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Theory of high-power excitation spectra of rf-SQUID
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We discuss the theory of linear and nonlinear spectroscopy of an rf superconducting quantum interference
device (rf-SQUID) coupled to a Josephson spectrometer. Recent experimental measurements on this system
have shown a strongly nonlinear absorption line shape, whose current peak maximum undergoes a forward-
backward bending transition depending on the value of the rf-SQUID phase. We show that this transition can be
qualitatively understood by mapping the dynamics of the driven rf-SQUID onto a generalized Duffing oscillator,
with tunable drive and nonlinearity, undergoing a bifurcation. Finally we show that in order to quantitatively
reproduce the experimental data reported by Griesmar et al. [Phys. Rev. Research 3, 043078 (2021)], it is
crucial to include the feedback from the load line, leading to an additional source of nonlinearity.
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I. INTRODUCTION

Electrical devices based on Josephson junctions have
been at the center of research attention for many years.
Such devices are very versatile, as they can be used as
qubits [1–8], metamaterials [9], Josephson bifurcation ampli-
fiers [10–12], or detectors of mesoscopic systems [13–20].
Moreover, Josephson junctions with external time-dependent
driving are suitable platforms for studying nonlinear phenom-
ena [21–26].

The absorption spectroscopy of Josephson junctions is a
powerful experimental technique that can be used to study
mesoscopic systems in a wide frequency range [19,27]. Very
recently, a novel Josephson junction spectrometer with a
broad bandwidth and variable coupling strength was im-
plemented and used to perform high-power spectroscopy
on an rf superconducting quantum interference device (rf-
SQUID) [28]. The current-voltage characteristic of the
spectrometer, related to the absorption spectrum, was found
to depend strongly on the phase of the rf-SQUID, ϕx. In
particular the position of the current maximum was found to
shift towards higher or lower frequencies depending on ϕx,
resulting in a forward or backward bending of the absorption
peak [28].

Motivated by this experiment, in this paper we present
an effective model for an rf-SQUID strongly driven by the
Josephson junction spectrometer and discuss its linear and
nonlinear spectroscopy. The rf-SQUID consists of a single
Josephson junction in a superconducting loop enclosing a
magnetic flux �x and it is inductively coupled to the spec-
trometer, which is formed by two Josephson junctions in a
superconducting loop threaded by a magnetic flux �s (see
Fig. 1). In our effective model this inductive coupling results
in a periodic driving of the rf-SQUID at a frequency set by the
biasing voltage and amplitude controlled by �s. We map the
dynamics of the driven rf-SQUID in the semiclassical regime
onto a generalized Duffing oscillator with tunable parameters.

In particular, we show that the sign of the leading Duffing
nonlinearity can be tuned by changing the phase of the rf-
SQUID, resulting in a forward-backward bending transition
of the absorption spectrum. While capturing the qualitative
features of the experiment, the mapping to the Duffing oscil-
lator cannot by itself reproduce the observed line shape, which
features a strong asymmetry between backward and forward
bending. We show that accounting for the feedback from the
load line, another key feature of the setup of Ref. [28], leads
to an additional and sizable source of nonlinearity which is
crucial to quantitatively reproduce the experimental results.

II. EFFECTIVE MODEL FOR rf-SQUID COUPLED
TO A SPECTROMETER

To model the setup in Fig. 1 we consider an rf-SQUID
whose Hamiltonian reads [2]

Hrf = ECN̂2 + EL[ϕ̂ − ϕx]2 − EJ cos(ϕ̂). (1)

Here, the first term describes the charging energy EC =
2e2/C, with C the capacitance of the junction and N̂ the num-
ber of Cooper pairs conjugated to the phase ϕ̂, [N̂, ϕ̂] = −i,
while the second term accounts for the inductive energy EL =
ϕ2

0/(2L), with L the self-inductance of the loop, ϕx = �x/ϕ0

the phase of the rf-SQUID, �x the magnetic flux threading the
loop, and ϕ0 = �0/(2π ) the reduced flux quantum. Finally,
the last term in Eq. (1) describes the Josephson nonlinearity
of strength EJ = I0ϕ0, with I0 the critical current.

A microscopic model of the coupling between the rf-
SQUID and spectrometer, including the basic quantum
degrees of freedom of the latter, is discussed in detail in
the Supplemental Material [29]. Here, we present an effec-
tive description according to which the inductive coupling
between the rf-SQUID and spectrometer leads to an explicit
periodic driving for the former at the Josephson frequency
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FIG. 1. Scheme of the setup: An rf-SQUID (top) coupled induc-
tively to a Josephson junction spectrometer (bottom). The rf-SQUID
is formed by a superconducting loop, threaded by a magnetic flux �x ,
of inductance L with a single Josephson junction (boxed cross). The
Josephson spectrometer consists of two voltage-biased Josephson
junctions (boxed crosses) in a superconducting loop of inductance
Ls enclosing a static magnetic flux �s. A bias circuit with a voltage
source Vb and resistor R supplies dc current IJ .

ωJ = 2eVJ/h̄, i.e.,

Hcoupl = −2ELA(ϕs) cos(ωJt )ϕ̂, (2)

where A(ϕs) = kI0sϕ0
√

Ls/L/(2EL ) sin(ϕs/2) and VJ is the
DC voltage across the spectrometer due to the source Vb. Here,
k is the coupling coefficient between two inductive loops
resulting from their mutual inductance, Ls is the inductance
of the spectrometer loop, ϕs = �s/ϕ0 is the phase difference
across the spectrometer, with �s being the magnetic flux
through the spectrometer loop.

In order to include the dissipation, we couple the rf-SQUID
to the bosonic bath, Hbath = ∑

α h̄ωα b̂†
α b̂α , such that we get

H = Hrf + Hcoupl + Hbath + ϕ̂
∑

α

gα (b̂α + b̂†
α ), (3)

where b̂†
α (b̂α) are bosonic creation (annihilation) operators of

the bath, ωα is the frequency of the bosonic bath, gα is the
coupling strength between the bosonic bath and rf-SQUID,
and we assume an Ohmic spectral function for the bath.

III. SEMICLASSICAL DYNAMICS
OF DRIVEN-DISSIPATIVE rf-SQUID

In this paper we focus on the regime EL � EJ � EC ,
which is relevant for the setup of Ref. [28]. For EJ � EC the
flux ϕ̂ is the quantum degree of freedom [2]. Therefore, we
define [27] ϕ̂ = √

2κX̂ and N̂ = P̂/(
√

2κ ), where X̂ , P̂ are
harmonic oscillator variables, related to the bosonic creation
(annihilation) operators of the plasma mode of the rf-SQUID,
and κ is a dimensionless parameter given by κ2 = √

EC/EL/2.

The tunneling of Cooper pairs in the spectrometer is asso-
ciated with the absorption of photons by the rf-SQUID [28].
Therefore, the resulting dc current IJ flowing in the spec-
trometer is proportional to the photon absorption rate �,
IJ = 2e�. Treating the coupling Hamiltonian Eq. (2) as a
time-dependent perturbation to an unperturbed Hamiltonian
Eq. (1), � can be calculated using the Fermi’s golden rule [29]

� = 2π

h̄
[2ELA(ϕs)]22κ2|〈i|X̂ | f 〉|2ρ(E f ), (4)

where 〈i|X̂ | f 〉 is the matrix element calculated between the
initial and final states of Hrf, and ρ(E f ) is the density of states
at the energy E f of the final states.

However, in the absence of the dissipation, the photon
absorption rate will have delta peaks when the excitation en-
ergies of Hrf are in resonance with ωJ . To include bath degrees
of freedom in our treatment, we formulate the problem in
terms of the Keldysh action [30] and derive the semiclassical
equation of motion for the classical coordinate Xcl [29]. Intro-
ducing a new variable X̃cl(t ) = Xcl(t ) − ϕx/κ , the equation of
motion for the classical field X̃cl(t ) reads

¨̃Xcl(τ ) + γ

h̄
˙̃Xcl(t ) + X̃cl(t ) + 2κ

EJ

h̄ωp
sin [κX̃cl(τ ) + ϕx]

= A(ϕs)

κ
cos

(
ωJ

ωp
τ

)
, (5)

where γ is the dissipation, τ = tωp is a dimensionless time,
and ωp = 1/

√
LC. We note that Eq. (5) is similar to the

resistively shunted junction (RSJ) model [31] but it allows us
to include the microscopic details of the system. Moreover,
the equation of motion derived using the Keldysh technique
can be generalized to more complicated situations, such as the
quantum regime, or a different form of dissipation. Expanding
sin [κX̃cl(τ )] up to third order in κ � 1, Eq. (5) takes the form
of a generalized Duffing equation,

¨̃Xcl(τ ) + γ

h̄
˙̃Xcl(τ ) + �(ϕx )X̃cl(τ ) + ∂Vnl

∂X̃cl
= f (τ ), (6)

where �(ϕx ) is the renormalized plasma frequency given by

�(ϕx ) = ωp

√
1 + βL cos (ϕx ), (7)

with βL = EJ/(2EL ), while Vnl accounts for the nonlinearity
arising from the Josephson energy,

Vnl = λ(ϕx )X̃ 3
cl(τ ) + λ′(ϕx )X̃ 4

cl(τ ).

We note that the shape of the nonlinear potential is fully tun-
able by ϕx, since we have λ(ϕx ) = −κ3EJ sin (ϕx )/(3h̄ωp) and
λ′(ϕx ) = −κ4EJ cos (ϕx )/(12h̄ωp). Finally, f (τ ) in Eq. (6) is
the time-dependent drive,

f (τ ) = −2κ
EJ

h̄ωp
sin (ϕx ) + A(ϕs)

κ
cos

(
ωJ

ωp
τ

)
.

Equation (6) describes therefore a nonlinear differential equa-
tion in the presence of drive and dissipation, whose solution
we will discuss in the following.
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IV. FORWARD-BACKWARD TRANSITION IN
THE NONLINEAR SPECTROSCOPY REGIME

Next, we calculate the average value of the coordinate
〈Xcl〉, obtained from the steady-state solution of Eq. (6), for
different values of ϕx and ϕs. While a full numerical solution
of the Duffing equation is reported for completeness in the
Supplemental Material [29], here we discuss the results using
a semianalytical approach that captures perfectly the features
contained in the full numerics.

In the absence of any nonlinearity the solution of Eq. (6)
takes the form

Xcl(t ) = Xcl(ω) cos(ωt + φ), (8)

where the frequency response Xcl(ω) has a peak at the renor-
malized plasma frequency �(ϕx ). In the presence of nonlinear
terms an ansatz of this form does not solve the Duffing equa-
tion exactly, yet we can still obtain a closed equation for
Xcl(ω) by disregarding higher-order harmonics [29]. Solving
this equation for different values of ϕx and ϕs allows us to ob-
tain the result plotted in Fig. 2, where we show the frequency
response for two different values of ϕx = 0, π considered in
Ref. [28], and for different values of ϕs corresponding to
the evolution from the linear to the nonlinear spectroscopy
regime. We note that for all values of the parameters con-
sidered in Fig. 2 the frequency response Xcl(ω) is always a
single-valued function of ω, therefore it is a stable solution
of Eq. (6). We see that in the linear spectroscopy regime the
frequency response displays a small peak centered around
�(ϕx ), and the shape of the peak does not change as ϕx is
varied. However, upon increasing the strength of the drive,
the response becomes strongly anharmonic with a peak which
increases in size and becomes more and more distorted. In
particular, we see that upon tuning ϕx from zero to π the
frequency response shows a transition from backward to for-
ward bending. This transition can be immediately understood
by noticing that in general, the steady-state solution of the
Duffing equation is sensitive to the sign of the coefficient in
front of the cubic term. In our case this coefficient depends
explicitly on the phase of the rf-SQUID and in particular
changes sign at ϕx = π/2,

λ′(ϕx ) = −κ4EJ cos (ϕx )/(12h̄ωp),

leading therefore to a transition in the shape of the frequency
response. Quite interestingly, a qualitatively similar behavior
was found in the experimental results of Ref. [28], in partic-
ular, in the nonlinear spectroscopy regime. We will go back
later on this point to present a quantitative comparison with
the experimental data.

V. ROLE OF FEEDBACK FROM THE LOAD LINE

The previous section has highlighted the role of the Duffing
nonlinearity and its tunability with the phase ϕx at the origin
of the forward-backward transition in the frequency response
of the rf-SQUID. Here, we discuss another source of non-
linear behavior, that is at play in the experimental setting of
Ref. [28], namely the fact that the voltage effectively biasing
the spectrometer, VJ , is different from the applied voltage Vb

due to the finite resistance R in series with the circuit, i.e.,
VJ = Vb − RIJ . In the experiment both the voltage VJ across
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FIG. 2. Average value of the coordinate squared 〈Xcl〉2 as a func-
tion of the frequency ωJ/ωp for the phase of the rf-SQUID ϕx = 0
(top panel) and ϕx = π (bottom panel). Different colors of the lines
correspond to different values of ϕs, from bottom to top: ϕs = π/10,
ϕs = π/5, ϕs = 2π/5, ϕs = 3π/5, ϕs = 4π/5, ϕs = π . The black
dashed line corresponds to the frequency �(ϕx ) given by Eq. (7).
Both for (a) ϕx = 0 and (b) ϕx = π the average value of the co-
ordinate increases when increasing ϕs. (a) For ϕx = 0 the position
of the peak in 〈Xcl〉2 shifts to a smaller value of ωJ/ωp, resulting
in backward bending of 〈Xcl〉2. (b) For ϕx = π the position of the
peak in 〈Xcl〉2 shifts to a larger value of ωJ/ωp, resulting in forward
bending of the coordinate squared. Other parameters are fixed as
ωp = 2π × 45, 91 GHz, βL = EJ/(2EL ) = 0.114, L = 58 pH, LS =
43.7 pH, I0s/I0 = 1/3, k = 0.5, and γ /h̄ = 0.017.

the spectrometer and the current IJ flowing through it are inde-
pendently measured, for different values of the applied voltage
Vb. In order to fully account for this effect we would need to
go beyond our effectively driven rf-SQUID model and include
the dynamics of the spectrometer, which however goes beyond
the scope of this work. Still, we can phenomenologically take
into account the finite resistance R �= 0 in the circuit in Fig. 1
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FIG. 3. Average value of the coordinate squared 〈Xcl〉2 as a func-
tion of the driving frequency ωJ/ωp in the presence of the feedback
from the load line, leading to a drive frequency which depends on
the value of the oscillator coordinate, see Eq. (9). The phase of the
rf-SQUID is fixed to zero, ϕx = 0. The blue line corresponds to
�̄ = 0, the orange line corresponds to �̄ = 6|λ′(0)|, and the green
line corresponds to �̄ = 12|λ′(0)|. The dashed lines denote unstable
solutions, and red (green) circles denote the solutions at the jump
frequencies. The vertical black dashed line corresponds to the fre-
quency �(ϕx ) given by Eq. (7). Other parameters are the same as in
Fig. 2.

by assuming that the frequency at which the Duffing oscillator
is driven, i.e., ωJ in Eq. (5), depends self-consistently on the
average value of the oscillator coordinate,

ωJ → ωJ + �̄ωp〈Xcl〉2, (9)

where we used the relation IJ = �〈Xcl〉2. Here, �̄ =
2eR�/(h̄ωp). This feedback mechanism introduces an addi-
tional source of nonlinear behavior as we show in Fig. 3,
where we plot the frequency response for ϕx = 0, for a fixed
value of the Duffing nonlinearity, and different values of the
feedback parameter �̄. We see that the strength of the back
bending becomes stronger and stronger upon increasing the
feedback effect from the load line. Moreover, in the presence
of the feedback, the frequency response Xcl(ω) becomes not a
single-valued function of ω, therefore the solution is unstable.
By setting the discriminant of the equation for Xcl to zero,
we can find the jump-up and jump-down frequencies numer-
ically, and the region between the jump-up and jump-down
frequencies will correspond to the unstable solution [29]. We
further notice that from the experimental parameters used
in Ref. [28] we estimate that the feedback contribution to
the voltage is sizable, of the order of δVJ ∼ 38 μV for an
averaged measured voltage VJ ∼ 96 μV. In the next section,
we are going to present a detailed quantitative comparison
with the experimental results that show how both effects,
namely tunable Duffing nonlinearity and feedback, are needed
to reproduce the results.
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FIG. 4. Normalized average value of the coordinate squared
〈Xcl〉2/〈Xcl〉2

max as a function of bias voltage VJ (μV) for (a) ϕx =
0 and (b) ϕx = π . The orange line corresponds to 〈Xcl〉2/〈Xcl〉2

max

calculated for the constant voltage VJ ≡ Vb (in the absence of the
feedback). The blue line corresponds to 〈Xcl〉2/〈Xcl〉2

max calculated
in the presence of the feedback on the applied voltage, VJ = Vb −
R�〈Xcl〉2, see Eq. (9). The experimental data for the current (divided
by its maximum value) are presented by red dots. A good agree-
ment between IJ/Imax

J and 〈Xcl〉2/〈Xcl〉2
max (calculated in the presence

of the feedback) can be achieved by tuning �̄ = 9|λ′(0)| (top) or
�̄ = |λ′(π )| (bottom). Gray dashed lines are given by the function
IJ/Imax

J = (Vb − VJ )/(RImax
J ) plotted for several values of bias voltage

Vb and correspond to the current obtained in experimental measure-
ments [28]. Other parameters are the same as in Fig. 2.

VI. COMPARISON WITH EXPERIMENTAL DATA

We conclude by comparing the prediction of our theory for
the frequency response of the rf-SQUID with the experimental
data obtained through the Josephson spectrometer. We focus
again on two specific values of the rf-SQUID phase, ϕx = 0, π

showing respectively backward and forward bending and fix
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the phase of the spectrometer to ϕs = π , namely the strong
drive regime. We note that there are two free parameters
in the model, γ and �, that are not fixed by the measure-
ments [28]. We emphasize that our theory mainly focuses
on the backward/forward bending transition rather than on
the peak height of the current measured in the experiment,
therefore we compare theoretical and experimental data nor-
malized by their maximum value. Let us first consider the
case of ϕx = 0. The current-voltage characteristic (normalized
by its maximum value) is presented in Fig. 4 (red line). In
the same figure, we plot the average value of the coordinate
squared (normalized by its maximum value) in the absence of
the feedback, �̄ = 0 (orange line). We note that the position
of the maximum in the current-voltage characteristic in VJ is
smaller than the position of the maximum in 〈Xcl〉2. Therefore,
IJ bends stronger than 〈Xcl〉2 in the absence of the feedback.
To find a better agreement between the experimental data and
theoretical predictions, we include a feedback effect in the
calculation of 〈Xcl〉2. As expected, the finite �̄ increases the
bending of 〈Xcl〉2 as a function of the bias VJ [see Fig. 4(a)
(blue line)]. Moreover, by choosing a specific value of �̄ we
can find a good agreement between the experimental data for
the current IJ and calculated 〈Xcl〉2 in the limit of a large
number of photons (semiclassical approximation). Similarly,
for the case ϕx = π , we see that our theory is able to capture
the forward bending but in order to quantitatively reproduce
the data the inclusion of the feedback mechanism is im-
portant. Furthermore, we note that the agreement with the
experimental data is excellent for large values of the current,
corresponding to large photon numbers, as expected for our
semiclassical theory, while at low intensity quantum fluctua-
tions are likely crucial to capture the sharp edge seen in the
current-voltage characteristic. Finally, we note that only one
branch of the current-voltage characteristic can be accessed
experimentally, as it appears clearly from Fig. 4. We can
qualitatively understand the origin of this effect by comparing
on the same plot the theoretical data for 〈Xcl〉2/〈Xcl〉2

max with

the lines IJ/Imax
J = (Vb − VJ )/(RImax

J ) corresponding to the
current obtained in experimental measurements [28]. From
this comparison we can see that in fact only the left branch of
the curve is accessible. We emphasize however that a full mi-
croscopic theory for the current-voltage characteristic through
the spectrometer, able to capture the maximum current height
as well as its region of in-stability, will necessary need to go
beyond our driven rf-SQUID effective model and it is left for
future studies.

VII. CONCLUSIONS

We studied an rf-SQUID inductively coupled to the spec-
trometer based on two Josephson junctions. We calculated the
average value of the phase difference across the rf-SQUID,
which is proportional to the current flowing in the spectrom-
eter, and found that the position of the peak in the frequency
response is given by �(ϕx ) and, therefore, depends on the rf-
SQUID phase ϕx. For large values of ϕs, corresponding to the
nonlinear spectroscopy regime, we found that the peak maxi-
mum shifts to higher (lower) values of the frequency for ϕx >

π/2 (ϕx < π/2), leading to the forward (backward) bending
of the peak. Moreover, taking into account the feedback from
the load line allows us to get a quantitative agreement with the
experimental data [28].
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