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Nonspherical optomagnonic resonators for enhanced magnon-mediated optical transitions
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We study magnon-mediated optical transitions in micrometer-sized axially symmetric yttrium iron garnet
(YIG) particles, which act as optomagnonic cavities, by means of electromagnetic calculations, treating the
magneto-optical coupling to first order in perturbation theory, in the framework of a fully dynamic approach.
Such particles with engineered shape anisotropy exhibit high-quality-factor Mie resonances in the infrared part
of the spectrum, with a separation of few gigahertz, which matches the typical frequencies of magnons. This
allows for optical transitions mediated by spin waves, while the micrometer volume favors stronger overlap
between the optical modes and the precessing magnetization. Our results predict that photon-magnon coupling
strengths of tens of kilohertz could be realized with cylindrical or spheroidal particles, since mainly the reduced
volume, but also shape anisotropy, can lead to strong, up to four orders of magnitude, enhancement of the
coupling strengths compared to submillimeter YIG spheres.
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I. INTRODUCTION

Photons and magnons are very promising information
carriers, which can be handily manipulated through the
development of structures such as photonic crystals [1,2]
and magnonic crystals [3,4], respectively. What is more,
visible/near-infrared (Vis/NIR) and telecommunication pho-
tons can efficiently transfer information between different
parts of a large network using conventional technology, while
magnons are very promising agents for data storage [3,5]
and signal processing [6,7]. In view of these, controlling and
enhancing the interaction between Vis/NIR light and spin
waves would provide impressive opportunities in the devel-
opment of magnon-based microwave-to-optical transducers
[8,9] suitable for quantum-computing applications [10,11].
To this end, a new class of structures with dual optical and
magnonic functionalities, so-called optomagnonic structures
[12], emerged in recent years.

So far, several optomagnonic configurations have been
proposed, including planar waveguides for microwave-to-
optical conversion [13,14], hybrid photonic-magnonic crys-
tals [15,16], Fabry-Pérot cavities [17–22], and optomagnonic
beams [23]. However, millimeter-sized yttrium-iron-garnet
(YIG) spherical resonators are yet the most typical exam-
ples of experimentally investigated optomagnonic cavities
[24–26]. Such spherical resonators exhibit high-Q optical
whispering gallery modes (WGM) in the Vis/NIR part of
the spectrum while, at the same time, supporting magnons
excited in the fundamental mode that corresponds to the uni-
form precession of the magnetization, usually termed Kittel
mode [27], with frequencies of a few gigahertz. When the
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magnon frequency matches the frequency difference between
two successive WGMs, optical frequency up (down) conver-
sion through a respective absoprtion (emission) of a magnon
can be triggered, as has been verified by Brillouin light scat-
tering experiments [24–26].

However, until now, the measured magnon-mediated
photon-to-photon transition probabilities in spherical YIG
resonators are rather small [8,24–26], which hinders the pos-
sibility for practical applications. A crucial limiting factor
is the size of the spheres. Since millimeter-sized diameters
correspond to rather small overlap between optical and spin
modes, shrinking both the optical and magnetic mode volumes
could enhance the optomagnonic coupling strength by orders
of magnitude [28,29]. Yet, in spherical YIG microparticles,
magnon-mediated optical transitions are not possible, since
the separation between Mie modes is much larger than the
magnon frequencies. This limitation is relaxed in nonspherical
particles, that we consider here, where the anisotropy-induced
splitting of the Mie resonances can be tuned in the GHz range
so as to match the magnon frequencies in micrometer-sized
YIG particles.

In spherical particles, optical modes are (2� + 1)fold de-
generate, while for axially symmetric particles, such as
spheroids or cylinders, this degeneracy is lifted. Each mode
can be assigned to a magnetic number |m| and the angular
momentun channels � are mixed [30]. For a micron-sized
sphere in the Vis/NIR, the frequency difference between two
successive Mie modes is a few terahertz. By deviating from
sphericity, one can control the separation of the modes and,
for properly adjusted geometrical parameters, the spectral
distance between two successive |m|-split modes can reach
the order of gigahertz, matching the typical frequencies of
magnons. In a previous work [29], triply resonant photon
transitions were studied in micron-sized magnetic spheres,
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where mode splitting was controlled by the optical anisotropy
induced by the Faraday coefficient. Nevertheless, the Fara-
day coefficient is a characteristic of the material and cannot
be tuned at will. This limitation is severe since only Bi-or-
Ce-doped garnet materials have a strong Faraday coefficient
which, however, is accompanied by considerable material
losses. On the contrary, in the present work, we propose that
common undoped YIG particles can be geometrically engi-
neered to obtain the desirable optical mode splitting.

In view of the above, in the present work, we report
on the coupling between the Kittel magnon and optical
Mie resonances inside an axially symmetric YIG particle,
which acts as an optomagnonic cavity. We restrict our-
selves in the weak-coupling regime, which is valid for YIG
optomagnonic resonators [24–26], where magnon-mediated
photon-to-photon transition probabilities can be evaluated to
first-order Born approximation. This approach is sufficient for
our purposes, while at the same time allowing for a deeper
insight into the underlying physics. The remainder of the
paper is organized as follows. In Sec. II we briefly outline
the theoretical method employed for the calculation of the
electromagnetic (EM) field eigenmodes of an axially sym-
metric particle and analyze the symmetry of these modes in
terms of group theory. In Sec. III we discuss photon transitions
between |m|-split Mie modes, induced by the Kittel magnon,
evaluated to first order in perturbation theory, and establish
the selection rules that govern such transitions. In Sec. IV,
which is devoted to the discussion of our results, we provide
a consistent interpretation of the calculated photon transition
amplitudes between different modes. The last section summa-
rizes the main findings of the paper.

II. METHOD OF CALCULATION

The optical eigenmodes of the axially symmetric particles
considered in this work are calculated by the extended-
boundary-condition method (EBCM) [31,32]. Spherical wave
expansions are used to describe the electric field inside and
outside the particle. Let us consider a homogeneous par-
ticle with relative permittivity and permeability ε and μ,
respectively, in a homogeneous host medium characterized by
corresponding parameters εh and μh. For a time-harmonic,
monochromatic EM wave, of angular frequency ω, the elec-
tric field can be written as E(r, t ) = Re[E(r) exp(−iωt )] and,
expanding into vector spherical waves about a given origin (at
the center of the particle), we have

E(r) =
∞∑

�=1

�∑
m=−�

[
i

qh
a0

E�m∇ × j�(qhr)X�m(r̂)

+ a0
H�m j�(qhr)X�m(r̂)

]
, (1)

where qh = ω
√

εhμh/c, c being the velocity of light in vac-
uum, j� are the spherical Bessel functions which are finite
everywhere, and X�m(r̂) are the vector spherical harmonics.
The expansion coefficients a0

P�m, P = E , H , are associated
with multipoles of electric and magnetic type, which are
transverse magnetic (TM) and transverse electric (TE), re-
spectively. For the field inside the particle, a similar expansion

as that of Eq. (1) can be used, with appropriate coefficients,
aI

P�m, and qh replaced by q = √
εμω/c. The scattered field is

also expressed in the form of Eq. (1), by replacing the spheri-
cal Bessel functions, j�, with spherical Hankel functions, h+

� ,
which are appropriate to outgoing spherical waves: h+

� (x) ≈
(−i)� exp(ix)/ix as x → ∞ and expansion coefficients a+

P�m
[32].

The field expansion coefficients can be expressed in terms
of those of the incident wave (a0

P�m) through the scattering T
matrix and Q matrix as follows:

a+
P�m =

∑
P′�′m′

TP�m;P′�′m′a0
P′�′m′ (2)

and

aI
P�m =

∑
P′�′m′

QP�m;P′�′m′a0
P′�′m′ . (3)

To calculate the T and Q matrices for a nonspherical scatterer,
we employ the EBCM, which takes into account the conti-
nuity of the tangential components of the EM field on the
surface of the scatterer through appropriate surface integrals
[31,32]. Although the spherical-wave expansions of the EM
field are infinite series, it turns out that, if the size of the
particle is comparable to the wavelength, a limited number
of partial waves, corresponding to � � �max, is sufficient for
the description of the field inside and outside the particle.
Nevertheless, an accurate calculation of the T and Q matrices
requires elements up to �cut � �max. We note that �cut increases
as we deviate from sphericity. However, when the aspect ratio
of an axisymmetric particle does not strongly deviate from
unity, as in the cases considered here, excellent convergence
is obtained using a moderate number of spherical harmonics
[30–34].

The eigenmodes of a particle are obtained in the absence
of an incoming wave. In general, a single particle supports
resonant modes of the EM field at the poles of the eigen-
values of the T matrix, which are complex eigenfrequencies,
zν = ων − iγν , ν = 1, 2, . . ., with ων being the resonance
frequency and γν/π the corresponding resonance linewidth,
since the modes are not completely bound. Causality implies
γν > 0 for the assumed exp(−iωt ) time dependence. The
field distributions for each eigenmode are retrieved from the
corresponding eigenvectors, which provide the unknown field
expansion coefficients.

In the case of axially symmetric particles which have a
mirror plane normal to the symmetry axis, such as spheroids,
cylinders, etc., the eigenmodes can be computed separately
for every different value of |m| and parity σ = g (gerade)
or σ = u (ungerade) of the spherical vector wave function,
which remain constant because of the symmetry of the sys-
tem. Therefore, in each |m|σ invariant subspace, we use the
index ν = 1, 2, . . . to label the successive solutions. In terms
of group theory, the (2� + 1) degeneracy of a Mie mode in
a spherical particle is (partially) lifted when the shape of
the particle becomes spheroidal or cylindrical, say, with the
symmetry axis along the z direction, because the symmetry
is reduced from O(3) to D∞h [35]. Projecting onto the ir-
reducible representations of the D∞h point group, listed in
Table I, one obtains |m| = 0, 1, . . . , � distinct modes. These
modes, for m = 0, are nondegenerate and have the symmetry
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TABLE I. Character table of the D∞h point group (n =
1, 2, 3, . . .). Cφ are rotation operations through an angle φ (0 < φ �
π and −π < φ < 0) about the symmetry axis (z), C2′ are rotations
through π about axes lying in the x-y plane, and I is the inversion
operation.

D∞h E 2Cφ C2′ I 2ICφ IC2′

A1g 1 1 1 1 1 1
A1u 1 1 1 −1 −1 −1
A2g 1 1 −1 1 1 −1
A2u 1 1 −1 −1 −1 1
Eng 2 2 cos (nφ) 0 2 2 cos (nφ) 0
Enu 2 2 cos (nφ) 0 −2 −2 cos (nφ) 0

of the one-dimensional irreducible representations A1g, A1u,
A2g, and A2u, for a TM (electric) multipole of even order, a TE
(magnetic) multipole of even order, a TE (magnetic) multipole
of odd order, and a TM (electric) multipole of odd order,
respectively. For m �= 0, the modes are doubly degenerate and
have the E|m|g symmetry for a TM multipole of even order or
a TE multipole of odd order, and the E|m|u symmetry for a TM
multipole of odd order or a TE multipole of even order [30].
This means that each |m|-split Mie mode is characterized by
a well-defined value of |m|, while these modes have the same
parity σ and order ν, namely those of the degenerate parent
Mie modes of the sphere. Consequently, they have neither a
specific polarization nor a specific multipole order in the strict
sense, though their dominant character is that of the parent
Mie modes.

III. MAGNON-INDUCED PHOTON TRANSITIONS

We will consider nonspherical axially symmetric, oblate,
and prolate spheroidal as well as cylindrical particles that
exhibit |m|-split optical Mie resonances. For such a mag-
netic particle, magnetized to saturation (Ms) along its axis of
revolution (taken along the z direction), we assume that the
magnetization M(t ) is precessing in phase about the z axis
throughout the entire particle (Kittel magnon [36])

M(t )/Ms = η cos(�t )̂x + η sin(�t )̂y + ẑ, (4)

where � is the magnon angular frequency, while the preces-
sion angle is ϑ = arctan(η) [28].

The resulting permittivity can be written as a static and a
time-dependent dynamic part, in the following tensor form:

ε(t ) = ε + δε(t ), (5)

while the permeability is assumed to be equal to unity (μ =
1). Generally, both the static and dynamic parts of the per-
mittivity are tensors [29]. However, as detailed by Zouros
et al. [37] in the low magneto-optical coupling limit, when the
dimensionless Faraday coefficient f 	 1, the frequency shift
of the optical eigenmodes caused by the static magnetization
is negligibly small. Therefore, we ignore the influence of the
static magnetization on the permittivity and assume that the

static tensor permittivity ε → εI , where I is the unit tensor
and ε is the scalar permittivity of the unmagnetized particle.
The magnon-mediated optical transitions arise from the dy-
namic part in Eq. (5). In our case, the time-dependent part of

the permittivity reads [29]

δε(t ) =
⎛⎝ 0 0 −i f η sin(�t )

0 0 i f η cos(�t )
i f η sin(�t ) −i f η cos(�t ) 0

⎞⎠.

(6)

In the weak-coupling regime [8,17,24–26,38,39], we
use the first-order Born approximation and the magnon-
mediated transitions are described by the overlap integral G =
〈f| δε |i〉, where 〈αrt |i〉 = Ei;α (r) exp(−iωit ) and 〈f|αrt〉 =
E∗

f;α (r) exp(iωft ), with α denoting (Cartesian) component,
correspond to appropriate initial (i) and final (f) EM modes
of the unmagnetized particle. As discussed in the previous
section, quite generally, these modes are labeled by indices
miσiνi and mfσfνf , respectively. The overlap integral reads
[29]

G = π [δ(ωi − ωf + �)g+ + δ(ωi − ωf − �)g−], (7)

where

g± = i f η(x̂ ± iŷ) ·
∫

V
d3r E∗

f (r) × Ei(r), (8)

with the star denoting complex conjugation. The delta func-
tions in Eq. (7) express energy conservation in the optical
transitions that involve absorption and emission of one
magnon by a photon, as expected in the linear regime. The
volume integral in Eq. (8) is performed in a spherical (r, θ, φ)
coordinate system, where the φ integration is carried out ana-
lytically.

The spin wave amplitude η is normalized so as to corre-
spond to a single magnon within the volume of the particle V ,
through the relation

η =
√

2h̄|γe|
MsV

, (9)

where γe is the gyromagnetic ratio and the quantity h̄|γe|
corresponds to one Bohr magneton [40,41]. We note that,
even for cylindrical particles, assuming a uniform spin-wave
amplitude distribution is a reasonable approximation when
the aspect ratio is close to unity [39]. Similarly, the photonic
eigenmodes |s〉 (|i〉 or |f〉) are normalized so as to correspond
to a single photon [39]

1

4

∫
V

d3r[Es(r) · D∗
s (r) + Hs(r) · B∗

s (r)] = h̄ωs

2
. (10)

Let us now apply symmetry arguments to extract the al-
lowed photon-to-photon transitions in such processes. It can

be shown [29] that δε and δε
†

are irreducible tensor operators,
which have the symmetry of the two-dimensional irreducible

representation E1g of D∞h. Therefore, δε or δε
†
, operating on

an eigenvector of the |m|σ irreducible subspace, transforms
according to the relevant direct product representation

E1g ⊗ A1σ = E1σ , E1g ⊗ A2σ = E1σ , if m = 0,

E1g ⊗ E1σ = E2σ ⊕ A1σ ⊕ A2σ , if |m| = 1,

E1g ⊗ E|m|σ = E(|m|+1)σ ⊕ E(|m|−1)σ , if |m| � 2, (11)

where σ = g or σ = u. These considerations imply simple se-
lection rules for the above photon transitions: |mf | = |mi| ± 1
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FIG. 1. Eigenfrequencies of |m|-split Mie modes of unmagne-
tized YIG spheroidal particles: an oblate spheroid of radii R1 =
5.1 μm, R2 = 4.9 μm (triangular open symbols) and a prolate
spheroid of radii R1 = 4.9 μm, R2 = 5.1 μm (square open symbols).
The black solid circles show the eigenfrequency, ωr , of the corre-
sponding degenerate Mie modes (TM�=10,ν=1) of a sphere with radius
R = 5 μm, which serves as a reference for the visualization of level
splitting in the GHz scale.

for one-magnon absorption (anti-Stokes) and one-magnon
emission (Stokes) processes, while both initial and final states
must have the same parity, σf = σi. As long as in the present
work we are concerned with transitions between |m|-split Mie
modes, which have the same parity σ and order ν (those of the
parent Mie modes), we shall denote each of the initial and final
states by a single index, mi and mf , respectively. We note in
passing that, for YIG resonators, the Kittel magnon decay rate,
γK, is at the order of MHz [24–26], while the photon decay
rates, γν , for the Mie modes assumed here are at the order of
GHz. This allows us to neglect magnon lifetime effects while
taking into account the finite radiative lifetime of the photon
modes in the description of the triply resonant transition.

IV. RESULTS AND DISCUSSION

At first, we consider two different micrometer-sized YIG
spheroidal particles in air, one prolate and one oblate, of sim-
ilar volumes, that operate as optomagnonic resonators. The
prolate spheroid has radii R1 = 4.9 μm and R2 = 5.1 μm,
while the oblate one has radii R1 = 5.1 μm and R2 = 4.9 μm
(see Fig. 1). Such dielectric magnetic particles, of micron
or submicron size, can be fabricated by various techniques
[42–46]. In general, YIG microparticles support complex-
frequency eigenmodes of the EM field, as discussed in Sec. II,
which can be excited either by free-wave coupling (scat-
tering configuration) [28], evanescent coupling [24,25], or
fluorescence coupling [47]. We assume a relative magnetic
permeability equal to unity and an electric permittivity ε =
4.84, while the dimensionless Faraday coefficient is taken
f = −0.0005, as appropriate for YIG in the infrared part of
the spectrum where dissipative losses are negligibly small
[36]. In the calculations, we truncated the angular-momentum
expansions at �max = 13, �cut = 16, and used a Gaussian
quadrature integration formula with 1024 points for the in-
tegrals involved, which ensures well converged results.

To understand the influence of deviating from the spher-
ical shape, we start with a spherical particle, of almost the
same size, which supports long-lifetime, spectrally separated,
multipole (2�-pole) Mie resonances of TM or TE type, which
confine the field inside the particle. Here, we choose such a
particular resonance, namely the TM�=10,ν=1 one, located at
a frequency ωr/2π = 63.438 THz, i.e., a free-space wave-
length equal to 4.725 μm. This resonance corresponds to
2� + 1 = 21 degenerate m modes at the same frequency, as
shown with solid dots in Fig. 1. For the oblate or prolate
spheroidal particle, the corresponding |m|-split modes are
being distinguished at different frequencies, as shown with
open symbols in Fig. 1, with their calculated linewidth γ /π

being about 3 GHz, which indicates the existence of high-Q
spectrally separated resonances. The separation between suc-
cessive (�|m| = ±1) modes varies roughly from 10 GHz to
about 50 GHz, which lies within the frequency range of Kittel
modes in YIG resonators [24–26]. It is also worth noting that
the |m|-mode frequency separation can be precisely controlled
by the aspect ratio (R2/R1) of the spheroid.

We now calculate the transition amplitude upon one-
magnon absorption, g+, given by Eq. (8), between two
successive initial, |i〉 = sin ϕi |−mi〉 + cos ϕi |mi〉, and final,
|f〉 = sin ϕf |−mf〉 + cos ϕf |mf〉, |m|-split Mie modes com-
plying with the selection rule |mf | = |mi| ± 1, assuming that
the magnon frequency fulfills the triple-resonance condition
ωf = ωi + �, as schematically depicted in Fig. 2(a). The
spin-wave amplitude is η � 7.1 × 10−7 for the prolate and
η � 6.9 × 10−7 for the oblate spheroid, as obtained from
Eq. (9) substituting the gyromagnetic ratio |γe|/2π = 28
GHz/T and the saturation magnetization Ms = 140 kA/m
for YIG [36,39]. The results for the optomagnonic coupling
strength g̃+ ≡ ε0|g+|/h̄ (ε0 is the vacuum permittivity) for
triple-resonant photon transitions from an initial photon state
in the irreducible subspace with |mi| = 9 to a final photon
state in the irreducible subspace with |mf | = 10 for the pro-
late spheroid under consideration are shown in Fig. 2(b).
Similarly, in Fig. 2(c) we show the respective values g̃+ for
the oblate spheroid that correspond to triple-resonant photon
transitions from an initial photon state in the irreducible sub-
space with |mi| = 10 to a final photon state in the irreducible
subspace with |mf | = 9. Both cases have maximum g̃+ at
ϕi = ±ϕf = ±π/4.

Every value of g+ can be calculated as a linear combina-
tion of four basic matrix elements between |mi〉, |−mi〉 and
|mf〉, |−mf〉. In other words, we only need to numerically
calculate g+ for ϕi = 0, π/2 and ϕf = 0, π/2. We also note
that one of the aforementioned transitions, which correspond
to either ϕi = 0 and ϕf = 0 or ϕi = π/2 and ϕf = π/2 (de-
pending if we have magnon absorption or emission), is also
allowed for a spherical particle, where it can be analytically
calculated using closed form relations [29]. Those analytically
calculated values for a sphere with radius R = 5 μm are very
close to the respective values of the given spheroids. On
the other hand, transitions from ϕi = 0 to ϕf = π/2 or from
ϕi = π/2 to ϕf = 0 are not allowed in the sphere, because
they are forbidden by symmetry [29]. Therefore, an analytic
approximation using closed form relations is not possible,
even for such very-close-to-spherical resonators. Further-
more, the maximum g̃+ is obtained for combinations between

214429-4



NONSPHERICAL OPTOMAGNONIC RESONATORS FOR … PHYSICAL REVIEW B 104, 214429 (2021)

�f

�i
���f���iM(t) �

M(t)

FIG. 2. (a) Schematic representation of the triple resonance
condition in an optical frequency up-conversion (one-magnon ab-
sorption) process; photon transition from a mode at a state |i〉 =
sin ϕi |−mi〉 + cos ϕi |mi〉 with angular frequency ωi = ω|mi | to a
mode at a state |f〉 = sin ϕf |−mf〉 + cos ϕf |mf〉 with angular fre-
quency ωf = ω|mf |, by absorption of one magnon of angular
frequency � = ωf − ωi. The Kittel magnon is schematically il-
lustrated in the prolate and oblate spheroid under consideration.
(b) Color scale: magnitude of the optomagnonic coupling strength,
g̃+ = |g+|ε0/h̄, for triple-resonant photon transitions from an initial
photon state in the irreducible subspace with |mi| = 9 to a final
photon state in the irreducible subspace with |mf | = 10 for the pro-
late spheroid under consideration. (c) Color scale: magnitude of the
optomagnonic coupling strength, g̃+ = |g+|ε0/h̄, for triple-resonant
photon transitions from an initial photon state in the irreducible
subspace with |mi| = 10 to a final photon state in the irreducible
subspace with |mf | = 9 for the oblate spheroid under consideration.

initial and final states that were otherwise not allowed in a
sphere.

Until now we discussed YIG spheroids, although such par-
ticles with high finesse are not easily fabricated and controlled
experimentally. On the other hand, cylindrical YIG samples
of high quality factors lie within the reach of current micro-
fabrication techniques [48–50]. The analysis of the |m|-split
optical modes of microcylinders follows suit of the analysis of
spheroids already discussed. Let us assume a YIG microcylin-
der as the one shown in the inset of Fig. 3. We set the radius
of the cylinder fixed at R = 5 μm and consider three distinct
values for the height h, namely, h = 10 μm, h = 9.9 μm, and
h = 9.8 μm. To ensure convergence, we truncated the rele-
vant angular-momentum expansions at �max = 22 and �cut =
26, and used a Gaussian quadrature integration formula with
1024 points for the integrals involved. In Fig. 3(a), we show

FIG. 3. (a) Cyan symbols: |m|-split Mie resonance frequencies
for the unmagnetized YIG cylinder with radius R = 5 μm and height
h, shown in the graphical inset, for three different values of h: h =
10 μm (filled circles), h = 9.9 μm (open circles), and h = 9.8 μm
(open diamonds). The black solid circles show the eigenfrequency
ωr of the corresponding degenerate Mie modes (TM�=10,ν=1) of a
sphere with radius R = 5 μm, which serves as a reference for the
visualization of level splitting in the GHz scale. The vertical arrows
mark the |m| = 9 and |m| = 10 modes. The normalized electric-field
profile of these modes in a plane cutting the cylinder along its axis are
shown in (b) and (c), respectively (the intensity pattern is the same
for the ±m modes).

with colored symbols the optical Mie eigenmodes of the three
cylinders with different height h, while the black dots cor-
respond to the eigenfrequency of the YIG sphere with R =
5 μm, which serves as a reference. The cyan closed symbols
that correspond to h = 10 μm exhibit a roughly symmetrical
splitting with respect to the frequency of the sphere ωr, al-
though the modes with higher |m| are slightly closer to ωr .
Note, however, that for the cylinder with h = 10 μm, contrary
to the case of the spheroid (see Fig. 1), the frequency split
always exceeds 50 GHz, which is much larger than the Kittel
magnon frequency in that particle.

However, as shown with cyan open circles in Fig. 3(a),
when the height is changed to h = 9.9 μm, almost all modes
are shifted to slightly higher frequencies, with the exception of
the |m| = 10 modes which remain roughly unchanged. This is
further demonstrated for h = 9.8 μm, shown with cyan open
diamonds in Fig. 3(a). The frequency difference between the
|m| = 10 and the |m| = 9 modes now becomes ∼11 GHz,
which lies within the reach of the Kittel magnon frequencies.
By adjusting the height h of the cylinder, this frequency dif-
ference can be finely tuned to a desired value, as confirmed by
the calculation, and this can be used in a possible experimental
realization. Furthermore, modes of higher |m| are more easily
excited in the laboratory using techniques such as evanescent
coupling or scattering, since the field is mostly concentrated
close to the circumference of the cylinder. In fact, in Figs. 3(b)
and 3(c) we show the respective electric-field profiles for
the modes |m| = 9 and |m| = 10, pointed out with arrows in
3(a), respectively. The electric field intensity is normalized to
unity and is shown in a plane that cuts the cylinder along its
axis. As we can see, the field in mode |m| = 10 should not
be significantly affected by small variations of the cylinder
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(c)

FIG. 4. (a) YIG cylinder with R = 5 μm and h = 9.8 μm in
a scattering configuration where light impinges normally to the
cylinder’s axis in two possible linear polarizations, s and p. (b) Scat-
tering cross section spectra for s and p polarized incident light.
The |m| subspace of the modes excited in each case is marked
next to the corresponding peak. Red and blue colors denote s and
p polarization of the incident light, respectively. (c) Color scale:
magnitude of the optomagnonic coupling strength, g̃+ = |g+|ε0/h̄,
for triple-resonant photon transitions from an initial state |i〉 =
sin ϕi |−mi〉 + cos ϕi |mi〉 with |mi| = 10 to a final photon state |f〉 =
sin ϕf |−mf〉 + cos ϕf |mf〉 with |mf | = 9 for the cylindrical particle
under consideration.

height, since it is localized in the middle region around the
circumference.

As mentioned above, the photonic eigenmodes of the
cylinder can be probed, for instance, using light-scattering
spectroscopy. In Fig. 4(b), we show the scattering cross sec-
tion spectrum, for linearly polarized light that impinges on
a cylinder with h = 9.8 μm, normally to its axis (z axis),
as depicted schematically in Fig. 4(a). As expected from
a group theory analysis [30], modes of the |m| = 10 sub-
space are excited by s-polarized light incident normally to
the cylinder’s axis, while p polarization is compatible with
modes of the |m| = 9 subspace (all modes have even par-
ity, σ = g). It can be seen that the two peaks are well
separated and thus a triply resonant optical transition is fea-
sible. Selection rules and energy conservation allow only
two possible magnon-mediated transitions: from |mi| = 10
to |mf | = 9 through a respective magnon absorption and
from |mi| = 9 to |mf | = 10 through a respective magnon
emission. As evident also from Fig. 3(b), both transitions
are nonreciprocal, i.e., a resonant magnon absorption (emis-
sion) is not accompanied by a respective magnon emission

(absorption). This property might be important in view
of magnon cooling/heating applications [40,51,52]. Again,
to first order in perturbation theory, we can calculate the
optomagnonic coupling strengths g± by integrating over
the volume of the cylinder. Spin wave normalization, ex-
pressed by Eq. (9), yields η � 5.8 × 10−7. Exploring optical
transitions from the |mi| = 10 to the |mf | = 9 subspace,
we obtain a maximum optomagnonic coupling strength
of g̃+ � 17 kHz, as shown in Fig. 4(c). It is worth not-
ing that, although in the cases considered here the op-
tical modes involved are in the far-infrared part of the
spectrum, extension to different spectral regions is possi-
ble by properly adjusting the size and geometry of the
particle.

Typical experimental works focus on larger particles, in the
(sub)millimeter scale, where the triple-resonance condition is
met between successive optical WGMs, while the measured
optomagnonic coupling strength is of the order of Hz [24–26].
Similarly, theoretical studies predict that the spin wave ampli-
tude η for millimeter sized spheres is of the order of 10−9.
By shrinking the size of the particles to few micrometers, η ≈
10−6 [see Eq. (9)], so our calculations predict a three orders of
magnitude increase of the photon magnon coupling strength
for micrometer-sized particles, along with a further 10-fold
enhancement due to the nonsphericity [see, e.g., Figs. 2(b)
and 2(c)]. However, although here the optomagnonic coupling
strength is significantly increased compared to spherical YIG
resonators, the fact that g̃± is smaller than both γK and γν

indicates that we are still in the weak coupling regime.

V. CONCLUSIONS

In summary, we studied the strengthening of the op-
tomagnonic interaction in nonspherical axisymmetric YIG
microparticles and derived the respective selection rules for
magnon-mediated optical transitions between optical Mie
modes based on group theory. Such triply resonant interac-
tions can be handily engineered by exploiting the extra degree
of freedom provided by the shape anisotropy of nonspherical
resonators. In the framework of the first-order Born approx-
imation, we calculated the transition amplitudes for oblate
and prolate spheroidal as well as cylindrical particles. The
initial and final optical states have been calculated using the
EBCM for scatterers with axial symmetry. Our results predict
enhanced optomagnonic coupling strengths of the order of
tens of kHz in undoped YIG cylindrical microparticles, which
is several orders of magnitude larger compared to that ob-
tained in (sub)millimeter YIG spheres. Our findings elucidate
the implications and benefits from the symmetry lowering
of the particle shape and predict that, while the reduction
of volume is the major effect for micron-sized particles, a
further, almost 10-fold, interaction enhancement is obtained
by deviating from the spherical shape.
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