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In condensed matter physics, non-Abelian statistics for Majorana zero modes (or Majorana Fermions) is very
important, really exotic, and completely robust. The race for searching Majorana zero modes and verifying the
corresponding non-Abelian statistics becomes an important frontier in condensed matter physics. In this paper
we generalize the Majorana zero modes to non-Hermitian (NH) topological systems that show universal but quite
different properties from their Hermitian counterparts. Based on the NH Majorana zero modes, the orthogonal
and nonlocal Majorana qubits are well defined. In particular, due to the particle-hole-symmetry breaking, NH
Majorana zero modes have anomalous non-Abelian statistics with continuously tunable braiding Berry phase
from π/8 to 3π/8. This is quite different from the usual non-Abelian statistics with fixed braiding Berry
phase π/4. The one-dimensional NH Kitaev model is taken as an example to numerically verify the anomalous
non-Abelian statistics for two NH Majorana zero modes. The numerical results are exactly consistent with the
theoretical prediction. With the help of braiding these two zero modes, the π/8 gate can be reached and thus
universal topological quantum computation becomes possible.
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I. INTRODUCTION

Majorana zero modes (MZMs) have recently attracted
much attention due to their potential application in topolog-
ical quantum computations (TQCs) [1–18]. MZMs have been
predicted to be induced by vortices in a two-dimensional (2D)
spinless px + ipy-wave superconductor (SC) [2] or localized
at the ends of a one-dimensional (1D) p-wave SC [3]. For
these topological superconductors (TSCs) with MZMs, topo-
logically protected degenerate ground states (referred to as
Majorana qubits) exist. Based on braiding these MZMs that
obey non-Abelian statistics [1,11], a TQC is proposed [6,7].
Unfortunately, because the π/8 gate cannot be reached by
braiding processes, a universal TQC based on MZMs has
become unrealistic and still remains a challenge.

Alternatively, in recent years non-Hermitian (NH) physics
has become an active research area that has attracted consid-
erable research [19–73]. Researchers have investigated some
NH effects on topological SCs and MZMs. Previous work has
focus mainly on two types of NH terms on TSCs: gain/loss
in SCs induced by imaginary chemical potentials [25–30]
and imbalanced pairing [31], where the MZMs show similar
properties as to those in a Hermitian system. However, many
open questions still exist regarding the MZMs in NH TSCs:

(1) Can we generalize the MZMs to NH systems that show
universal but quite different properties from their Hermitian
counterparts?

(2) Can the NH effect change the non-Abelian statistics of
MZMs?

*Corresponding author: spkou@bnu.edu.cn

(3) Do NH MZMs provide an alternative approach to uni-
versal TQC beyond their Hermitian counterparts?

In this paper we aim to answer the above questions and
develop a theory for the NH generalized MZMs and the
corresponding NH generalization for non-Abelian statistics
(referred to as anomalous non-Abelian statistics). This paper
is organized as follows. In Sec. II we generalize the MZMs
and Majorana qubit to NH systems. In Sec. III we illus-
trate the continuously tunable Berry phase of the qubit states
based on the braiding processes of non-Hermitian MZMs. The
one-dimensional non-Hermitian Kitaev model is taken as an
example to numerically verify the anomalous non-Abelian
statistics for two NH MZMs in Sec. IV. In Sec. V we pro-
pose an alternative approach to universal topological quantum
computations via NH MZMs in principle. Finally, we provide
a summary and discussion in Sec. VI.

II. NON-HERMITIAN MAJORANA ZERO MODES

In certain TSCs, MZMs always emerge around defects, for
example, the quantized vortex in 2D TSCs or the end in 1D
TSCs. In general, a single MZM (sometimes referred to as
Majorana fermion for Hermitian TSCs) can be described by a
real fermionic field γ , i.e., γ † = γ . We can label two MZMs
by complex fermions as γ1 = c1 + c†

1, γ2 = −i(c2 − c†
2) and

use them to represent the basis states of a nonlocal Majorana
qubit:

|0〉M ≡ 1√
2

(|11〉 + |00〉), |1〉M ≡ 1√
2

(|10〉 + |01〉), (1)

where |mn〉 = |m〉1 ⊗ |n〉2 with m, n = 0, 1, (|0〉i, |1〉i ) =
(|0〉i, c†

i |0〉i ) are the eigenstates for complex fermions
c†

i , i = 1, 2. In addition, |0〉M is a fermion-empty state,
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|1〉M = C†
M|0〉M is a fermion-occupied state where C†

M is the
composite fermionic operator,

C†
M = (γ1 − iγ2)/2 = (c1 + c†

1 − c2 + c†
2)/2, (2)

and CM = (γ1 + iγ2)/2. The fermion parities for the two
states of the Majorana qubit are different: the fermion parity
of |0〉M is even and the fermion parity of |1〉M is odd. By
introducing the fermionic parity operator P̂F = (−1)

∑
j c†

j c j ,

we have P̂F |0〉M = |0〉M and P̂F |1〉M = −|1〉M.
However, can we generalize the MZMs and the corre-

sponding Majorana qubit to NH systems? The answer is yes!
For a Hermitian system, a global phase transformation S for
fermion operators is defined as

(c, c†) �→ S (c, c†)S−1 = (e−iφc, eiφc†), (3)

with a real φ. Here, we generalize the phase φ from a real
number to an imaginary number φ = −iβ, and the imaginary
phase transformation becomes a NH particle-hole (PH) simi-
larity transformation, i.e., (c, c†) �→ (e−βc, eβc†) with real β.
Therefore, with the help of the NH PH similarity transforma-
tion S , we define the NH MZMs as γ

β
i = SγiS−1, i = 1, 2

and we have

γ
β

1 = e−βc1 + eβc†
1, γ

β

2 = −i(e−βc2 − eβc†
2), (4)

where the NH strength β is a real number (β = β∗ 	= 0). In
particular, the NH MZMs satisfy (γ −β

i )† = γ
β
i , (γ β

i )† 	= γ
β
i .

Therefore the properties of NH MZMs are characterized by
β. The NH PH similarity transformation S breaks intrinsic
PH symmetry in a TSC, i.e., the symmetry between c and c†

is broken. The corresponding TSCs with NH MZMs are no
longer Hermitian and the corresponding operators γ β are no
longer real.

We consider a TSC with two NH MZMs γ
β

1 , γ
β

2 and the
corresponding fermionic operators are defined as

C̃†
M = (

γ
β

1 − iγ β

2

)
/2, C̃M = (

γ
β

1 + iγ β

2

)/
2, (5)

with {C̃M, C̃†
M} = 1, (C̃M)2 = (C̃†

M)2 = 0. We therefore intro-
duce a NH Majorana qubit (|0〉βM, |1〉βM) = (|0〉βM, C̃†

M|0〉βM)
based on the NH MZMs, which can be derived from a Her-
mitian case under a global NH PH similarity transformation
S:

|0〉βM = S|0〉M, |1〉βM = S|1〉M. (6)

From the definition of the NH MZMs, the energy difference
between |0〉βM and |1〉βM disappears. Thus there is almost no
coupling between γ

β

1 and γ
β

2 .
For the NH Majorana qubits, according to SP̂FS−1 = P̂F ,

the fermion parity is also a good quantum number and the
fermion parities for the NH qubits are the same as their
Hermitian counterpart: P̂F |0〉βM = |0〉βM, P̂F |1〉βM = −|1〉βM. In
addition, we emphasize that the PH symmetry for the “empty”
state |0〉βM is broken, but the PH symmetry for the “occupied”
state |1〉βM is unbroken. Under PH transformation we have

|0〉βM �→ |0′〉βM 	= |0〉βM, |1〉βM �→ |1′〉βM = |1〉βM. (7)

The PH symmetry breaking of the NH Majorana qubit plays
an important role in changing the typical non-Abelian statis-
tics to anomalous non-Abelian statistics.

III. ANOMALOUS NON-ABELIAN STATISTICS

First we summarize the quantum properties of MZMs
in Hermitian cases. MZMs obey SU(2) level-2 non-Abelian
statistics. On the one hand, the fusion rule of MZMs is given
by

σ × σ = 1 + ψ, ψ × ψ = 1, ψ × σ = σ, (8)

where 1 is a vacuum sector, ψ is the (complex) fermion sector,
and σ is the MZM sector. Two σ particles (MZMs) may either
annihilate to the vacuum or fuse into a ψ particle. On the other
hand, if we exchange two MZMs (γ1, γ2), the result of the
braiding is

γ1 → −γ2, γ2 → γ1 (9)

and the exchange operator (the braiding operator) RM can be
described by RM = ei π

4 γ1γ2 . We may call RM to be Ivanov’s
braiding operator [1]. During the braiding process, the Berry
phases for |0〉M and |1〉M are 0 and π/2, respectively. So
for the Majorana qubit (|0〉M, |1〉M), the braiding operator is
obtained as

RM = e−i�	τz = e−i π
4 τz , (10)

which is the Ivanov’s braiding operator. Here, τz denotes a
Pauli matrix on the Majorana qubit (|0〉M, |1〉M). According to
the topological feature of SU(2) level-2 non-Abelian statistics,
the Berry phase during braiding processes �	 is fixed to be
π/4 and cannot be changed.

However, for the NH MZMs γ β , their non-Abelian statis-
tics are different from the Hermitian case and become a
new type of non-Abelian statistics, namely, anomalous non-
Abelian statistics.

On the one hand, there exists a typical fusion rule for the
NH MZMs:

σβ × σβ = 1β + ψβ,

ψβ × ψβ = 1β, (11)

ψβ × σβ = σβ,

where 1β is the NH vacuum sector, ψβ is the NH (complex)
fermion sector, and σβ is the NH MZM sector. Two NH σβ

particles may either annihilate to the NH vacuum 1β or fuse
into a NH ψβ particle.

On the other hand, anomalous braiding processes exist
for the NH MZMs γ β . According to the case with two NH
MZMs γ

β

1 and γ
β

2 , two degenerate quantum states always
exist. Consequently, the braiding process for the NH MZMs
is also defined by γ

β

1 → −γ
β

2 , γ
β

2 → γ
β

1 . Then, a question
is, can the braiding operator for NH MZMs Rβ

M be derived
by performing a similarity transformation on the braiding
operator for the Hermitian MZMs RM? The answer is no, i.e.,

Rβ
M 	= SRMS−1 = e−i π

4 τz . (12)

To show why, let us derive the braiding matrix Rβ
M on

the Majorana qubit during the braiding processes. The Berry
phases for the quantum states of the Majorana qubits |0〉βM and
|1〉βM from the braiding operation are calculated by the Wilson
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FIG. 1. An illustration to show the comparison between the typ-
ical Majorana qubits and NH Majorana qubits. We list the MZMs,
orthogonality of the qubit states, braiding operator, and Berry phase
in rows 2–5, respectively.

loop method,

|Ai|e�φ
β
i =

∏n=Ns

n=0

β
M〈i(θ, ϕn)|i(θ, ϕn+1)〉βM, (13)

where i = 0, 1, the amplitude |Ai| = 1 when the evolution step
number Ns is sufficiently large, and |i(θ, ϕn)〉βM is the ith state
of the Majorana qubit at the n step during the braiding process,
which is labeled by the two parameters θ = 2 arctan(e−2β )
and ϕn. In particular, we have

|0(θ, ϕn)〉βM = 1

N0
[eiϕn |11〉 + e−2β |00〉],

|1(θ, ϕn)〉βM = 1√
2

[|10〉 + e−iϕn |01〉], (14)

where N0 = √
1 + e−4β is the self-normalization coefficient

of the state |0(θ, ϕn)〉βM.
First, we derive the effects of the braiding operator Rβ

M

on the quantum state |0〉βM. We map the states (|00〉, |11〉)
onto a pseudospin (| ⇑〉0, | ⇓〉0) and use the Bloch sphere
to label the quantum states. In the Hermitian case β = 0
(the left side in the last row of Fig. 1), the initial state is
|0〉βM = | ⇑〉0 + | ⇓〉0, which is denoted by a spot at the equa-
tor on the Bloch sphere [θ, ϕ] = [π/2, 0]. During the braiding
process, |0〉βM adiabatically deforms into (eiϕn | ⇑〉0 + | ⇓〉0)
and finally changes into (eiπ/2| ⇑〉0 + | ⇓〉0) denoted by an-
other spot [θ, ϕ] = [π/2, π/2]. So the geometry phase (Berry
phase) is �ϕ(1 − cos θ )/2, where θ = π/2 and �ϕ = π/2,
while in the NH case β 	= 0 (the right side in the last row of
Fig. 1), the initial state becomes (| ⇑〉0 + e−2β | ⇓〉0), which is
denoted by a spot away from the equator of the Bloch sphere,
[θ, ϕ] = [2 arctan(e−2β ), 0]. During the braiding processes, it
adiabatically deforms into (eiϕn | ⇑〉0 + e−2β | ⇓〉0 and finally
changes into (eiπ/2| ⇑〉0 + e−2β | ⇓〉0), denoted by [θ, ϕ] =
[2 arctan(e−2β ), π/2]. After the braiding processes we obtain
the geometry phase as �ϕ(1 − cos θ )/2, where tan(θ/2) =
e−2β and �ϕ = π/2.

Second, using a similar operation on |1〉βM, we map the
qubit (|01〉, |10〉) onto a pseudospin (| ⇑〉1, | ⇓〉1), as shown
in the last row of Fig. 1. As a result, the braiding operators for

the Majorana qubit (|0〉βM, |1〉βM) are obtained as

Rβ
M

(
|0〉βM
|1〉βM

)
=

(
ei�φ

β

0 0

0 ei�φ
β

1

)(
|0〉βM
|1〉βM

)
, (15)

where the Berry phases are obtained as �φ
β

0 = − π
2(e−4β+1) and

�φ
β

1 = π/4. It is obvious that the Berry phase for |0〉βM is
different from |0〉M.

The braiding operator is obtained as

Rβ
M = e−i�	′τz , (16)

which is the NH generalization of the Ivanov’s braiding
operator and is different from the Hermitian case shown
in Eq. (10). Here, τz denotes a Pauli matrix on the Majo-
rana qubit (|0〉βM, |1〉βM), and �	′ = 1

2 (�φ
β

1 − �φ
β

0 ) = π
8 +

π
4(e−4β+1) denotes a Berry phase during braiding processes that
can continuously tuned from π/8 to 3π/8. Thus �	′ can
be an arbitrary value in the region of (π/8, 3π/8), including
a rational number or irrational number. As a result, we call
it anomalous non-Abelian statistics. By contrast, the Berry
phase from braiding processes for usual non-Abelian statistics
is fixed to �	 = π/4. Besides, when we fix β, for two non-
Hermitian Majorana zero modes far away, the braiding rule
and the corresponding Berry phase �	′ will never change, no
matter how you change the braiding path. In this sense, this
can be considered as non-Abelian generalization of Abelian
statistics for U(1) Abelian anyons with arbitrary Berry phase
according to the Wilczek flux-binding picture.

IV. NUMERICAL SIMULATIONS ON VERIFYING THE
ANOMALOUS NON-ABELIAN STATISTICS

A. Non-Hermitian MZMs in the 1D Kitaev chain

A 1D NH Kitaev model [3] with imbalanced p-wave SC
paring is taken as an example to illustrate the anomalous
non-Abelian statistics of NH MZMs, and the numerical sim-
ulations are performed during the braiding processes. The
Hamiltonian for the NH Kitaev model is written as

ĤNHK(β ) = −
N∑

j=1

[t (c†
j c j+1 + c†

j+1c j ) + �+c†
j c

†
j+1

+ �−c j+1c j + μ(1 − 2n j )], (17)

where c j (c†
j ) annihilates (creates) a fermion on site j.

t, �±, μ, and N denote the hopping amplitude, the strength
of p-wave pairing, the chemical potential, and the lattice
number, respectively. We set �± = �0e±2β , where β ∈ R
represents the NH strength and �0 > 0. When β 	= 0, we
have ĤNHK 	= Ĥ†

NHK, which can be achieved by the NH sim-
ilarity transformation from its Hermitian counterpart. In this
paper we focus on the case of t = �0.

The 1D NH SC chain may have nontrivial topological
properties. For the translation variables ansatz, we transform
the fermion Hamiltonian into momentum space, ĤNHK(k) =∑

k ψ
†
k h(k, β )ψk , with

h(k, β ) = (t cos k + μ) · σ z + �0 sin k · σ y,β , (18)
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by introducing ψk = (ck, c†
−k )T , where

σ
y,β
j = Sσ

y
j S−1 = cosh(β )σ y

j − i sinh(β )σ x
j (19)

is a 2 × 2 matrix and S (β ) = diag{e β

2 , e− β

2 }. With the help
of the biorthogonal set, we define right/left eigenstates for
the NH systems as ĤNHK|〉R = E |〉R, and Ĥ†

NHK|〉L =
E∗|〉L. The dispersion of the quasiparticle is given by

E (β, k) =
√

(μ − t cos k)2 + (�0 sin k)2, (20)

which is independent with the NH parameter β. To describe
the topological structure of ĤNHK, we define biorthogonal Z2

topological invariant [74],

ω = sgn(ηk=0 · ηk=π
), (21)

where ηk=0/π
= L〈|c†

k=0/π
ck=0/π |〉R and ηk=0/π

(β ) =
ηk=0/π

(β = 0). Therefore we have ηk=0 = sgn(t + μ), ηk=π
=

sgn(−t + μ). For the case of ω = 1 (|t | < |μ|), the SC
is trivial, but for ω = −1 (|t | > |μ|), the SC becomes
topological.

Then we analytically solve the NH model with open
boundary condition. When ω = −1, there exist two edge
states with (nearly) zero energy, i.e., the NH MZMs γ

β

L/R
located at the left/right end of the 1D chain. Using the trans-
formation shown in Eq. (4), the operator of NH MZMs is
written as

γ
β
L = 1√

N
[(eβ + e−β )a1 + i(eβ − e−β )b1],

γ
β
R = 1√

N
[−i(eβ − e−β )aN + (eβ + e−β )bN ], (22)

where ai = ci + c†
i , bi = −i(ci − c†

i ) denote the Majorana
fermions at site i, and N is the biorthogonal normalized
coefficient. We can construct a pair of canonical operators
(C̃M, C̃†

M) as

C̃M = 1
2

(
γ

β
L + iγ β

R

)
, C̃†

M = 1
2

(
γ

β
L − iγ β

R

)
, (23)

with {C̃M, C̃†
M} = 1, (C̃M)2 = (C̃†

M)2 = 0. In general, the cor-
responding Majorana model can be written with the eigenen-
ergy as

HNHK =
N−1∑
j=1

ε j

(
C̃†

j C̃ j − 1

2

)
+ 0 × C̃†

MC̃M, (24)

where the explicit expression for C̃j is not necessary since
we are only concerned with zero-energy mode. Therefore the
wave function of the quasidegenerate ground states for the 1D
SC model can be defined as

|0(β )〉 = C̃M|F 〉, |1(β )〉 = C̃†
M|0〉βM, (25)

where |F 〉 is the many-body quantum state with occupied
single-particle states for E < 0 and empty single-particle
states for E � 0, and |0/1(β )〉 satisfies the self-normalization
condition |〈0/1(β )|0/1(β )〉| = 1. The similarity of these
two MZMs is defined as

χ (β ) = |〈0(β )|1(β )〉|. (26)

FIG. 2. The numerical results (dots) and the analytical results
(lines) for the similarity between two degenerate ground states in NH
Kitaev model with t = �0, μ = 0, and β = 0.2, 0.8, and 1.2. These
results indicate the orthogonality of two degenerate ground states in
thermodynamic limit (N �→ ∞).

In the thermodynamic limit (N �→ ∞), the two MZMs are
orthogonal (χ (β ) = 0) and the energy splitting of them is
zero. For example, when t = �0 and μ = 0 we have χ (β ) =
(tanh β )N , and it is obvious that χ (β ) �→ 0 with N �→ ∞
for | tanh β| < 1, i.e., the two degenerate ground states are
orthogonal. The proof of the orthogonal properties is shown in
Fig. 2, where the numeric results (the dots) are consisted with
the analytic results (the lines). Due to the orthogonality and
the parities of the twofold degenerate ground states, they can
be used to construct the two basis states of the NH Majorana
qubit:

|0〉βM ≡ |0(β )〉, |1〉βM ≡ |1(β )〉. (27)

B. T-type braiding of the non-Hermitian MZMs

The non-Abelian statistics of two NH MZMs can be veri-
fied in the T-junction Majorana chain systems [11,75], which
contain at least four lattice sites or eight Majorana sites, as
shown in Fig. 3. Here, the braiding processes of the two
NH MZMs are denoted by blue dotted arrows. We denote
the quantum states of Majorana modes by |γ 〉βL/R(Tn) with
n ∈ (0, 7), where T0 = 0 represents the initial time and Tn for
the nth step of the braiding process. At the beginning of the
braiding processes, two unpaired NH MZMs are located at the
left end γ

β
L (T0) (green ball) and right end γ

β
R (T0) (black ball)

of the 1D Majorana chain. Then we can adiabatically tune
the chemical potential and hopping parameters to exchange
the two NH MZMs with seven steps from T0 to T7. Firstly,
during the period from T0 to T2, the leftmost fermion is driven
to the bottom site of site 4. Then, during the period from T2

to T5, the rightmost fermion is driven to the leftmost site. At
last, during the period from T5 to T7, the bottom fermion is
driven to the rightmost site. For example, during the period
t ∈ (T0, T1), we adiabatically turn on intrasite potential μ1 to
a sufficiently large value and turn off the intersite link t to
zero, simultaneously. As a result, the left mode is moved to
site 2. The rest of the process can be done in the similar way.
Finally, the result of the NH Ivanov’s braiding operator Rβ

M is
described by γ

β
L (T7) = −γ

β
R (T0) and γ

β
R (T7) = γ

β
L (T0).

We perform the numerical simulations to verify the non-
Hermitian Ivanov’s braiding operator Rβ

M for two NH MZMs
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FIG. 3. Schematic diagram for the T-type braiding process to
exchange the two NH MZMs. We take a system with eight Majorana
fermions as an example. Here, the braiding processes of the two NH
MZMs are denoted by blue dotted arrows. At the beginning of the
braiding processes, two unpaired NH MZMs are almost located at
the left end γ

β

L (T0) (green ball) and right end γ
β

R (T0) (black ball) of
the 1D Majorana chain. Then we can adiabatically tune the chemical
potential and hopping parameters to exchange the two NH MZMs
with seven steps from T0 to T7. Firstly, during the period from T0 to
T2, the leftmost fermion is driven to the bottom site of site 4. Then,
during the period from T2 to T5, the rightmost fermion is driven to
the leftmost site. Finally, during the period from T5 to T7, the bottom
fermion is driven to the rightmost site.

by mapping the original fermionic model ĤNHK(β ) onto a NH
transverse Ising model [76] via the Jordan-Wigner transfor-
mation, which is defined by the stringlike annihilation and
creation operators

c j =
(

j−1∏
k=1

σ z
k

)
σ−

j , c†
j =

(
j−1∏
k=1

σ z
k

)
σ+

j . (28)

As a result, the Hamiltonian ĤNHK in Eq. (17) becomes

ĤNHS(β ) = −1

4

∑
j

(
Jσ

x,β
j σ

x,β
j+1 − 4hσ z

j

)
, (29)

where σ
x,β
j = cosh(β )σ x

j + i sinh(β )σ y
j and J = t = �0, h =

μ. Meanwhile, the braiding process for the Majorana qubit
(|0〉βM, |1〉βM) is mapped onto that for the two degenerate
ground states in the spin representation. The NH Ivanov’s
braiding operator Rβ

M for two MZMs is mapped onto the
corresponding operator Rz(ϕ), which rotates the spin ϕ angle
around the z axis in spin representation, i.e.,

Rβ
M ↔ Rz(ϕ). (30)

This is the same as the case in the Hermitian system. Here,
we also take the four-sites system as an example. What needs
to be emphasized is that T3 − T4 plays a key role during the
braiding process, i.e., the MZM in site 2B is driven to site 2A
(as shown in Fig. 3). In spin representation, this operation can
be mapped to rotate the spin in site 2 π/4 around the z axis.

During T3 to T4, the system contains two spins in site 2 and
site 4. For certain times in this period t ∈ (T3, T4), the spin
in site 2 is rotated with angle ϕn. Then, in σ z representation,
the eigen wave function of the two lowest eigenenergies for

ĤNHS(β ) in Eq. (29) are read as

|0(θ, ϕn)〉βM = 1

N0

⎡⎢⎢⎣
cos ϕn + i sin ϕn

0
0

e−2β

⎤⎥⎥⎦
⎡⎢⎣↑↑

↑↓
↓↑
↓↓

⎤⎥⎦,

|1(θ, ϕn)〉βM = 1√
2

⎡⎢⎣ 0
1

cos ϕn − i sin ϕn

0

⎤⎥⎦
⎡⎢⎣↑↑

↑↓
↓↑
↓↓

⎤⎥⎦, (31)

where θ = 2 arctan(e−2β ) and N0 = √
1 + e−4β is the self-

normalization coefficient. The Berry phases of the qubit states
|0〉βM, |1〉βM obtained from rotation (or Majorana braiding) are
defined by the Wilson loop in Eq. (13). For a sufficiently large
Ns, the Berry phase for the qubit state |0〉βM is

�φ
β

0 =
Ns∑

n=0

arctan

[
− sin(π/2Ns)

e−4β + cos(π/2Ns)

]

�
Ns∑

n=0

arctan

(
− π

2Ns(e−4β + 1)

)
� − π

2(e−4β + 1)
. (32)

Similarly, the Berry phases for the qubit |1〉βM is

�φ
β

1 =
Ns∑

n=0

arctan

[
sin(π/2Ns)

1 + cos(π/2Ns)

]
� π

4
. (33)

Therefore the result of braiding two NH MZMs is same as
Eq. (15). We can see that the NH factor β has the effect of
adjusting the braiding phase, and the phase region for |0〉βM is
�φ

β

0 ∈ [−π/2, 0], as shown in Fig. 4(a), where the numerical
results (dots) are exactly consistent with the theoretical pre-
diction (lines). The variation of the cumulative phases during
the braiding processes for the Hermitian case (β = 0) are
shown in Fig. 4(c) and for the non-Hermitian cases (β = ∓2)
in Figs. 4(b) and 4(d). In the limit of β → −∞, we have

R∞
M = diag{1, eiπ/4}. (34)

This is just the π/8 gate needed in the universal TQC, T =
R∞

M .
In general, to realize a π/8 gate through single braiding

operation, the Majorana qubit must be realized in the limit
of negative infinite β. However, by using the Solovay-Kitaev
construction [4], to realize universal quantum computation
we just need to realize an arbitrary phase gate with phase
changing �	′ 	= 0, ±π/4, ±π/2, and π , where the arbi-
trary phase gate is defined as Rβ

M = e−i�	′τz . Therefore the
gate is also topological with the help of an arbitrary phase
changing with �	′ but not must be fixed to π/8. As a result,
the gate with an arbitrary phase changing can be realized by
finite β but do not have to be fixed to infinitely small, i.e
β → −∞.
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FIG. 4. Non-Abelian statistics of MZMs realized in the T junc-
tion. The Berry phase for the quantum state |0〉β

M (|1〉β

M) is �φ
β

0

(�φ
β

1 ), and the numerical results (dots) are exactly consistent with
the theoretical prediction (lines). (a) The Berry phase for |0〉β

M is al-
ways π/4 for different β, and the Berry phase for |1〉β

M can vary from
−π/2 to 0 with β. The variation of the cumulative phases during the
braiding processes for the Hermitian case (β = 0) is shown in (c),
and for the non-Hermitian cases (β = ∓2) are shown in (b) and (d).

V. NON-HERMITIAN ASSISTED TOPOLOGICAL
QUANTUM COMPUTATION

Due to nonlocality and orthogonality, the NH MZMs may
be utilized as a decoherence-free qubit, which play an im-
portant role in the realization of fault-tolerant universal TQC.
We propose an alternative approach to universal TQC via NH
MZMs in principle—non-Hermitian assisted TQC.

To perform universal TQC, four gates need to be carried
out topologically: the Hadamard gate H , the phase gate S, the
π/8 gate T , and the controlled NOT (CNOT) gate. By braiding
the MZMs in Hermitian TSC, the Hadamard gate, phase gate,
and CNOT gate can be attained. However, the T gate cannot be
realized by the braiding process. Instead, a possible method
is to use “magic states distillation,” which is a combination
of topological and nontopological approaches [77,78]. In con-
trast to the magic states method, the realization of the T gate
in non-Hermitian assisted TQC is purely topological.

If one can realize Ĥβ

NHK with the freely adjustable NH
strength β, we can adiabatically tune β to construct a universal
TQC. For the Hadamard gate, phase gate, and controlled NOT
gate, we set the NH strength β to zero. For the π/8 gate, we set
the NH strength β to be certain value and braid NH MZM for
N times. For example, N = 4 for β = −(ln 0.6)/4 ≈ 0.128.
For this case, during the braiding processes, the π/8 gate can
be reached T = [Rβ

M]N . In the end, to perform measurement,
the NH strength β returns to zero again. What should be
mentioned is that the T gate from the braiding process is based
on “the anomalous Berry phase,” which has huge advantages
over other nontopological methods, such as the method of
“magic state distillation” [77,78].

In Fig. 5, an illustration of two phase gates S and a π/8
gate for NH assisted TQC is shown. Here, we take a braiding
process with three steps as an example: a phase gate S by
exchanging two Hermitian MZMs with β = 0, a π/8 gate by

FIG. 5. An illustration of NH assisted topological quantum com-
putation. In step 2, a π/8 gate is realized by tuning the NH strength
β. Dotted lines indicate that multiple braiding operations can be
performed.

exchanging two NH MZMs with β 	= 0, and a phase gate S
by exchanging two MZMs with β = 0.

Furthermore, the non-Hermitian model in Eq. (29) can
be simulated using three-level atoms in a variety of setups,
including trapped ions, cavity QED, and atoms in optical
lattices. The dynamics by H (β ) can be decomposed as

e−iH (β )t = e−iμσ zt Q(β )

(∏
i

ei J
4 σ x

j σ
x
j+1t )Q−1(β

)
, (35)

where the nonunitary dynamics Q(β ) and Q−1(β ) are
from measuring whether a spontaneous decay has occurred
[79–81]. This process can be measured with a high degree of
accuracy [82–84].

In a real experiment, β cannot be “fixed,” which will
introduce errors and become a big problem for topological
quantum computation. Therefore noise in the control parame-
ter β will easily change the Berry phase. For example, Rβ

M =
e−i�	′τz is the ideal operation, and due to errors, the actual
operation becomes e−i�	′(1+ξ )τz , where the angle of rotation
differs from the desired 	′ by a factor 1 + ξ . So to perform
accurate operations, one may consider replacing single oper-
ations by composite sequences of pulsed operations [85]. By
this approach the errors and even those from the inability to
control β can be corrected to O(ξ n) for arbitrary n.

VI. CONCLUSION AND DISCUSSION

In this paper we developed a theory for NH generalization
of MZMs, i.e., γ β = SγS−1, where S is the NH PH similarity
transformation and β is the NH strength. The key point of NH
generalization of MZMs is anomalous non-Abelian statistics.
Due to the particle-hole symmetry breaking, the Berry phase
from braiding processes become an arbitrary number in a
region, i.e., �	 ∈ (π/8, 3π/8). The anomalous non-Abelian
statistics for the NH MZMs indicates that in NH topological
systems the theory for the usual unitary modular tensor cate-
gory would be generalized to a theory for a certain nonunitary
modular tensor category, and the theory for the usual topo-
logical field theories would be generalized to a theory for
certain non-Hermitian topological field theories. In the future,
we will study these issues. In addition, we plan to apply the
theory to other TSCs, such as the 2D NH px + ipy TSC and
higher-order NH TSCs, and then study the possible physical
realization of the NH MZMs in these NH topological systems.
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