctuation due to
Anderson-Higgs mechanism [30–33], the phase fluctuation in
cuprate superconductors retains gapless energy spectrum after
considering the long-range Coulomb interaction, thanks to the
layered structures [5,6], and hence, is active. We also find that
the superfluid density determines the superconducting phase
stiffness in the phase-coherence dynamics, in consistency
with the previous understanding in the literature [24–26].
The phase-coherence dynamics is therefore influenced by
electronic fluids. The derived microscopic electronic-fluid
dynamics includes two parts: the anomalous correlation to
reflect pairing (i.e., distinguish superfluid and normal fluid
[67]) and determine gap and superfluid density; the micro-
scopic scattering of the electronic fluids that is essential for
studying the transport property and hence superconductivity.
It is established that the spatial fluctuation of superconduct-
ing phase can generate a superconducting momentum ps
[27,31,77], which drives the Doppler shift vk ·ps in quasi-
particle energy spectra [73,78–80], with vk being the group
velocity. Then, both anomalous correlation and microscopic
scattering in the electronic-fluid dynamics are affected by
the superconducting phase fluctuation through this Doppler
shift. Therefore the macroscopic phase-coherence dynam-
ics and microscopic electronic-fluid dynamics are mutually
coupled.

It is noted that T os and Tc are determined by crit-
ical temperatures where the gap and resistivity vanish,
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respectively. Based on the developed dual dynamics, we
present theoretical descriptions of the separation between Tc

and T os as well as the emerged normal fluid in supercon-
ducting state (below Tc). The quantum effect of disorder,
which excites a macroscopic inhomogeneous phase fluctua-
tion through the Josephson effect [81], provides the key origin.
This excited phase fluctuation drives the Doppler shift vk · ps

mentioned above. Following the idea of Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state in conventional superconductors,
the anomalous correlation vanishes in region where |vk · ps| >

�k with �k being the superconducting gap [73,82–86]. Par-
ticles then no longer participate in the pairing in this region
and behave like the normal ones, leading to the emergence
of normal fluid [73,82]. Interestingly, with the phase fluc-
tuation, we find that the condition of the unpairing region
is always satisfied around nodal points in d-wave supercon-
ductors. One therefore always finds a nonzero fraction of the
normal fluid even at low temperature, in consistency with the
experimentally observed substantial fraction of normal state
at low temperature [65,66].

Particles in the regions with a nonzero anomalous corre-
lation contribute to the superconducting gap as superfluid.
Moreover, we find that there exists the scattering between
particles in pairing and unpairing regions in d-wave supercon-
ductors, and this scattering behaves like the friction between
superfluid and normal fluid. We prove analytically that due to
this friction, part of superfluid becomes viscous with nonzero
momentum-relaxation rate. Consequently, in addition to con-
ventional nonviscous superfluid, there also exist normal fluid
and viscous superfluid at small phase fluctuation in cuprate
superconductors, similar to the three-fluid model proposed
in our previous work [73] in conventional superconductors
which is caused by external electromagnetic field. A scheme
to detect distinguish these three electronic fluids in cuprate
superconductors is then proposed.

Particularly, as shown in Ref. [73], the increase of Doppler
shift leads to the increases of normal fluid and viscous su-
perfluid but the shrinkage of the nonviscous superfluid. When
the nonviscous superfluid vanishes at large enough Doppler
shift, one can find an exotic state with only normal fluid
and viscous superfluid left, showing the nonzero resistivity as
well as the finite gap from the viscous superfluid. Following
the same idea, we demonstrate that by increasing the tem-
perature in d-wave cuprate superconductors, the suppressed
superconducting gap and hence superfluid density weaken the
phase stiffness, enhancing the phase fluctuation and hence
Doppler shift. Once the phase fluctuation (i.e., temperature)
exceeds the critical point, the nonviscous superfluid vanishes,
leaving only normal fluid and viscous superfluid. The system
then enters the pseudogap state with nonzero resistivity and
finite gap due to the significant phase fluctuation. It is noted
that in this circumstance, the viscous superfluid matches the
description of the incoherent preformed Cooper pairs, as they
both contribute to gap but experience the scattering. Whereas
the existing normal fluid in our description implies the ex-
istence of normal particles in pseudogap state, which has
been overlooked in previous preformed Cooper-pair model to
describe pseudogap state [26,34–38]. With a further increase
of temperature in pseudogap state, the viscous superfluid starts

to shrink, until vanishes at T os where the gap is eventually
destroyed.

To confirm the derivation from the GIKE approach, we
also apply the standard path-integral approach to recover
the equation of motion of the phase fluctuation as well as
anomalous correlation, gap equation and superfluid density in
the presence of the superconducting momentum, except the
microscopic scattering of the electronic fluids which is hard
to handle within the path-integral approach. A self-consistent
numerical simulation by applying Anderson disorder is also
addressed, to verify our theoretical description. Finally, we
show that the developed dual dynamics can also be applied
similarly to the low-dimensional disordered s-wave supercon-
ductors.

II. COUPLED DUAL DYNAMICS

In this section, from the rigorous analytic derivation
within GIKE approach (refer to Sec. IV), we summarize the
simplified results to present the coupled dual dynamics of
macroscopic phase coherence and microscopic electronic flu-
ids for a generalized order parameter:

�(x, x′) =
∑

k

eik·(r−r′ )[�k + δ�k(R)]eiδθ (R). (1)

Here, x = (x0, r) denotes the space-time vector; R =
(x + x′)/2 = (t, R) stands for the center-of-mass coordinate;
�k denotes the equilibrium-state gap, independent of the
center-of-mass coordinate due to the translational symmetry;
δθ (R) and δ�k(R) represent the phase and amplitude fluctua-
tions, respectively.

Specifically, the macroscopic phase-coherence dynamics
involves the generation of the phase fluctuation δθ (R), which
along eφ direction is determined by

(
pφ

s

)2 =
∑

q

q2

[
Uqeφ

U−qeφ

4CωN
+ 2nB(ωN )+1

2ωN

(
1+2DVq

D

)]
.

(2)
Here, pφ

s eφ denotes the generated superconducting momen-
tum ps = ∇Rδθ (R)/2 by phase fluctuation along eφ direction;
Uq represents the Fourier component of disorder-induced lo-
cal electric potential; nB(x) stands for the Bose distribution;

ωN =
√

ω2
p + nsq2/(2Dm) denotes the energy spectrum of

the phase fluctuation, where ωp = √
q2Vqns/m represents the

plasma frequency and ns stands for the superfluid density, with
Vq being the Coulomb potential; m and D denote the effective
mass and density of states of carriers, respectively; 1/C is the
normalized factor in frequency-momentum space.

The microscopic electronic-fluid dynamics includes: the
anomalous correlation Fk, used to characterize the pairing
and determine gap �k equation and superfluid density ns; the
microscopic momentum-relaxation rate �k in superfluid. The
expressions of these quantities are written as

Fk = f (E+
k ) − f (E−

k )

2Ek
, (3)

�k = −
∑

k′

′
gkk′�k′Fk′ , (4)
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ns = k2
F

m

∑
k

′ �2
k

Ek
∂Ek Fk, (5)

�k =−
∑

k′η=±

′|Mkk′ |2δ(Eη

k − E−η

k′
)
. (6)

Here, E±
k denotes the quasielectron and quasihole energies;

gkk′ represents the pairing potential, in which we approxi-
mately taking k = k′ = kF around the Fermi surface so that
the gap �k only has angular dependence of the momentum;∑′

k here and hereafter stands for the summation restricted
in the spherical shell (ξk � ωD) with ωD being the cutoff
frequency, following the BCS theory [1,77]; Mkk′ denotes the
effective matrix element of the electron-impurity scattering.
It is established that in the presence of the superconducting
momentum ps, the quasiparticle energy is tilted as E±

k =
(vk · ps) ± Ek, where Ek =

√
ξ 2

k + �2
k is the original Bogoli-

ubov quasiparticle energy and vk · ps denotes the Doppler
shift [73,78–80,82], with the group velocity vk = ∂kξk. In the
present work, we approximately take the parabolic spectrum,
i.e., ξk = k2/(2m) − μ with μ being the chemical potential.

Particularly, it is noted that the generation of the phase
fluctuation in Eq. (2) is coupled with electronic fluids through
the superfluid density ns in the energy spectrum ωN , whereas
the phase fluctuation is involved in the electronic-fluid dy-
namics in Eqs. (3)–(6) by Doppler shift. The macroscopic
phase-coherence dynamics and microscopic electronic-fluid
dynamics are therefore mutually coupled. For phase fluctu-
ation along a certain direction, by self-consistently solving
Eqs. (2) and (4) as well as (5), one can uniquely determine
the superconducting gap �k, superfluid density ns and super-
conducting phase fluctuation ps, and then, the microscopic
momentum-relaxation rate �k and various physical quantities
are obtained. Nevertheless, in realistic situation, there exist
phase fluctuations along all directions. Hence, the experi-
mentally observed quantity is a statistical average of phase
fluctuations in all directions. The expected value of the physi-
cal quantity X therefore reads

〈X 〉 = 1

2π

∫
dφX (φ), (7)

with X (φ) being the solved X for phase fluctuation along eφ

direction.
Equations (2)–(6) then provide an efficient and simplified

way to understand the superconductivity properties in cuprate
and disordered s-wave superconductors with significant phase
fluctuation.

III. APPLICATION TO D-WAVE CUPRATE
SUPERCONDUCTORS

In this section, we apply the developed dual dynamics into
the d-wave cuprate superconductors. Without losing gener-
ality, we choose dx2−y2 -wave order parameter for analysis,
i.e., �k = � cos(ζθk ) with ζ = 2, and the pairing potential
gkk′≈gcos[ζ (θk − θk′ )] as a consequence of the translational
and time-reversal symmetries [87].

A. Theoretical description of preformed Cooper pairs

In this part, by simply performing an analytic analysis on
the coupled dual dynamics of macroscopic phase coherence
and microscopic electronic fluids, we present the physical
pictures of the preformed Cooper pair model in pseudogap
state (i.e., separation between Tc and T os) and the emerged
normal fluid in superconducting one in d-wave cuprate super-
conductors.

We start with the influence on the microscopic electronic
fluids from the macroscopic phase fluctuation. Specifically,
we first focus on the anomalous correlation. At low tem-
perature, for an excited superconducting fluctuation ps =
pφ

s eφ , it is noted that considering the fact that E+
k � E−

k , the
anomalous correlation Fk in Eq. (3) vanishes in regions with
|vk · ps| > Ek, where the quasielectron energy E+

k = (vk ·
ps) + Ek < 0 or quasihole energy E−

k = (vk · ps) − Ek > 0,
whereas Fk in regions with |vk · ps| < Ek is always finite.
It has been established in the literature [73,77,82] that the
nonzero anomalous correlation directly reflects the existence
of the pairing as the characteristic quantity. Regions with
nonzero and vanishing anomalous correlation are therefore
referred to as the pairing and unpairing regions [73,82–86],
respectively. Particularly, particles in the unpairing region no
longer participate in the pairing and behave like the normal
ones, leading to the emergence of the normal fluid [73]. Inter-
estingly, it is noted that due to the anisotropy of d-wave gap,
the condition |vk · ps| > Ek of the unpairing region is always
satisfied around the nodal points, irrelevant of the direction of
the phase fluctuation. One therefore always finds a nonzero
fraction of the normal fluid in cuprate superconductors even
at low temperature, in consistency with the experimentally
observed substantial fraction of the normal state far below
Tc [65,66]. This is very different from the s-wave supercon-
ductors, where the emergence of the normal fluid requires
ps > �/vF by the unpairing-region condition |vk · ps| > Ek,
leading to a threshold to realize normal fluid as revealed in our
previous work [73].

Particles in the pairing regions with nonzero anomalous
correlation contribute to the gap and superfluid density as
superfluid. Moreover, according to the microscopic scattering
of the momentum relaxation in superfluid [Eq. (6)], one can
further divide the pairing region into two parts: viscous one,
in which �k �= 0; nonviscous one where �k = 0. Specifically,
in Eq. (6), if k particle lies in the pairing region, one has
E+

k > 0 and E−
k < 0. Then, once the energy conservation is

satisfied to give rise to nonzero momentum-relaxation rate �k
of k particle, one finds E−

k′ > 0 by δ(E+
k − E−

k′ ) or E+
k′ < 0

by δ(E−
k − E+

k′ ), and hence, k′ particle lies in the unpairing
region. This scattering between particles in pairing and un-
pairing regions, behaves like the friction between superfluid
and normal fluid, leading to the viscous superfluid with finite
momentum-relaxation rate �k. But if the energy conservation
can not be satisfied for any k′, the k particle is free from the
momentum-relaxation scattering, and one therefore gets the
nonviscous superfluid with zero momentum-relaxation rate.

Therefore there exist three electronic fluids at small phase
fluctuation in d-wave cuprate superconductors: normal fluid,
viscous and nonviscous superfluids, similar to the three-fluid
model proposed in our previous work [73] in conventional
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FIG. 1. Schematic showing the division in momentum space at different phase fluctuations ps. In the figure, 
 = ξk + 2ωD and hence the
original spherical shell is characterized by ωD � 
 � 3ωD. The spherical shell is divided into three parts: unpairing region where anomalous
correlation Fk = 0, nonviscous pairing region with Fk �= 0 and momentum-relaxation rate �k = 0, viscous pairing region with both Fk and �k

being finite, represented by yellow, blue and orange regions, respectively. [(a)–(d)] ps along antinodal point (φ = 0) and [(e)–(h)] ps along
nodal point (φ = π/4). � = 0.5ωD and T = 0.

superconductors which is caused by external electromagnetic
field. Consequently, in analogy to Eq. (5), we define the non-
viscous and viscous superfluid densities as

nns = k2
F

m

∑
k∈Pnv

′ �2
k

Ek
∂Ek Fk (8)

and

nvs = k2
F

m

∑
k∈Pv

′ �2
k

Ek
∂Ek Fk, (9)

respectively. Whereas the normal-fluid density reads

nn =
∑
k∈U

′
1. (10)

Here, k ∈ Pnv, k ∈ Pv and k ∈ U denote the summations re-
stricted in the nonviscous (Fk∈Pnv �= 0 and �k∈Pnv = 0) and
viscous (Fk∈Pv �= 0 and �k∈Pv �= 0) pairing regions as well
as unpairing regions (Fk∈U = 0), respectively. Considering
the short-circuit effect, if there exists the nonviscous pair-
ing region in the spherical shell of the momentum space,
i.e., nonviscous superfluid density, the system lies in the
superconducting state, showing the zero-resistance (super-
conductivity) phenomenon. In this circumstance, determining
Tc only requires the disorder-induced local electric potential
to formulate the phase fluctuation ps (dephasing process),
whereas the specific value of the scattering strength |Mkk′ |2
in Eq. (6) is irrelevant.

It has been shown in Ref. [73] that in conventional super-
conductors, the increase of Doppler shift leads to the increases
of normal fluid and viscous superfluid but the shrinkage of
the nonviscous superfluid. When the nonviscous superfluid

vanishes at large enough Doppler shift, one can find an exotic
state with only normal fluid and viscous superfluid left, show-
ing the nonzero resistivity as well as the finite gap from the
viscous superfluid. Following the same idea, in the spherical
shell of the momentum space, a schematic illustration for
the division of the unpairing, nonviscous and viscous pairing
regions in d-wave superconductors is plotted in Fig. 1. As
seen from Figs. 1(a)–1(d) [or Figs. 1(e)–1(h)], the increase
of ps first gradually enlarges the unpairing region (yellow
regions) and hence viscous pairing region (orange regions)
in the spherical shell, leading to the shrinkage of the non-
viscous pairing region (blue regions). Particularly, once the
nonviscous pairing region vanishes when the phase fluctuation
exceeds a critical point, as shown in Fig. 1(d) [Fig. 1(g)],
only the viscous pairing and unpairing regions are left. Then,
the system enters the pseudogap state with nonzero resistiv-
ity and a finite gap due to the significant phase fluctuation.
Correspondingly, in this circumstance, the viscous superfluid
matches the description of the incoherent preformed Cooper
pairs, as they both contribute to gap but experience the scat-
tering. Whereas the existing normal fluid in our description
implies the existence of normal particles in the pseudogap
state, which has been overlooked in the previous preformed
Cooper-pair model to describe the pseudogap state [26,34–
38]. By further increasing ps in the pseudogap state, the vis-
cous pairing region starts to shrink, as shown in Figs. 1(g) and
1(h), until vanishes. The system with only unpairing region
left eventually enters the normal state.

In addition, in comparison between Figs. 1(a)–1(d) and
1(e)–1(h) for phase fluctuations along antinodal and nodal
points, respectively, one finds that the influence of the phase
fluctuation is anisotropic with respect to its direction. This
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anisotropy in fact arises from the anisotropy of the d-wave
gap, similar to the observed anisotropic transport properties
in the previous experiment [88]. Specifically, at the same
condition, in comparison to ps along the antinodal point, ps

along the nodal point is easier to satisfy |vk · ps| > Ek, and
hence, causes the larger unpairing region, making it earlier to
enter the pseudogap and then normal states with the gradual
increase of ps, as shown by comparison between Figs. 1(c)
and 1(g). Nevertheless, the judgment to enter the pseudogap
and normal states in realistic situation is given by the van-
ishing nonviscous and viscous superfluid densities after the
statistical average of the phase fluctuations in all directions,
respectively.

We next discuss the influence on the macroscopic phase
fluctuation from the microscopic superfluid. For the source
terms on the right-hand side of Eq. (2), the first term arises
from the disorder-induced local electric potential, which ex-
cites the inhomogeneous phase fluctuation through Josephson
effect [81]. The second term comes from the zero-point energy
and thermal excitation of the bosonic phase fluctuation. Partic-
ularly, differing from the conventional bulk superconductors
where the high-energy plasma frequency and hence ωN ≈ ωp

causes the inactive phase fluctuation (Anderson-Higgs mech-
anism) [30–33], in consideration of the two-dimensional Vq =
2πe2/(qε), ωN retains gapless in cuprate superconductors
thanks to the layered structures [5,6], leading to an active
phase fluctuation.

For the convenience of analysis, by using the fact

that ωN =
√

ω2
p + nsq2/(2Dm) = √

ns/m
√

q2Vq + q2/(2D),

we transform Eq. (2) into an equivalent form:

(
pφ

s

)2√
ns/m = Tφ, (11)

with Tφ = ∑
q [

q2Uqeφ U−qeφ /C+2q2/Dq+4q2n(ωN )/Dq

4
√

q2Vq+q2/(2D)
]. It is noted that

the leading contribution of n(ωN ) lies in the long-wave
regime, leading to the marginal role of q2n(ωN ) in Tφ . In
this circumstance, Tφ contributed by disorder and zero-point-
energy effects is independent of the phase fluctuation and
electronic fluids as well as the temperature, and hence, acts as
a structure factor in the phase-coherence dynamics in Eq. (11).
Consequently, from Eq. (11), the factor ns/m (superfluid den-
sity over effective mass) plays a crucial role in determining the
superconducting phase stiffness, i.e., an enhancement of ns/m
suppresses the phase fluctuation, as the early experiments in
cuprate superconductors realized [24–26].

In fact, the main thermal effect in the phase-coherence
dynamics arises from the coupling to the electronic fluids.
Specifically, with the increase of the temperature, the sup-
pressed order parameter and hence the superfluid density
[Eq. (5)] enlarge the phase fluctuation by weakening the phase
stiffness. Once the temperature exceeds a critical point to
generate the significant phase fluctuation, the system enters
the pseudogap state with only viscous superfluid and normal
fluid left. With further increase of temperature, the order pa-
rameter and hence the superfluid density tend to vanish, and
then, ps moves towards an infinitely large value, causing the
unpairing region (i.e., normal fluid) left alone. Particularly, it
is noted that the increased ps = ∇Rδθ with temperature di-

rectly suggests a dephasing process of superconducting phase
coherence from a long to a short range.

B. Numerical simulation

In this part, we perform a full numerical simulation to
verify the theoretical analysis in the previous subsection. For
the quantum effect of disorder on the macroscopic phase-
coherence dynamics in Eq. (2), we apply the method of the
Anderson disorder, which is introduced by generating a ran-
dom on-site potential at the structural sites, i.e., U (Ri) = γiW ,
where γi denotes the on-site random number with a uniform
probability in range (−1, 1) and W represents the Anderson-
disorder strength. Considering the crystal structure of cuprate
superconductors, we take a finite square lattice system of a
large size 400 × 400 with the periodic boundary condition.
Then, in each random configuration, Uq = ∑

Ri
eiq·RiU (Ri ) in

Eq. (2).
In each random configuration, we self-consistently solve

the phase fluctuation [Eq. (2)] and gap equation [Eq. (4)] as
well as the superfluid density [Eq. (5)] for phase fluctuation
along a certain direction. Then, with the solved ps and �,
by determining the unpairing region as well as nonviscous
and viscous pairing regions according to the anomalous cor-
relation [Eq. (3)] and microscopic momentum-relaxation rate
[Eq. (6)], we can calculate the densities of the nonviscous
[Eq. (8)] and viscous [Eq. (9)] superfluids and normal fluid
[Eq. (10)]. After that, by varying the direction of the phase
fluctuation, we calculate the various quantities for phase fluc-
tuation along each direction, and then, take the statistical
average of the phase fluctuations in all directions [Eq. (7)].
Finally, the gap 〈�〉 as well as the densities of the normal-
fluid 〈nn〉, viscous 〈nvs〉 and nonviscous 〈nns〉 superfluids are
averaged over 400 random configurations for convergence.
Moreover, in the simulation, the gap at zero temperature in the
absence of the phase fluctuation is taken to be �0 = 22 meV,
which is close to the maximum value of the observed gap
in YBa2Cu3O7−x [89]. C = 2ωD/ξ 2

c with ξc = h̄vF /�0 being
the coherence length [77]. The Fermi energy EF = 220 meV
and meff = 1.9m0 [90,91], with m0 representing the free-
electron mass. The specific cutoff frequency ωD requires the
microscopic pairing mechanism, which still remains an open
question in the literature. We chose ωD = �0, and then, due
to the phase fluctuation, one has � � ωD in the simulation.
With determined �0 and ωD, the pairing potential g is de-
termined by gap equation [Eq. (4)] at zero temperature in
the absence of the phase fluctuation. Furthermore, our model
focuses on the long-wave (i.e., low-frequency) regime (refer
to Appendix B), and hence, we introduce a cutoff qc in the
summation of q in Eq. (2) to approximately guarantee that the
energy spectrum of the phase fluctuation does not enter the
Bogoliubov quasiparticle continuum along antinodal points,
i.e., ωN (qc) < 2�0.

1. Phase diagram

The temperature and Anderson-disorder strength depen-
dence of the expected values of the gap as well as densities
of the normal-fluid, viscous and nonviscous superfluids after
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FIG. 2. The temperature and Anderson-disorder strength dependence of the expected value of the gap 〈�〉 as well as densities of the
nonviscous superfluid 〈nns〉, viscous superfluid 〈nvs〉 and normal fluid 〈nn〉 after the statistical average of the phase fluctuations in all directions
from the full and self-consistent numerical simulation. [(a)–(d)] Phase diagram. [(e)–(h)] Temperature dependence at different Anderson-
disorder strengths. [(i)–(l)] Anderson-disorder strength dependence at different temperatures. In the figure, TB denotes the critical temperature
where gap vanishes in the absence of the phase fluctuation, i.e., BCS critical temperature [92] of two-dimensional d-wave superconductors;
ns0 represents the superfluid density at zero temperature in the absence of the phase fluctuation, and nn0 denotes the normal-fluid density above
T os; W0 = 0.5�0.

the statistical average of the phase fluctuations in all directions
are plotted in Fig. 2.

We first discuss the gap. As seen from the phase diagram
in Fig. 2(a), 〈�〉 decreases with the increase of the Anderson-
disorder strength W or temperature T , exhibiting a half-dome
behavior. Specifically, with the increase of temperature, as
shown in Fig. 2(e), the gap shows the BCS-like behavior at
small W (red solid curve) as it should be, but tends to become
linear decrease when W is enhanced (ochre dotted and purple
chain curves). Particularly, the change into the linear decrease
starts at high-T regime and moves towards low-T one with the
enhancement of W . This temperature dependence from our
numerical simulation qualitatively agrees with the previous
experimental observation [13] where the temperature depen-
dence of the gap shows a small platform in low-T regime but
linearly decreases in the remaining temperature regime. The
deviation of the temperature dependence from the BCS-like
behavior here arises from the phase fluctuation. By increasing
temperature, the suppressed gap and hence superfluid density
(especially in the high-T regime) enhances the phase fluctu-
ation and hence Doppler shift, and then, the shrinkage of the
pairing region as a result feeds back to suppress gap, speeding
up the gap falling in comparison to BCS-like behavior. This
effect by phase fluctuation can be more directly seen from
the W dependence in Fig. 2(i). By increasing W from zero,
〈�〉 first changes marginally, and then, exhibits an exponential
decay at relatively large W where phase fluctuation becomes
important.

By comparing Figs. 2(a) and 2(b), one finds that the nor-
malized nonviscous superfluid density 〈nns〉/ns0 also exhibits
a half-dome behavior in phase diagram, but is smaller than
that of the normalized gap 〈�〉/�0. By further comparing
Figs. 2(e) and 2(f) as well as Figs. 2(i) and 2(j), with the
increase of T or W , 〈nns〉/ns0 exhibits a faster decrease than
〈�〉/�0. This is because that in comparison to 〈nns〉 con-
tributed by the nonviscous pairing region alone, both viscous
and nonviscous pairing regions contribute to the gap. There-
fore, with the enhancement of ps by increasing T or W , the
faster shrinkage of the nonviscous pairing region than the
entire pairing region (as shown in Fig. 1) leads to the faster
decrease of 〈nns〉/ns0 than 〈�〉/�0. We point out that the
nonviscous superfluid density can be directly measured by
detecting the 1/ω-like divergent behavior in the imaginary
part of the optical conductivity [i.e., σ2(ω) = e2〈nns〉

mω
] at low-

frequency regime [53–55,57,60,61,66].
The normal-fluid density in Figs. 2(d), 2(h), and 2(l) shows

compensatory behavior in comparison to the nonviscous su-
perfluid density in corresponding Figs. 2(b), 2(f), and 2(j), as it
should be according to the analytic analysis in Sec. III A. Par-
ticularly, the compensatory behavior between the superfluid
and normal-fluid densities in the temperature dependence has
been observed in the previous experiment [66]. Moreover, it
is noted in Fig. 2(l) that at relatively large W (i.e., phase fluc-
tuation), the nonzero normal-fluid density at zero temperature
(red solid curve) agrees with our analysis in Sec. II, in consis-
tency with the previous experimental observation [65,66].
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The viscous superfluid density 〈nvs〉 exhibits very differ-
ently, showing a flame-like behavior in phase diagram in
Fig. 2(c). From Eq. (9), there exist two opposite effects on
〈nvs〉 by increasing phase fluctuation: (i) at small phase fluctu-
ation, through the friction, the increase of the unpairing region
enlarges the viscous pairing one and hence 〈nvs〉; (ii) the
suppressed gap directly reduces 〈nvs〉. As shown in Fig. 2(k),
with the increase of W , effects (i) and (ii) dominate at small
and large W , leading to the increase and decrease of 〈nvs〉,
respectively. A peak is therefore observed, and the peak posi-
tion moves towards small W with the increase of temperature
as effect (ii) is enhanced. As for the temperature dependence
in Fig. 2(g), at small W (red solid curve), with the increase
of temperature, a platform due to the competition between
effects (i) and (ii) is found in low-T regime, whereas effect
(ii) dominates around the critical temperature where the gap
changes dramatically, leading to the decrease of 〈nvs〉. At large
W > 0.5, effect (ii) dominates, causing the decrease of 〈nvs〉.

Now we propose a scheme to detect the specific viscous
superfluid density 〈nvs〉. Following our previous work in con-
ventional superconductors [73], based on three-fluid model,
in the linear optical response, the optical conductivity in low-
frequency regime reads

σ (ω) = e2〈nns〉
imω

+ e2〈nvs〉
m(iω + γvs)

+ e2〈nn〉
m(iω + γn)

, (12)

with γvs and γn being the relaxation rates of viscous superfluid
and normal fluid, respectively. Here, the normal fluid (the
third term) exhibits the well-known Drude-model behavior;
the nonviscous superfluid (the first term) is free from the
resistance; due to the friction between superfluid and normal
fluid, the viscous superfluid (the second term) also shows the
Drude-model behavior. Therefore, as mentioned above, 〈nns〉
can be directly measured by detecting the 1/ω-like divergent
behavior in the imaginary part of the optical conductivity in
the low-frequency regime [53–55,57,60,61,66]. Whereas from
Eq. (12), one has

∫ ∞

0+
dωσ1(ω) = 2e2

πm
(〈nvs〉 + 〈nn〉), (13)

with σ1(ω) being the real part of the optical conductivity.
Therefore, by detecting the area under σ1(ω) curve in the
frequency dependence [66], 〈nvs〉 + 〈nn〉 is obtained.

Furthermore, in the magnetic response, based on three-
fluid model, the excited current is written as [73]

j = −e2A〈nns〉
m

− e2A〈nvs〉
m

(
1 − ξc

l

)
+ e2A〈nn〉

m

ξc

l
, (14)

with ξc and l being the coherence length and mean-free path,
respectively. Here, the first and second terms come from the
excited supercurrent in nonviscous and viscous superfluids by
the Meissner effect [77], respectively. It is noted that the vis-
cous superfluid experiences the resistance due to the friction
between superfluid and normal fluid. The magnetic flux can
not drive the normal-fluid current directly, but through the
friction drag with the superfluid current, a normal-fluid current
(the third term, proportional to 1/l) is excited. From Eq. (14),

FIG. 3. Critical temperatures Tc and T os as well as the difference
between T os and Tc versus Anderson-disorder strength. In the figure,
TB denotes the critical temperature where gap vanishes in the absence
of the phase fluctuation, i.e., BCS critical temperature [92] of two-
dimensional d-wave superconductors. W0 = 0.5�0.

the magnetic penetration depth λ is determined by

1

λ2
= e2(〈nns〉 + 〈nvs〉)

m
− e2(〈nvs〉 + 〈nn〉)

m

ξc

l
. (15)

Consequently, from above equation, with the established ξc

and l as well as the obtained densities 〈nvs〉 + 〈nn〉 and
〈nns〉 from the optical detection as mentioned above, one
can determine the viscous superfluid density 〈nvs〉 and also
the normal-fluid density 〈nn〉 by measuring the penetration
depth λ.

2. Separation between Tc and T os

We next discuss the separation between Tc and T os. In
the full numerical simulation, Tc and T os are chosen at the
critical temperatures where the normalized nonviscous super-
fluid density 〈nns〉/ns0 and normalized gap 〈�〉/�0 vanish,
respectively, and are plotted in Fig. 3. As mentioned above,
with the increase of temperature, the decrease of 〈nns〉/ns0

is faster than 〈�〉/�0, due to the additional contribution in
gap from the viscous pairing region. Tc is therefore smaller
than T os, as shown in Fig. 3. Whereas when T os > T > Tc,
since the nonviscous superfluid vanishes, the system with only
normal fluid and viscous superfluid left enters the pseudogap
state, showing both nonzero resistivity and finite gap.

To enlarge the separation between Tc and T os (i.e., to lower
Tc), one needs to enhance W in order to generate significant
phase fluctuation at low temperature, so that the system enters
the pseudogap state at lower temperature. As seen from Fig. 3,
the separation between Tc and T os at small W is marginal.
By increasing W , both T os (ochre solid curve with triangles)
and Tc (blue solid curve with squares) decrease due to the
suppressed gap [Fig. 2(i)] and nonviscous superfluid density
[Fig. 2(j)], respectively. Whereas the separation between Tc

and T os (red solid curve with circles) is enlarged until Tc = 0,
thanks to the enhanced phase fluctuation at low temperature.
Particularly, with the large enough phase fluctuation at 1.9 <

W/W0 < 2.3, one can find the emergence of the pseudogap
state even at zero temperature.
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FIG. 4. Dependence of the gap and densities of the normal fluid
and superfluid on the phase-fluctuation direction after the average
over 400 random configurations. W/W0 = 0.72 and T/TB = 0.18. In
the figure, ns0 represents the superfluid density at zero temperature
in the absence of the phase fluctuation, and nn0 denotes the normal-
fluid density above T os. TB denotes the critical temperature where gap
vanishes in the absence of the phase fluctuation, i.e., BCS critical
temperature [92] of the two-dimensional d-wave superconductors.
W0 = 0.5�0.

In our simulation with the superconducting-material pa-
rameters of YBa2Cu3O7−x (�0 = 22 meV and hence TB =
110 K) [89], T os tracks Tc closely in Fig. 3 (35 K above Tc at
most when Tc > 16 and 50 K above Tc at most when Tc = 0),
and lies well below the experimental pseudogap tempera-
ture T ∗ in underdoped regime [45], in consistency with the
current experimental findings and understanding [40–61,64]
mentioned in the introduction. This close track in fact arises
from the fast shrinkage of the remaining viscous pairing re-
gion in the pseudogap state with the increase of temperature
and hence phase fluctuation, as shown in Figs. 1(g) and 1(h),
leading to a strong suppression on the gap. In other words,
once in the pseudogap state, because of the significant phase
fluctuation and hence remarkable Doppler shift, the gap can
not survive far above Tc in our simplified model.

3. Anisotropic influence of phase fluctuation

It is noted that in our numerical calculation, after the statis-
tical average of the phase fluctuations in all directions, there
is no current excitation, i.e., 〈j〉 = 0, since 〈ps〉 = 0 as a con-
sequence of the inversion symmetry in our system. Whereas
the nonzero gap 〈�〉 and densities of the normal-fluid 〈nn〉,
viscous 〈nvs〉 and nonviscous 〈nns〉 superfluids are due to the
fact that the anomalous correlation [Eq. (3)] and hence the gap
equation [Eq. (4)] and superfluid density [Eq. (5)], as well as
the microscopic momentum-relaxation rate �k [Eq. (6)] are
even functions with respect to ps, whereas 〈p2

s〉 �= 0 by Eq. (2).
In Fig. 4, after the average over 400 random configurations,

we plot the dependence of the gap and densities of the normal
fluid and superfluid on the phase-fluctuation direction. As
seen from the figure, all three quantities exhibit C4-symmetric
dependence on the phase-fluctuation direction. The superfluid
density shows similar dependence to the gap, but exhibits
compensatory behavior in comparison with the normal-fluid

density, similar to the results in Sec. III B 1. The C4-symmetric
dependence with respect to the phase-fluctuation direction
arises from the d-wave gap, since the phase fluctuation along
the nodal point is easier to generate the unpairing region
(normal fluid) and reduce the pairing region (i.e., suppress the
gap and hence superfluid density) than that along the antinodal
point, as analyzed in Sec. II.

For experimental probes that are related to the intrinsic
characters of system, the superconducting momentum ps only
arises from the phase fluctuation, and then, the C4-symmetric
anisotropies in Fig. 4 does not manifest directly, since there
exist phase fluctuations along all directions and the observed
quantity is a statistical average of phase fluctuations in all
directions. However, one can apply the external stationary
magnetic vector potential A or inject the background super-
current I to generate the extrinsic superconducting momentum
pext

s = −eA or pext
s = Im/(ens). Consequently, the total su-

perconducting momentum, including the intrinsic part from
phase fluctuation and extrinsic one, is enhanced along the
direction of pext

s . In this circumstance, by varying the di-
rection of the vector potential or injected supercurrent, all
C4-symmetric anisotropies in Fig. 4, i.e., the anisotropic in-
fluence of ps mentioned in Sec. II can be observed.

IV. DERIVATION OF DUAL DYNAMICS

In this section, we present the rigorous derivation of the
coupled dual dynamics from the GIKE approach. The re-
covery from the path-integral approach is also addressed to
confirm our derivation.

A. Hamiltonian

We begin with a generalized Bogoliubov-de Gennes (BdG)
Hamiltonian [77,93]:

H0 =
∫

drdr′ψ†(x)[ξp̂τ3δ(x − x′) + �̂(x, x′)]ψ (x′). (16)

Here, ψ (x) = [ψ↑(x), ψ†
↓(x)] represents the field operator in

Nambu space; the momentum operator p̂ = −ih̄∇; �̂(x, x′) =
�(x, x′)τ+ + �∗(x, x′)τ−; τi are the Pauli matrices in Nambu
space.

It is established that the phase fluctuation in Eq. (16) can
be effectively removed by a unitary transformation:

ψ (x)→eiτ3δθ (R)/2ψ (x), (17)

and then, one has [27,30]

H0 =
∫

drdr′ψ†(x)

{(
ξp̂+psτ3 + ∂tδθ/2

)
τ3δ(x − x′)

+
∑

k

eik·(r−r′ )[�k + δ�k(R)]τ1

}
ψ (x′) (18)

with the superconducting momentum ps = ∇Rδθ (R)/2.
Then, it is clearly seen that as a consequence of the spon-
taneous breaking of the U(1) symmetry by order parameter
[27,30], the superconducting phase fluctuation provides an
effective electromagnetic potential eAeff

μ = (∂tδθ/2,−ps), in
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consistency with the gauge structure in superconductors first
revealed by Nambu [27]:

eAμ → eAμ − ∂μχ (R), (19)

δθ (R) → δθ (R) + 2χ (R). (20)

Here, the standard electromagnetic potential eAμ = (eφ, eA)
and ∂μ = (∂t ,−∇R ).

The electron-electron Coulomb interaction Hee and
electron-impurity interaction Hei are written as [77,94]

Hee = 1

2

∫
drdr′V (x − x′)[ψ†(x)τ3ψ (x)][ψ†(x′)τ3ψ (x′)],

(21)

Hei =
∫

drψ†(x)U (x)τ3ψ (x). (22)

Here, V (x − x′) and U (x) denote the Coulomb and impurity
potentials in space-time coordinate. We have kept the time
dependence of U (x) for general situation.

B. GIKE approach

To derive the macroscopic phase-coherence dynamics and
microscopic electronic superfluid dynamics, we first use the
GIKE approach [73–76]. In this microscopic approach, the
response of the system is described by the density of matrix
ρk in Nambu space. Considering the fluctuations, the density
of matrix reads

ρk = ρ
(0)
k + δρk(R). (23)

Here, δρk stands for the nonequilibrium response from the
equilibrium part ρ

(0)
k , which is written as [73]

ρ
(0)
k = Fk(Ekτ0 + ξkτ3 + �kτ1). (24)

To determine the density of matrix, one needs to solve δρk
from the GIKE [73–76]:

∂tρk+i

[(
ξk +μeff + p2

s

2m

)
τ3+�kτ1, ρk

]
−

[
i∇2

R

8m
τ3, ρk

]

+ 1

2
{eEτ3−(∇R+2ipsτ3)�kτ1, ∂kρk}

− i

8
[(∇R+2ipsτ3)(∇R+2ipsτ3)�kτ1, ∂k∂kρk]

+
{

k
2m

τ3,∇Rρk

}
+

[∇R ◦ ps

4m
τ3, τ3ρk

]
=∂tρk

∣∣∣∣
scat

, (25)

where we have effectively removed the phase fluctuation
from the order parameter through the unitary transformation
in Eq. (17). Here, [A, B] = AB − BA and {A, B} = AB + BA
represent the commutator and anti-commutator, respectively;
∇R ◦ ps = 2ps · ∇R + ∇R ·ps; the effective field μeff (R) =
∂tδθ (R)/2 + μH (R) + U (R) with the Hartree field written as

μH (R) =
∑

R′
V (R − R′)n(R′). (26)

The induced electric field eE = −∇R[μH (R) + U (R)].

The density n and current j are given by [73–76]

n =
∑

k

(1 + 2ρk3), (27)

j =
∑

k

(
ek
m

ρk0

)
, (28)

respectively. The equation of the order parameter reads(
�k+δ�k

�k+δ�k

)
= −

∑
k′

′
gkk′

(
ρk′+

ρk′−

)
, (29)

whose components are given by∑
k′

′
gkk′ρk′1 = −�k, (30)

∑
k′

′
gkk′ρk′2 = 0. (31)

Here, ρki stands for the τi component of ρk = ∑3
i=0 ρkiτi; It

is noted that Eq. (30) gives the gap equation, whereas Eq. (31)
determines the phase fluctuation as revealed in our previous
work [74].

The impurity scattering ∂tρk|scat is derived based on
the generalized Kadanoff-Baym ansatz with the random-
phase and Markovian approximations [95,96]. The specific
impurity-scattering term reads [73]

∂tρk|scat = −niπ
∑

k′η=±

∣∣U s
k−k′

∣∣2
δ(Ek′ −Ek )

(
τ3�

η

k′τ3�
η

kρk

−τ3ρk′�
η

k′τ3�
η

k +H.c.
)
. (32)

Here, ni and U s
kk′ stand for the impurity density and

matrix element of the electron-impurity scattering, respec-
tively; the projection operators �±

k = U †
k (1 ± τ3)Uk/2 with

Uk = ukτ0 − ivkτ2 being the unitary transformation ma-
trix from the particle space to the quasiparticle one. uk =√

1/2 + ξk/(2Ek ) and vk = √
1/2 − ξk/(2Ek ).

To solve GIKE, by expanding δρk = δρ
(1)
k + δρ

(2)
k with

δρ
(1)
k and δρ

(2)
k standing for the linear and second-order terms

of the nonequilibrium response, the GIKE becomes a chain
of equations, whose first order only involves δρ

(1)
k and ρ

(0)
k

and second order involves δρ
(2)
k , δρ

(1)
k and ρ

(0)
k . Then, one

can solve δρ
(1)
k and δρ

(2)
k in sequence, whose specific lengthy

expressions are presented in Appendix A.

1. Gap equation and superfluid density

We first derive the gap equation and supercurrent. Sub-
stituting the solved ρk1 = ρ

(0)
k1 + δρk1 into Eq. (30), with

ρ
(0)
k1 = �kFk from Eq. (24), one can directly obtain the gap

equation in Eq. (4), and find a vanishing amplitude fluctu-
ation δ�k(R) = 0 as δρk1 makes no contribution (refer to
Appendix B). This is because of the particle-hole symmetry in
our derivation. With this symmetry, the amplitude and phase
fluctuations represent mutually orthogonal excitations [32],
and hence, are decoupled [97]. Moreover, with the particle-
hole symmetry, the disorder-induced local potential can not
excite the amplitude fluctuation, since the charge-amplitude
correlation vanishes according to recent symmetry analysis
[97].
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For the excited phase fluctuation ps, the solved ρk0 in clean
case reads (refer to Appendix B)

ρk0 = (vk · ps)
�2

k

Ek
∂Ek Fk. (33)

Then, from Eq. (28), the generated supercurrent is given by

j = eps

m

k2
F

m

∑
k

′ �2
k

Ek
∂Ek Fk = ens

m
ps, (34)

from which one obtains the superfluid density in
Eq. (5).

2. Scattering of momentum relaxation

For the scattering part, we focus on the momentum (cur-
rent) relaxation. Then, according to Eq. (28), one only needs
to keep the τ0 components of ρk and ∂tρk|scat, and hence,
Eq. (32) becomes

∂tρk|mr
scat = −2niπ

∑
k′ηη′

∣∣U s
kk′

∣∣2
Tr

(
τ3�

η

kτ3�
η′
k′
)
(ρk0 − ρk′0)δ

(
Eη

k − Eη′
k′

)

=−2niπ
∑

k′

∣∣U s
kk′

∣∣2
(ρk0−ρk′0)[e−

kk′δ(E+
k −E+

k′ )+e−
kk′δ(E−

k −E−
k′ )+e+

kk′δ(E+
k −E−

k′ )+e+
kk′δ(E−

k −E+
k′ )], (35)

where e±
kk′ = 1

2 (1 ± �k�k′ −ξkξk′
EkEk′ ). It is noted that the term

e−
kk′ (ρk0−ρk′0)[δ(E+

k −E+
k′ )+δ(E−

k −E−
k′ )] vanishes around

the Fermi surface. Consequently, one has

∂tρk|mr
scat =−

∑
k′η=±

′|Mkk′ |2(ρk0 − ρk′0)δ
(
Eη

k − E−η

k′
)
, (36)

with |Mkk′ |2 = 2niπ |U s
kk′ |2e+

kk′ .
We next focus on the momentum-relaxation rate of the k

particle in superfluid. In Eq. (36), if k particle lies in the pair-
ing region, one has k′ particle lying in the unpairing region,
as analyzed in Sec. II. Then, considering the situation with
the drive effect from superconducting momentum ps, from
Eq. (33), one has vanishing ρk′0 and finite ρk0. Consequently,
Eq. (36) becomes

∂tρk|mr
scat =−�kρk0, (37)

with the momentum-relaxation rate of superfluid given by
Eq. (6). For weak external probe that is related to the intrinsic
character of system, one can use �k to discuss the supercon-
ductivity phenomenon, with ps in �k arising from the phase
fluctuation.

3. Phase-coherence dynamics

We next construct the macroscopic phase-coherence dy-
namics by deriving the equation of motion of the phase
fluctuation. We neglect the mutual interaction between phase
fluctuations by only keeping the linear order of phase fluctu-
ation in its equation of motion. Then, in the center-of-mass
frequency and momentum space [(t, R) → (ω, q)], substitut-
ing the solved ρk2 into Eq. (31), the equation of motion of the
phase fluctuation is written as (refer to Appendix B)

2iω(iωδθq/2 + μH )D + iq · psns/m = −2iωDUq. (38)

As seen from the left-hand side of above equation, without
the Hartree field μH , one immediately finds a gapless energy
spectrum of the phase fluctuation with the linear dispersion,
in consistency with the Goldstone theorem [28,29] by the
spontaneous breaking of continuous U(1) symmetry in super-
conductors [27].

Particularly, substituting the solution of ρk3 into Eq. (27),
the density fluctuation reads (refer to Appendix B)

δn = −2Dμeff . (39)

Then, it is noted that from the expressions of the density
[Eq. (39)] and current [Eq. (34)], the equation of motion of
the phase fluctuation in Eq. (38) is a direct consequence of
the charge conservation ∂tδn + ∇R · j = 0. The charge con-
servation in the gauge-invariant kinetic theory is natural [76],
as it has been proved long time ago by Nambu through the
generalized Ward identity that the gauge invariance in the su-
perconducting states is equivalent to the charge conservation
[27].

From Eq. (39), the Hartree field [Eq. (26)] is therefore
written as μH = −2VqDμeff . Then, Eq. (38) becomes

Dq

(
ω2

p + nsq2

2Dm
− ω2

)
δθq

2
= −iωUqDq, (40)

with Dq = D/(1 + 2DVq). As seen from the left-hand side
of above equation, when the long-range Coulomb interac-
tion is included, the original energy spectrum of the phase

fluctuation is altered as ωN =
√

ω2
p + nsq2/(2Dm). The right-

hand side of above equation represents the source term
from impurity potential. It is noted that additional source
terms emerge on the right-hand side of Eq. (40) if other
quantum disorder/fluctuation effects that generate electric
potential or couple to phase fluctuation are considered, so
Uq here can represent an effective electric potential by re-
lated quantum disorder/fluctuation effects. The source term
from the disorder-induced local electric potential excites the
macroscopic inhomogeneous phase fluctuation through the
Josephson effect, since without the long-range Coulomb in-
teraction and kinetic term nsq2/(2Dm), Eq. (40) reduces to
∂tδθ/2 = −U (R) in the space-time coordinate, same as the
Josephson effect [81].

From the equation of motion in Eq. (40), in principle,
one can directly solve the generated phase fluctuation δθ (R)
from disorder effect, and then, calculate the induced supercon-
ducting momentum ps(R) = ∇Rδθ (R)/2 and hence Doppler
shift, in order to further formulate the influence of the
phase fluctuation on electronic fluids at each R. Nevertheless,
for the experimental detections that usually are long-wave
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measurement, one only needs to consider the long-wave
component of the Doppler shift effect, which leads to a
homogeneous influence on the electronic fluids. In this cir-
cumstance, we apply a simplified way by using the equation
of motion in Eq. (40) to construct the action of the phase
fluctuation:

S =
∫

dt
∑

q

Dq

(∣∣∣∣∂tθ

2

∣∣∣∣
2

−ω2
N

∣∣∣∣θq

2

∣∣∣∣
2

+U ∗
q

∂tθq

2
+Uq

∂tθ
∗
q

2

)
.

(41)
Then, on one hand, one can directly use above action to derive
the expected value of the generated superconducting momen-
tum from disorder effect. On the other hand, by mapping the
action in Eq. (41) into the imaginary-time one S , the expected
value of the generated superconducting momentum from the
thermal excitation can also be determined.

Consequently, considering the anisotropy in d-wave su-
perconductors, the generated superconducting momentum by
phase fluctuation along eφ direction reads

(
pφ

s

)2 =
∑

q

q2

[〈∣∣∣∣δθ
∗
qeφ

(t + 0+)

2

δθqeφ
(t )

2
eiS

∣∣∣∣
〉

+
〈∣∣∣∣δθ

∗
qeφ

(τ )

2

δθqeφ
(τ )

2
e−S

∣∣∣∣
〉]

=
∑

q

q2

[
1

Z0

∫
DθDθ∗ δθ∗

qeφ
(t + 0+)

2

δθqeφ
(t )

2
eiS

+ 1

Z0

∫
DθDθ∗ δθ∗

qeφ
(τ )

2

δθqeφ
(τ )

2
e−S

]
, (42)

with Z0 and Z0 standing for the corresponding partition func-
tions. Following the standard generating functional method
[98] to handle above equation (refer to Appendix C), one has

(
pφ

s

)2 = i

C

∑
qω

q2ω2Uqeφ
U−qeφ(

ω2−ω2
N + i0+)2 − 1

β

∑
qωn

q2

Dq

1

(iωn)2−ω2
N

,

(43)
where ωn = 2nπT denotes the Matsubara frequency and β =
1/(kBT ) with kB being the Boltzmann constant. Then, after
the frequency and Matsubara-frequency summations, Eq. (2)
can be directly obtained.

C. Path integral approach

In this part, in order to confirm our derivation from the
GIKE approach, we use the path integral approach [99,100]
to derive the macroscopic phase-coherence dynamics and
microscopic electronic-fluid dynamics. We start with the gen-
eralized action of superconductors:

S[ψ,ψ∗]

=
∑

s=↑,↓

∫
dxψ∗

s (x)[i∂t − ξp̂ − U (x)]ψs(x)

− 1

2

∑
ss′

∫
dxdx′V (x − x′)ψ∗

s (x)ψ∗
s′ (x′)ψs′ (x′)ψs(x)

+
∫

dxdx′g(x − x′)ψ∗
↑(x)ψ∗

↓(x′)ψ↓(x′)ψ↑(x). (44)

All symbols used here are same as the previous ones. Ap-
plying the Hubbard-Stratonovich transformation, the above
action becomes

S[ψ,ψ∗]=
∑

s=↑,↓

∫
dxψ∗

s (x)[i∂t −ξp̂−U (x)−μH (x)]ψs(x)

−
∫

dxdx′ψ∗(x)�̂(x, x′)ψ (x′)

−
∫

d4R
|�|2

g
+ 1

2

∑
ω,q

|μH (q)|2
Vq

, (45)

in which we have substituted the pairing potential
gkk′ = gcos(ζθk + α) cos(ζθk′ + α) to give rise to
�k = � cos(ζθk + α), with ζ being the orbital angular
momentum of the pairing symmetry. By further using the
unitary transformation in Eq. (17) to effectively remove the
phase fluctuation from the order parameter, one has

S[ψ,ψ∗] =
∫

dxdx′ψ∗(x)[G−1
0 (x, x′)−�(R)τ3]ψ (x′)

−Vf

∫
d4R�(R)−

∫
d4R

|�|2
g

+1

2

∑
ω,q

|μH (q)|2
Vq

,

(46)

where Vf = ∑
k 1 arises from the anticommutation of the

Fermi field; the Green function is written as

G−1
0 (x, x′) = [i∂t − ps · p̂/m − ξp̂τ3]δ(x − x′) − |�(x, x′)|τ1,

(47)
and the self-energy reads

�(R) = μeff (R) + p2
s

2m
. (48)

It is noted that in the previous works [99,100], the Doppler-
shift term ps · p̂/m is placed into the self-energy �(R) and
then treated as small quantity to take perturbation expansion.
This approximation holds only if |ps · vk| < �k, while this
condition is usually satisfied in conventional s-wave super-
conductors with inactive phase fluctuation or weak external
electromagnetic field. In the present work, considering the
anisotropy and strong phase fluctuation in d-wave cuprate
superconductors, we sublate this approximation by taking the
Doppler-shift term into the Green function (i.e., quasiparticle
energy spectra).

Then, after the standard integration over the Fermi field,
one has

S = T̄r ln
[
G−1

0 − �τ3
]

−Vf

∫
d4R�(R) −

∫
d4R

|�|2
g

+ 1

2

∑
ω,q

|μH (q)|2
Vq

= T̄r ln G−1
0 − 1

n

∞∑
n=1

T̄r[(G0�τ3)n]

−Vf

∫
d4R�(R) −

∫
d4R

|�|2
g

+ 1

2

∑
ω,q

|μH (q)|2
Vq
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≈
∫

d4R
∑
pn,k

ln[(ipn − E+
k )(ipn − E−

k )]

−Q1

∫
d4R�(R)+Q2

∫
d4R[�(R)]2

−
∫

d4R
|�|2

g
+ 1

2

∑
ω,q

|μH (q)|2
Vq

, (49)

in which we have neglected the mutual interaction between
phase fluctuations by only keeping the lowest two orders (i.e.,
n = 1 and 2). Here, pn = (2n + 1)πT denotes the Matsubara
frequency and the coefficients read (refer to Appendix D)

Q1 = Vf +
∑

p

Tr[G0(p)τ3] =−k2
F

m

∑
k

′
∂ξk (ξkFk ), (50)

Q2 = −1

2

∑
p

Tr[G0(p)τ3G0(p)τ3] =−
∑

k

′
∂ξk (ξkFk ). (51)

Here, p = (ipn, k) and the Green function G(p) from Eq. (47)
is given by

G0(p) = ipnτ0 − ps · vkτ0 + ξkτ3 + �kτ1

(ipn − E+
k )(ipn − E−

k )
. (52)

As μH (q = 0) = Vq=0δnq=0 = 0, it can be easily demon-
strated that

∫
d4R�(R) = ∫

d4R[U (R) + p2
s/(2m)]. Then,

one obtains the effective action of superconductors:

Seff =
∫

d4R

{∑
pn,k

ln[(ipn − E+
k )(ipn − E−

k )]− |�|2
g

+Q2

(
μ2

eff −
k2

F p2
s

2m2

)}
+ 1

2

∑
ω,q

|μH (q)|2
Vq

. (53)

We next handle the Hartree field. Through the integration over
the Hartree field in Eq. (53), one gets

S̄eff =
∫

d4R
∑
pn,k

{
ln[(ipn − E+

k )(ipn − E−
k )]− |�|2

g

}

+
∫

dt
∑

q

[
Q2

1+2Q2Vq

(
∂tδθq

2
+Uq

)2

− Q2k2
F p2

s

2m2

]
.

(54)

From the action above, we prove in the following that the
previous gap equation [Eq. (4)], superfluid density [Eq. (5)]
as well as the equation of motion of the phase fluctuation
[Eq. (40)] derived from the GIKE approach can all be recov-
ered.

Specifically, through the variation δS̄eff = 0 with respect to
the gap, one has

� = −g
∑

k

′
� cos2(ζθk + α)

∑
pn

1

(ipn − E+
k )(ipn − E−

k )

= −g
∑′

k
�k cos(ζθk + α)Fk, (55)

which with gkk′ = gcos(ζθk + α) cos(ζθk′ + α), is exactly
same as the previous gap equation in Eq. (4). The supercurrent

is given by

j = −e∂ps S̄eff = eQ2k2
F ps

m2
+

∑
pnk

2ek(ipn−k·ps/m)

m(ipn−E+
k )(ipn−E−

k )

= −ek2
F ps

m2

∑
k

′
{
∂ξk (ξkFk ) − ∂Ek

[
f (E+

k ) − f (E−
k )

2

]}

= eps

m

k2
F

m

∑
k

′ �2
k

Ek
∂Ek Fk = ensps

m
. (56)

Then, the previous supercurrent in Eq. (34) and hence super-
fluid density in Eq. (5) are recovered.

Through the variation δS̄eff = 0 with respect to the phase
fluctuation, one obtains

0 = ∂t

[
∂ S̄eff

∂ (∂tδθq/2)

]
− iq ·

(
∂ S̄eff

∂ps

)

= 2Q2

1 + 2Q2Vq
∂t

(
∂tδθq

2
+ Uq

)
− iq · ps

ns

m

= Dq

(
q2ns

2Dm
+ q2Vqns

m
+ ∂2

t

)
δθq

2
+ Dq∂tUq, (57)

in which we have used Q2 = −∑′
k ∂ξk (ξkFk ) ≈ D. Then,

the previous equation of motion of the phase fluctuation in
Eq. (40) is recovered.

Consequently, the previous gap equation [Eq. (4)], super-
fluid density [Eq. (5)] as well as the equation of motion of
the phase fluctuation [Eq. (40)] derived from the GIKE ap-
proach can all be recovered by the path-integral approach.
Whereas the microscopic scattering of electronic fluids (i.e.,
microscopic momentum-relaxation rate in superfluid) is hard
to handle within the path-integral approach. The conventional
Kubo diagrammatic formalism is also difficult to track the mi-
croscopic scattering, as the inevitable calculation of the vertex
correction becomes hard to deal with in superconductors [77],
especially considering the anisotropy and significant phase
fluctuation (i.e., Doppler shift) in d-wave case. Thus the GIKE
approach in fact provides an efficient way to deal with the
microscopic scattering in superconductors for investigating
the superconductivity (zero-resistance) phenomenon.

V. APPLICATION TO DISORDERED S-WAVE
SUPERCONDUCTORS

Finally, considering the recent experimental progress of
realizing the atomically thin superconductors [101–105] and
disordered superconducting films [106–109] with s-wave gap,
we briefly investigate the two-dimensional disordered s-wave
superconductors. In this circumstance, the phase fluctuation
retains gapless energy spectrum even after considering the
long-range Coulomb interaction, and hence, is active. We
therefore apply the developed dual dynamics with gap �k =
� and pairing potential gkk′ = g. By using the similar numer-
ical simulation as the d-wave case in Sec. III B, the obtained
results in disordered s-wave superconductors are plotted in
Fig. 5.

Actually, based on the three-fluid model, by applying
the analysis as the d-wave case in Sec. III A, one also ex-
pects a similar behavior between the nonviscous superfluid
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FIG. 5. (a) Anderson-disorder strength and (b) temperature de-
pendence of gap 〈�〉 and densities of the nonviscous superfluid 〈nns〉,
viscous superfluid 〈nvs〉, and normal fluid 〈nn〉 as well as (c) phase
diagram of 〈�〉 from the full and self-consistent numerical simula-
tion in disordered s-wave superconductors. The results of 〈nvs〉 in
(a) and (b) are multiplied by 25 for the visibility. Note that the small
deviation of �/�0 from one at W = 0 in figure (a) originates from
the finite temperature. (d) Schematic showing the division in the mo-
mentum space at ps = 0.55ωD/vF eφ=π/4 and � = 0.5ωD in s-wave
superconductors. In the figure, TB denotes the critical temperature
where gap vanishes in the absence of the phase fluctuation, i.e., BCS
critical temperature [92] of the two-dimensional s-wave supercon-
ductors; ns0 represents the superfluid density at zero temperature in
the absence of the phase fluctuation, and nn0 denotes the normal-fluid
density above T os; W0 = 0.5�0.

density 〈nns〉 and gap 〈�〉 and a compensatory behavior
between 〈nns〉 and normal-fluid density 〈nn〉 in tempera-
ture (Anderson-disorder strength) dependence of disordered
s-wave superconductors, as confirmed by numerical results in
Fig. 5(b) [Fig. 5(a)].

The difference from the d-wave case in disordered s-wave
superconductors includes three aspects. Firstly, as mentioned
in Sec. III A, differing from the d-wave case where nonzero
normal fluid always emerges around nodal points, the emer-
gence of the normal fluid in s-wave superconductors requires
ps > �/vF , leading to a threshold to realize normal fluid [73].
Therefore, at small phase fluctuation with ps < �/vF , no nor-
mal fluid and hence viscous superfluid are generated in s-wave
superconductors, while the gap and nonviscous superfluid
density are free from the influence of the phase fluctuation
(i.e., increase of W ), as shown in Fig. 5(a) at W < 0.24.

Secondly, with the increase of phase fluctuation (by en-
hancing W ) at ps > �/vF , the gap 〈�〉 in disordered s-wave
superconductors [red solid curve in Fig. 5(a)] shows a much
faster decrease than that in d-wave case [Fig. 2(i)]. This
implies that the s-wave gap with the higher rotational sym-
metry is much more fragile against the phase fluctuation. At
large phase fluctuation, as shown in Fig. 5(b), the temperature
dependence of 〈�〉 (red solid curve) deviates from the BCS-

like behavior and exhibits a faster decrease with temperature,
and a nonzero fraction of normal fluid emerges even at zero
temperature. These two behaviors provide a scheme for exper-
imental detection to justify the existence of phase fluctuation
in disordered s-wave superconductors.

Furthermore, as seen from Figs. 5(a) and 5(b), in disor-
dered s-wave superconductors, the viscous superfluid density
〈nvs〉 is marginal, and hence, the normalized nonviscous super-
fluid density 〈nns〉/ns0 (blue dashed curve) nearly coincides
with the normalized gap 〈�〉/�0 (red solid curve), in sharp
contrast to the results in d-wave case. This arises from the
isotropy of the s-wave gap. Specifically, in disordered s-wave
superconductors, as shown by the schematic illustration in
Fig. 5(d), at phase fluctuation ps > �/vF , even the normal
fluid (yellow regions) is excited, the viscous pairing (orange)
region that can experience the friction with normal fluid [i.e.,
satisfying the energy conservation of momentum-relaxation
rate in Eq. (6)] lies around the unpairing one and is very small,
in sharp contrast to the large fraction in anisotropic d-wave
case at the same condition [Figs. 1(b) and 1(f)]. Moreover, the
anomalous correlation Fk adjacent to the unpairing region is
very small. Therefore, due to the small area and weak Fk, the
viscous pairing region in disordered s-wave superconductors
makes a neglectable contribution in the gap equation [Eq. (4)]
and leads to a marginal nvs [Eq. (9)]. With the marginal 〈nvs〉,
the separation between Tc and T os is remarkably small (0.01TB

at most) in our simplified model.

VI. SUMMARY

In summary, by using the GIKE approach [73–76], we
construct the coupled dual dynamics of macroscopic phase
coherence and microscopic electronic fluids (consisting of
normal fluid and superfluid) in cuprate superconductors.
Based on the developed dual dynamics, we present theo-
retical descriptions of the separation between Tc and T os

as well as the emerged normal fluid below Tc in cuprate
superconductors. We find that the key origin of both phe-
nomena comes from the quantum effect of disorder, which
excites the macroscopic inhomogeneous phase fluctuation.
With this excited phase fluctuation, we prove that in addi-
tion to conventional nonviscous superfluid, there also exist
normal fluid and viscous superfluid at small phase fluctu-
ation in cuprate superconductors. An experimental scheme
to distinguish the densities of these three electronic fluids
is proposed. We demonstrate that once the phase fluctua-
tion in cuprate superconductors exceeds the critical point
by increasing temperature to weaken the phase stiffness, the
nonviscous superfluid vanishes, leaving only normal fluid
and viscous superfluid. The system then enters the pseu-
dogap state with nonzero resistivity and finite gap due to
the significant phase fluctuation. The viscous superfluid in
this circumstance matches the description of the incoherent
preformed Cooper pairs, as they both contribute to gap but
experience the scattering. Whereas the existing normal fluid
in our description implies the existence of normal particles
in pseudogap state, which has been overlooked in previous
preformed Cooper-pair model to describe pseudogap state
[26,34–38]. The viscous superfluid starts to shrink by further
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increasing temperature in pseudogap state, until vanishes at
T os where gap is eventually destroyed.

To confirm the derivation from the GIKE approach, we also
apply the path-integral approach to recover the equation of
motion of the phase fluctuation as well as anomalous corre-
lation, gap equation and superfluid density in the presence of
the superconducting momentum. Holding the pairing poten-
tial fixed, a self-consistent numerical simulation by applying
Anderson disorder is also addressed, to verify our theoretical
description. Then, both the separation between Tc and T os as
well as the emerged normal fluid below Tc are confirmed.
Particularly, T os tracks Tc closely in our numerical results,
and lies well below the experimental pseudogap temperature
T ∗, in consistency with the current experimental findings and
understanding in the literature [40–61,64]. This is because
that once in the pseudogap state, due to the significant phase
fluctuation and hence Doppler shift, the gap can not survive
far above Tc.

Consequently, when the pairing potential is determined,
the coupled dual dynamics in the present work provides an
efficient and simplified approach to formulate the dephas-
ing process of macroscopic superconducting phase coherence
with the increase of temperature, as well as the influence
of this dephasing on microscopic electronic fluids (including
gap, densities of superfluid and normal fluid, and in par-
ticular, the transport property to determine superconducting
transition temperature Tc). This theory distinguishingly takes
the Anderson-disorder approach and impurity scattering treat-
ment to discuss the different disorder effects on macroscopic
phase coherence and microscopic electronic fluids, respec-
tively. The Anderson-disorder approach that calculates the
converged quantities by averaging over numerous random
impurity configuration is applied in order to characterize
the complicated dephasing process by all related quantum
disorder/fluctuation effects (not only the impurity effect, but
also the possible couplings to charge-density wave [6,110–
113], spin-density wave [6,114–117], electronic nematicity
[6,23,118,119], and/or theoretically proposed spinonvortices
excitation [120–122]). Whereas the microscopic scattering,
as the essential nonequilibrium transport property for study-
ing the superconductivity (zero-resistance) phenomenon, is
still absent in the literature, since it is hard to handle in
path-integral approach and conventional Kubo diagrammatic
formalism. But the GIKE approach straightly tackles this
crucial problem. It is noted that considering the short-circuit
effect, determining Tc only requires the Anderson-disorder
strength (dephasing process), whereas the specific value of
the microscopic impurity-scattering strength is irrelevant. Fur-
ther determining the pairing potential and Anderson-disorder
strength at different dopings requires the microscopic pairing
mechanism, which still remains an open question in the liter-
ature and is beyond the scope of present work.

Considering the recent experimental progress of realizing
the atomically thin superconductors [101–105] and disordered
superconducting films [106–109] with the s-wave gap, we
show that the developed dual dynamics can also be applied
similarly to the low-dimensional disordered s-wave supercon-
ductors, which exhibits an active phase fluctuation due to
the gapless energy spectrum. Differing from the d-wave case
where nonzero normal fluid always emerges around nodal

points, there exists a threshold for phase fluctuation to induce
normal fluid in isotropic s-wave superconductors [73]. Conse-
quently, at small phase fluctuation below threshold, no normal
fluid and hence viscous superfluid are generated, while the gap
and nonviscous superfluid density are free from the influence
of the phase fluctuation. But at large phase fluctuation above
threshold, a nonzero fraction of normal fluid emerges even
at zero temperature, while we find that the s-wave gap with
higher rotational symmetry is much more fragile against the
phase fluctuation as the gap exhibits a faster decrease with
temperature. Nevertheless, due to the isotropy of s-wave gap,
the viscous superfluid density is marginal in our simplified
model, leading to a remarkably small separation between Tc

and T os.

VII. DISCUSSION OF RECENT PROGRESSES

Finally, we would like to discuss recent theoretical and
experimental progresses in cuprate superconductors.

Role of a band structure. The present work approximately
takes the parabolic spectrum. Whereas recently, from the ex-
perimental angle-resolved photo-emission measurement, He
et al. reported an important role of the flat energy dispersion
near antinodal point in determining Tc (i.e., phase coherence)
in cuprate superconductors [123]. Here, based on our coupled
dual dynamics, we briefly discuss this effect. Specifically,
around Fermi surface, with the flat (i.e., vk ≈ 0) and steep
(i.e., large vk) energy dispersions near antinodal and nodal
points, respectively, a large unpairing region (|vk · ps| > Ek)
around nodal points can be achieved easily in the presence
of significant phase fluctuation. Whereas the region around
antinodal point is the pairing one (|vk · ps| < Ek), but can
become viscous through the friction with the large unpairing
region. Particularly, since the Doppler shift vk · ps ≈ 0 nearby,
this viscous pairing region can survive against very large
phase fluctuation. Consequently, a viscous superfluid that con-
tributes to gap can exist far above Tc, enlarging the separation
between Tc and T os. Moreover, following the similar analysis,
one can also expect a larger separation between Tc and T os

in low-dimensional disordered s-wave superconductors with
a complex Fermi surface. The numerical simulation of this
scheme in cuprate or disordered s-wave superconductors re-
quires a specific calculation of the band structure, which is
beyond the scope of the present work.

Disorder treatment. Recently, Lee-Hone et al. [124,125]
calculated the self-energy from the impurity and then self-
consistently formulated the renormalizations of the gap and
superfluid density in d-wave cuprate superconductors. A finite
disorder influence is obtained in their results, differing from
the vanishing one in conventional s-wave superconductors
(Anderson theorem) [126–128]. It is noted that this disorder
treatment which takes the random phase approximation fo-
cuses on the diffusive-motion influence on the equilibrium
gap �k. The disorder effect on the phase coherence or am-
plitude fluctuation as well as the microscopic scattering of the
nonequilibrium response are beyond their equilibrium calcu-
lation that carried out with the translational symmetry.

Amplitude fluctuation. Another issue concerns the ampli-
tude fluctuation of the order parameter. As mentioned in
Sec. IV B 1, in the leading order of the disorder effect where
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the particle-hole symmetry is present, one finds a vanish-
ing amplitude fluctuation. However, the phase fluctuation is
generated by Josephson effect and then influences the elec-
tronic fluids by inducing a superconducting momentum, as the
present work addressed. Whereas in higher-order contribution
with the broken particle-hole symmetry, the disorder-induced
local potential can directly excite the amplitude fluctuation, as
the charge-amplitude correlation becomes nonzero [97].

Recently, by using the tight-binding model in real space
and applying the Anderson disorder, Li et al. performed a self-
consistent numerical calculation to solve the wave function
and hence gap [72]. A drastic amplitude fluctuation emerges in
their results by disorder effect, leading to granular supercon-
ducting islands where the gap is destroyed in strong-disorder
regions. They attributed this formation to the pairing-breaking
effect on anisotropic gap from disorder, and then, suggested
that the strong phase fluctuation emerges in regions with

small gap (i.e., superfluid stiffness) as a consequence. This
approach clearly handles the high-order disorder effect (i.e.,
generation of amplitude fluctuation) well, but the leading
contribution via Josephson effect [i.e., ∂tδθ/2 = −U (R)] to
excite the phase fluctuation is not involved in this stationary
calculation. Particularly, in this situation with strong disorder,
the phase fluctuation is likely to destroy the global gap before
the drastic amplitude fluctuation emerges. Even the global gap
survives, the influence of the phase fluctuation on such state
with formation of granular superconducting islands can not be
overlooked.
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APPENDIX A: SOLUTION OF GIKE

We present the solution of GIKE in this part. The first order of GIKE [Eq. (25)] in clean limit reads

∂tδρ
(1)
k +i

[
ξkτ3+�kτ1, δρ

(1)
k

]+i
[
μeffτ3+δ�

(1)
k τ1, ρ

(0)
k

]− i

8m

[
τ3,∇2

Rδρ
(1)
k

]+ 1

2

{
vkτ3,∇Rδρ

(1)
k

}+ 1

2

{
vkτ3,∇Rρ

(0)
k

}
+ 1

2

{
eEτ3−2ipsτ3�kτ1, ∂kρ

(0)
k

}− i

8

[∇R∇Rδ�
(1)
k τ1+2i∇Rpsτ3�kτ1, ∂k∂kρ

(0)
k

]− 1

4m

[∇R · psτ3, τ3ρ
(0)
k

] = 0. (A1)

In center-of-mass frequency and momentum space [R = (t, R) → q = (ω, q)], by keeping the lowest three orders of q, the
components of above equation are written as

iωδρ
(1)
k0 = ivk ·qδρ

(1)
k3 − eE·∂kρ

(0)
k3 , (A2)

iωδρ
(1)
k3 = 2�kδρ

(1)
k2 + ivk ·qδρ

(1)
k0 + iqps�k : ∂k∂kρ

(0)
k1 /2 + (vk · iq)(vk · ps)Lk, (A3)

iωδρ
(1)
k1 = −2ξkδρ

(1)
k2 − iqps�k : ∂k∂kρ

(0)
k3 /2 − iq·psρ

(0)
k1 /(2m), (A4)

iωδρ
(1)
k2 = −2�kδρ

(1)
k3 + 2ξkδρ

(1)
k1 − 2ρ

(0)
k3 δ�

(1)
k + 2ρ

(0)
k1 μeff − δ�

(1)
k (q · ∂k )2ρ

(0)
k3 /4, (A5)

where Lk = ∂vk ·psρ
(0)
k0 . Substituting Eqs. (A3) and (A4) into Eq. (A5), one has

(iω)2δρk2 + 2�k
[
2�kδρ

(1)
k2 + ivk ·qδρ

(1)
k0 + iqps�k : ∂k∂kρ

(0)
k1 /2 + (vk · iq)(vk · ps)Lk

]
+ 2ξk

[
2ξkδρ

(1)
k2 + iqps�k : ∂k∂kρ

(0)
k3 /2 + iq·psρ

(0)
k1 /(2m)

]
= 2iωρ

(0)
k1 μeff − 2iωρ

(0)
k3 δ�

(1)
k − iωδ�

(1)
k (q · ∂k )2ρ

(0)
k3 /4. (A6)

Further substituting Eq. (A2) into above equation to replace δρ
(1)
k0 , with Eq. (A5), one immediately obtains

δρ
(1)
k2 = 1

4E2
k −ω2

{
2iωρ

(0)
k1 μeff −2iωρ

(0)
k3 δ�

(1)
k − iω

4
δ�

(1)
k (q · ∂k )2ρ

(0)
k3 −i�kξkqps : ∂k∂kρ

(0)
k3 −i�2

kqps : ∂k∂kρ
(0)
k1

− iq · ps

m
ξkρ

(0)
k1 − 2i(q·vk )(vk ·ps)�kLk+ 2�k

iω
(iq·vk )(eE·∂k )ρ (0)

k3

−
(

vk · q
ω

)2[(
ω2−4ξ 2

k

)
δρ

(1)
k2 + 2iωρ

(0)
k1 μeff −2iωρ

(0)
k3 δ�

(1)
k

]}
. (A7)

Then, after the first-order iteration, one obtains the solution of δρ
(1)
k2 :

δρ
(1)
k2 = 1

4E2
k −ω2

{
2iωρ

(0)
k1 μeff −2iωρ

(0)
k3 δ�

(1)
k − iω

4
δ�

(1)
k (q · ∂k )2ρ

(0)
k3 −i�kξkqps : ∂k∂kρ

(0)
k3 −i�2

kqps : ∂k∂kρ
(0)
k1

− iq · ps

m
ξkρ

(0)
k1 −2i(q·vk )(vk ·ps)�kLk+ 2�k

iω
(iq · vk )(eE · ∂k )ρ (0)

k3

−
(

vk · q
ω

)2

4�2
k/

(
4E2

k −ω2
)[

2iωρ
(0)
k1 μeff −2iωρ

(0)
k3 δ�

(1)
k

]}
, (A8)
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and hence, the solution of δρ
(1)
k1 from Eq. (A4) is given by

δρ
(1)
k1 = −2ξk/(iω)

4E2
k −ω2

{
2iωρ

(0)
k1 μeff −2iωρ

(0)
k3 δ�

(1)
k − iω

4
δ�

(1)
k (q · ∂k )2ρ

(0)
k3 −i�kξkqps : ∂k∂kρ

(0)
k3 −i�2

kqps : ∂k∂kρ
(0)
k1

− iq · ps

m
ξkρ

(0)
k1 −2i(q·vk )(vk ·ps)�kLk+ 2�k

iω
(iq · vk )(eE · ∂k )ρ (0)

k3

−
(

vk · q
ω

)2

4�2
k/

(
4E2

k −ω2)[2iωρ
(0)
k1 μeff −2iωρ

(0)
k3 δ�

(1)
k

]} − iqps

2iω
�k : ∂k∂kρ

(0)
k3 − iq·ps

2imω
ρ

(0)
k1 . (A9)

Moreover, for density-related δρ
(1)
k3 [Eq. (27)] and current-related δρ

(1)
k0 [Eq. (28)], substituting the solved δρ

(1)
k2 and δρ

(1)
k1 into

Eq. (A5) and keeping the lowest order of q, one obtains the solution of δρ
(1)
k3 :

δρ
(1)
k3 = [(

ω2 − 4ξ 2
k

)/(
4E2

k − ω2
) + 1

](
2ρ

(0)
k1 μeff −2ρ

(0)
k3 δ�

(1)
k

)
/(2�k ) = 4�k/

(
4E2

k − ω2
)(

ρ
(0)
k1 μeff −ρ

(0)
k3 δ�

(1)
k

)
, (A10)

and then, the solution of δρ
(1)
k0 from Eq. (A2) reads

iωδρ
(1)
k0 = ivk ·q4�k/

(
4E2

k − ω2
)(

ρ
(0)
k1 μeff −ρ

(0)
k3 δ�

(1)
k

) − eE·∂kρ
(0)
k3 . (A11)

The second-order GIKE [Eq. (25)] in the center-of-mass frequency and momentum space is written as

2iωδρ
(2)
k + i

[
ξkτ3 + �kτ1, δρ

(2)
k

] + i

[
p2

s

2m
τ3 + δ�

(2)
k τ1, ρ

(0)
k

]
+ 1

2
{eEτ3 − 2ipsτ3�kτ1} + i

2

[
psps�kτ1, ∂k∂kρ

(0)
k

] = 0,

(A12)

in which we only keep the lowest order of q to consider a homogeneous influence/excitation from ps. The components of above
equation are written as

2iωδρ
(2)
k0 = −eE · ∂kδρ

(1)
k3 , (A13)

2iωδρ
(2)
k3 = 2�kδρ

(2)
k2 − eE · ∂kδρ

(1)
k0 , (A14)

2iωδρ
(2)
k1 = −2ξkδρ

(2)
k2 , (A15)

2iωδρ
(2)
k2 = −2�kδρ

(2)
k3 + 2ξkδρ

(2)
k1 − 2ρ

(0)
k3 δ�

(2)
k + 2ρ

(0)
k1 p2

s/(2m) − 2�kps · ∂kδρ
(1)
k0 − �k(ps · ∂k )2ρ

(0)
k3 . (A16)

Carrying Eqs. (A14), (A15), and (A2) into Eq. (A16), one has

δρ
(2)
k2 = 1

4E2
k − 4ω2

{
2iω

[
2ρ

(0)
k1 μ

(2)
eff − 2ρ

(0)
k3 δ�

(2)
k

] + 2iω�k

[(
eE
iω

− ps

)
· ∂k

]2

ρ
(0)
k3

}
, (A17)

and then, from Eq. (A15), one obtains

δρ
(2)
k1 = − ξk/(iω)

4E2
k − 4ω2

{
2iω

[
2ρ

(0)
k1 μ

(2)
eff − 2ρ

(0)
k3 δ�

(2)
k

] + 2iω�k

[(
eE
iω

− ps

)
· ∂k

]2

ρ
(0)
k3

}
. (A18)

APPENDIX B: PHASE AND GAP EQUATIONS AS WELL AS SUPERFLUID DENSITY

In this part, we present the derivation of the phase and gap equations as well as superfluid density. We first solve the Hartree
field. Substituting ρ

(0)
k3 [Eq. (24)] and the solved δρ

(1)
k3 [Eqs. (A10)] and (A14) into Eq. (27), in the low-frequency regime, one

has

δn = 2
∑

k

(
ξk

Ek
μ

(1)
eff ∂ξkρ

q0
k3 + �k

E2
k

ρ
(0)
k1 μ

(1)
eff

)
+ 2

iω

∑
k

′
�kδρ

(2)
k2 /(iω), (B1)

where ρ
q0
k3 = [ f (E+

k ) − f (E−
k )]/2 represents the τ3 component of the equilibrium density of matrix in quasiparticle space. On

the right-hand side of the above equation, substituting Eq. (30) to replace �k in the last term, with Eq. (31), one has

δn = 2
∑

k

[
ξk

Ek
μ

(1)
eff ∂ξkρ

q0
k3 + �k

E2
k

ρ
(0)
k1 μ

(1)
eff

]
− 2

iω

∑
k′k

′
gkk′ρk′1δρ

(2)
k2

= 2
∑

k

[
ξk

Ek
μ

(1)
eff ∂ξkρ

q0
k3 + �k

E2
k

ρ
(0)
k1 μ

(1)
eff

]
− 2

iω

∑
k′

′
ρk′1

[∑
k

′
gk′kδρ

(2)
k2

]

= 2
∑

k

∂ξk (ξkFk )μ(1)
eff = −2Dμ

(1)
eff . (B2)

214510-17



F. YANG AND M. W. WU PHYSICAL REVIEW B 104, 214510 (2021)

Consequently, Eq. (39) and Hartree field μH = −2VqDμeff = −2DVq(iωδθ/2 + U )/(1 + 2DVq) are obtained. Then, the electric
field reads

eE = iq(μH + U ) = iq(U − 2DVqiωθ/2)

1 + 2DVq
≈ iωps, (B3)

in which we have taken the long-wave approximation (DVq � 1).
Substituting the solved δρ

(1)
k2 [Eq. (A8)] and electric field [Eq. (B3)] into Eq. (31), in the low-frequency regime, one has

∑
k

′
gk′k

{
2iωμeff

ρ
(0)
k1

4E2
k

+ 2(vk ·iq)(vk ·ps)

4E2
k

[
�3

k

E3
k

ρ
q0
k3 −�kLk+2�k

(
ξk

Ek

)2

∂Ekρ
q0
k3 − 1

2

(
�2

k∂
2
ξk

ρ
(0)
k1 +�kξk∂

2
ξk

ρ
(0)
k3

)]}
= 0, (B4)

where we have taken care of the particle-hole symmetry to remove terms with the odd order of ξk in the summation of k. Taking a
generalized pairing potential gkk′ = gcos(ζθk + α) cos(ζθk′ + α) which gives rise to �k = � cos(ζθk + α), the above equation
becomes

2iωμeffZ1 + iq · psZ2/m = 0, (B5)

with Z1 = ∑
k
′ �2

k
E3

k
ρ

q0
k3 ≈ ∑

k
′
∂ξk (ξkFk ) ≈ −D around Fermi surface and

Z2 = k2
F

m

∑
k

′ �2
k

E2
k

[
�2

k

E3
k

ρ
q0
k3 −Lk+ ξ 2

k

E2
k

∂Ekρ
q0
k3 − 1

2

(
�k∂

2
ξk

ρ
(0)
k1 +ξk∂

2
ξk

ρ
(0)
k3

)]= k2
F

m

∑
k

′ �2
k

E2
k

(
�2

k

E3
k

+ ξ 2
k

E3
k

−∂Ek

)
ρ

q0
k3 =−ns. (B6)

Then, Eq. (38) is obtained.
Substituting the solved δρ

(1)
k1 [Eq. (A9)] into Eq. (30) and taking care of the particle-hole symmetry to remove terms with the

odd order of ξk in the summation of k, in the low-frequency regime, one has

δ�
(1)
k′ +

∑
k

gk′kδ�
(1)
k

ξk

2E2
k

[
2ρ

(0)
k3 +

(
q · ∂k

2

)2

ρ
(0)
k3 −2

(
vk · q

ω

)2
�2

kρ
(0)
k3

E2
k

]

= iq · ps

2imω

∑
k

gk′k

{−ξk

E2
k

[
�kξk∂ξkρ

(0)
k3 +�2

k∂ξkρ
(0)
k1 +ξkρ

(0)
k1

] + �k∂ξkρ
(0)
k3 + ρ

(0)
k1

}
. (B7)

Then, consider a homogeneous influence/excitation from ps, one finds a vanishing δ�
(1)
k . Moreover, with Eq. (B3), substituting

the solved δρ
(2)
k1 [Eq. (A18)] into Eq. (30) and taking care of the particle-hole symmetry to remove terms with the odd order of

ξk in the summation of k, one immediately finds δ�
(2)
k = 0.

Furthermore, with δ�
(1)
k = 0 and the solved Hartree field as well as Eq. (B3), Eq. (A11) in the low-frequency regime becomes

δρ
(1)
k0 = −vk ·ps∂kρ

(0)
k3 , (B8)

in which we have taken the long-wave approximation (DVq � 1). Consequently, the current-related ρk0 [Eq. (28)] reads

ρk0 = ρ
(0)
k0 + δρ

(1)
k0 = (vk ·ps)

(
∂Ekρ

q0
k3 − ∂kρ

(0)
k3

) = (vk ·ps)
�2

k

E2
k

(
∂Ek − 1

Ek

)
ρ

q0
k3 = (vk ·ps)

�2
k

Ek
∂Ek Fk. (B9)

Then, Eq. (33) is obtained.

APPENDIX C: DERIVATION OF EQ. (43)

In this part, we present the derivation of Eq. (43). With the action in Eq. (41), we first calculate the quantum fluctuation part
in Eq. (42):

(
pφ

s

)2|Q =
∑

q

q2

〈∣∣∣∣δθ
∗
qeφ

(t + 0+)

2

δθqeφ
(t )

2
eiS

∣∣∣∣
〉

=
∑

q

q2 1

Z0

∫
DθDθ∗ δθ∗

qeφ
(t + 0+)

2

δθqeφ
(t )

2
eiS

=
∑

q

i2q2 1

Z0

∫
DθDθ∗δJq∗eφ

(t+0+ )δJqeφ (t )e
i[S+∫

dt ′ ∑
q′ (Jq′ θq′ /2+J∗

q′ θ∗
q′ /2)]

∣∣∣∣
J=J∗=0

=
∑

q

i2q2δJq∗eφ
(t+0+ )δJqeφ (t ) exp

{
i
∫

dt ′ ∑
q′

(Jq′ + Dq′U ∗
q′∂t ′ )D(t ′, q′)(J∗

q′ + Dq′Uq′∂t ′ )

}∣∣∣∣
J=J∗=0

=
∑

q

q2Trω[D2(t, qeφ )|DqUqeφ
∂t |2] = i

C

∑
qω

q2ω2Uqeφ
U−qeφ(

ω2−ω2
N + i0+)2 . (C1)
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Here, the Green function D(t, q) = D−1
q (∂2

t + ω2
N )−1; Jq denotes the generating functional and δJq represents the functional

derivative [98].
We next derive the thermal fluctuation part in Eq. (42). By mapping the action in Eq. (41) into the imaginary-time one S:

S =
∫ β

0
dτ

∑
q

Dq
[
θ∗

q

(
∂2
τ − ω2

N

)
θq/4 − iU ∗

q ∂τ θq/2 + iUq∂τ θ
∗
q/2

]
. (C2)

Since the Bosonic field θ (τ = β ) = θ (τ = 0) [77], the Josephson coupling terms (the last two terms) vanish in the imaginary-
time space, i.e., the Josephson effect from electric potential, as a quantum effect, can not excite the imaginary-time fluctuation
of the superconducting phase. The thermal fluctuation part in Eq. (42) then reads

(
pφ

s

)2|T =
∑

q

q2

[〈∣∣∣∣δθ
∗
qeφ

(τ )

2

δθqeφ
(τ )

2
e−S

∣∣∣∣
〉]

=
∑

q

q2

[
1

Z0

∫
DθDθ∗ δθ∗

qeφ
(τ )

2

δθqeφ
(τ )

2
e−S

]

=
∑

q

q2 1

Z0

∫
DθDθ∗δJq∗eφ

δJqeφ
e−[S+∫

dτ
∑

q′ (Jq′ θq′ /2+J∗
q′ θ∗

q′ /2)]
∣∣∣∣
J=J∗=0

=
∑

q

q2δJq∗eφ
δJqeφ

exp

{
−

∫
dt ′ ∑

q′
Jq′D(τ, q′)J∗

q′

}∣∣∣∣
J=J∗=0

=−
∑

q

q2Trω[D(τ, qeφ )] =−1

β

∑
qωn

q2

Dq

1

(iωn)2−ω2
N

. (C3)

Consequently, with Eqs. (C1) and (C3), Eq. (43) is derived.

APPENDIX D: DERIVATION OF EQS. (50) AND (51)

In this part, we present the derivation of Eqs. (50) and (51). Following the standard Matsubara-frequency summation [77],
from Eq. (52) one has

Q1 = Vf +
∑

p

Tr[G0(p)τ3] = Vf +
∑

k

1

β

∑
ipn

2ξk

(ipn − E+
k )(ipn − E−

k )
= Vf +

∑
k

2ξk[ f (E+
k ) − (E−

k )]

2Ek

=
∑

k

(1 + 2ξkFk ) = −k2
F

m

∑
k

′
∂ξk (ξkFk ) (D1)

and

Q2 = −1

2

∑
p

Tr[G0(p)τ3G0(p)τ3] = −
∑

k

1

β

∑
ipn

(ipn − ps · vk )2 + ξ 2
k − �2

k

(ipn − E+
k )2(ipn − E−

k )2

= −
∑

k

∑
η=±

[
E2

k + ξ 2
k − �2

k

4E2
k

∂Eη

k
f
(
Eη

k

) + η

(
2Ek

4E2
k

− E2
k + ξ 2

k − �2
k

4E3
k

)
f
(
Eη

k

)]

= −
∑

k

{
�2

k

E2
k

Fk + ξ 2
k

E2
k

∂Ek

[
f (E+

k ) − f (E−
k )

2

]}
= −

∑
k

′
∂ξk (ξkFk ). (D2)

Then, Eqs. (50) and (51) are obtained.
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