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A comprehensive study of thermodynamic properties of three samples of bimetallic molecular mag-
nets [CoII(pyrazole)4]2x[FeII(pyrazole)4]2(1−x)[NbIV(CN)8] · 4H2O with x = 1 (Co2Nb), 0.5 (CoFeNb), and 0
(Fe2Nb) is reported. The three samples display the same crystallographic structure crystallizing in the tetragonal
system with space group I41/a . Their heat capacities are measured in the temperature range 0.36–100 K without
applied field as well as in the field of μ0H = 0.1, 0.2, 0.5, 1, 2, 5, and 9 T. The results imply the presence of
the second-order phase transitions to magnetically ordered phases at 4.87(8), 7.1(2), and 8.44(3) K for x = 1,
0.5, and 0, respectively. The corresponding thermodynamic functions are analyzed to discuss the stability of the
mixed compound and the magnetocaloric effect (MCE). The Gibbs energy of mixing is found to be positive but
smaller in magnitude than the energy of thermal fluctuations indicating that the mixed sample is most probably
metastable in the full detected temperature range. The enthalpy of mixing is negative, which points to favoring a
direct neighborhood of the Co(II) and Fe(II) ions in the solid solution CoFeNb. The negative values of the entropy
of mixing are explained by considering the enhanced rigidity of the crystal lattice of the solid solution sample.
To extract the magnetic contribution to the heat capacity, an approach based on a reasonable frequency spectrum
is adopted. Taking advantage of the in-field heat capacity measurements, MCE was described in terms of the
isothermal entropy change �SM and the adiabatic temperature change �Tad. The magnitudes of these quantities
are typical for the class of molecular magnets. The values of |�SM|max detected for μ0�H = 5 T amount to 7.04,
5.26, and 4.93 J K–1 mol–1 for Co2Nb, CoFeNb, and Fe2Nb, respectively, and are on the order of those obtained
for the same field change in the isostructural compounds. The values of �Tad detected for μ0�H = 5 T amount
to 4.16, 2.47, and 2.01 K for Co2Nb, CoFeNb, and Fe2Nb, respectively, and are larger or comparable with
those observed for the isostructural compounds. Temperature dependences of exponent n, quantifying the field
dependence of �SM, display minima close to the transition temperatures, implying through their values that the
studied compounds belong to the universality class of the three-dimensional Heisenberg model. The regeneration
Ericsson cycles employing the studied compounds as the working substance were considered. Most surprisingly,
the Ericsson cycle operating between the temperatures corresponding to the full width at half maximum of the
|�SM| signal (TC, TH) turns out to be totally ineffective. Through shifting the temperature of the hot reservoir
TH down to the temperature Tmax corresponding to |�SM|max, the coefficient of performance is rendered positive
and comparable with that of the Carnot cycle. A detailed analysis indicates that the regeneration Ericsson cycle
operating between TC and Tmax should be most efficient for the maximal studied value of the applied field (=9 T)
with irrelevant differences between the studied compounds.

DOI: 10.1103/PhysRevB.104.214428

I. INTRODUCTION

For almost three decades now, magnetic coordination net-
works have been given assiduous attention by both chemists
and physicists, resulting in materials displaying a long-range
magnetic order above room temperature [1–3]. Concerted
efforts were focused on obtaining compounds displaying
additional key features such as structural and electronic non-
rigidity, noncentrosymmetry, chirality, host-guest behavior,
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luminescence, and others. They bore fruit in an array of
classes of multifunctional magnetic materials with porous
magnets, magnetic sponges, charge-transfer complexes, spin
crossover magnets, photomagnets [4–13], noncentrosymmet-
ric and chiral magnets [9,10,12,14–18], luminescent magnets
[19], or compounds exploiting the second-order magneto-
optical or magnetochiral effects [12,14,17,18]. The quest for
coordination networks or clusters endowed with technolog-
ically relevant functionalities is by no means completed. In
this respect, the magnetocaloric effect (MCE) [20] ranks
among the emerging potential applications in cryogenic de-
vices. Furthermore, one of the little exploited strategies to
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obtain molecular magnetic materials is the synthesis of substi-
tutional mixtures displaying properties smoothly interpolating
between those of the pure compounds [21–24]. This report
goes along this late line of research.

MCE, i.e., heating or cooling of a magnetic material
following switching on or off of applied magnetic field in
adiabatic conditions, is an area of intensive research due to the
fact that magnetic refrigerators represent an environmentally
friendly technology, dispensing with media associated with
ozone depletion or greenhouse effect. Moreover, they were
demonstrated to show an enhanced efficiency in comparison
with conventional gas compression-expansion refrigerators
[25]. Crucial progress in this field involved on the one hand
a considerable enhancement of material performance mostly
realized through giant MCE (GMCE) [26,27] and on the
other hand the cost reduction through the replacement of
rare earth elements by transition metal alloys [28]. However,
despite that GMCE occurring in materials with first-order
magnetostructural phase transitions secures a large magnetic
entropy change �SM, it has two important deficiencies. The
first is the narrowness of the �SM vs T curve, and the other
is the presence of hysteresis leading to low operational fre-
quencies and limited cooling power [refrigeration capacity
(RC)]. The profile of isothermal entropy change �SM(T )
of materials undergoing the second-order phase transitions
is by contrast more extended, albeit it is smaller in magni-
tude. What is more, thermal hysteresis is not exhibited by
this class of materials. Therefore, a compromise between
an optimal RC and the lack of thermal hysteresis makes
them superior candidates for the development of magnetic
cooling devices. Recent developments in MCE resulted in
a technological solution where the magnetic entropy change
�SM is obtained by rotating a single crystal in a constant
magnetic field [29–32]. This technique is confined to materi-
als displaying considerable magnetic anisotropy. The rotating
MCE (RMCE) introduces crucial improvement of magnetic
cooling by obviating the need to move the single-crystal
coolant in and out of a magnetic field or manipulate the
field amplitude and replacing it by a much simpler feasi-
ble change of the crystal orientation in a stationary field.
Balli et al. [33,34] devised a prototype of a rotary mag-
netic refrigerator which integrates a simple construction with
high efficiency, originating from the operation at higher fre-
quencies than employed in conventional MCE, and a lower
energy consumption due to the use of permanent magnets
[33–35]. However, the latter feature puts a limit to the max-
imum field which can be employed for this type of cooling
<2 T. RMCE is a very young topic, which is expressed
by exceptionally sparse subject literature concerning inor-
ganic materials [29–34] as well as molecular compounds
[36–39].

In the field of molecular magnetism, MCE has been in-
vestigated most for single molecule magnets whose large
ground-state spin value promises a substantial entropic ef-
fect [40–45]. Further studies were devoted to molecular
rings, forming a subclass of molecular magnets character-
ized by a typical cyclic shape and a dominant antiferro-
magnetic coupling between the metallic nearest neighbors
[46]. Additionally, early studies of MCE associated with
the second-order phase transition to a long-range magneti-

cally ordered state involved Prussian blue analogs [47–49].
Further examples refer to a bimetallic octacyanoniobate
{[M(II)(pyrazole)4]2[Nb(IV)(CN)8] · 4H2O}n (M = Mn, Ni)
isomorphous with the compounds under study [50,51], an
interesting instance of a molecular sponge changing reversibly
the ordering temperature and the coercive field upon hydra-
tion/dehydration [52], and the effect of hydrostatic pressure
on MCE in Mn2-pyridazine-[Nb(CN)8] [53].

In this paper, we consider three samples of
bimetallic molecular magnets with the formula
[CoII(pyrazole)4]2x [FeII(pyrazole)4]2(1−x) [NbIV(CN)8] ·
4H2O (pyrazole is a five-membered ring ligand C3H4N),
where x = 1 (Co2Nb), x = 0.5 (CoFeNb), and x = 0 (Fe2Nb)
[54], where the middle compound represents a substitutional
mixture of the two marginal ones referred to in what
follows as the mixed and pure compounds, respectively.
All three compounds are isostructural and crystallize in the
tetragonal I41/a space group. Their structure consists of a
three-dimensional (3D) skeleton, where each Nb(IV) center
is linked through the cyanido bridges M(II)-NC-Nb(IV) to
four M(II) (M = Co, Fe) ions, whereas each M(II) center
is bridged exclusively to two Nb(IV) ions. The remaining
part of the distorted pseudooctahedral coordination sphere
of M(II) is filled with pyrazole molecules, while the Nb(IV)
ion coordinates further four terminal CN– ligands. The fact
that such low connectivity indices should produce a 3D
extended network represents the unique structural feature of
these compounds. The graphical representation of the crystal
structure of these compounds is shown in Fig. 1 for instant
reference.

The pure compounds Co2Nb and Fe2Nb were demon-
strated to undergo a magnetic transition to a long-range order
state at 5.9(5) and 8.3(5) K, respectively, where the transition
points were assumed to coincide with the position of the
dM/dT peak [54,55]. The analysis of the DC susceptibility
and isothermal magnetization carried out in the framework
of the molecular field model suggested that the character
of the exchange coupling between the Co(II) and Nb(IV)
centers is ferromagnetic, while that between the Fe(II) and
Nb(IV) ions is antiferromagnetic with the exchange coupling
constants estimated to amount to JCo-Nb = +3.5(3) cm–1, and
JFe-Nb = −3.1(2) cm–1 [54,55]. Co2Nb was thus found to be
a molecular ferromagnet, whereas Fe2Nb was found to be a
molecular ferrimagnet. The critical behavior of Fe2Nb studied
with the use of AC magnetometry and zero-field μSR spec-
troscopy allowed us to determine the static critical exponents
β = 0.42(3), γ = 1.38(8), and the dynamic exponent w =
0.33(2), thus placing the compound in the universality class
of the 3D Heisenberg model [56,57]. Moreover, preliminary
measurements of Fe2Nb by relaxation calorimetry in zero and
nonzero applied fields were analyzed to extract temperature
dependences of the isothermal entropy change �SM and the
adiabatic temperature change �Tad due to the magnetic field
change, the two basic characteristics of the MCE. Let us
note that the approach to calculating the MCE characteristics
was different than that reported here. The maximum value
of �SM for μ0�H = 5 T was found to be placed at 10.3 K
and amounts to 4.8 J mol–1 K–1, while the corresponding max-
imum value of �Tad = 2 K was observed at 8.9 K [58,59]. The
thermodynamic properties of the other pure compound Co2Nb
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FIG. 1. Structure of {[M II (pyrazole)4]2[NbIV(CN)8] · 4H2O}n.
(a) View of the structure along the c crystallographic axis (red and
green mark the a and b crystallographic axes, respectively). The
water molecules and hydrogen atoms are not shown for clarity.
(b) View of the structure along the b crystallographic axis (red and
blue mark the a and c crystallographic axes, respectively).

as well as the mixed one CoFeNb have not been reported
previously.

To study thermodynamic properties of the reported com-
pounds, their heat capacities have been measured by relax-
ation calorimetry. The compounds are demonstrated to display
transitions to magnetically long-range ordered states at 4.9 K
(Co2Nb), 7.3 K (CoFeNb), and 8.8 K (Fe2Nb), as indicated
by the positions at which the derivative dCp(T )/dT vanishes,
revealing the local maxima of Cp(T ). The measured values of
Cp are prerequisites of a detailed discussion of thermodynamic
properties of the three samples with the focus on the mixed
compound CoFeNb. This paper is organized as follows. On
providing the experimental details in Sec. II, we analyze and

FIG. 2. Observed (symbols), calculated (solid line), and dif-
ference (observed-calculated; bottom solid line) x-ray diffraction
profiles at 300 K for CoFeNb indicate the positions of the Bragg
reflections for tetragonal phase with space group I41/a.

discuss the thermal behavior in zero applied field in Sec. III.
Then in Sec. IV, we go on to describe an extraction procedure
of the magnetic contribution to the heat capacity. Section V is
devoted to the calculation and discussion of the MCE of the
studied samples with some comments on its practical aspects.
We close the paper in Sec. VI with general conclusions.

II. EXPERIMENTAL

The polycrystalline samples of Co2Nb, Fe2Nb were
synthesized according to the procedures reported in
Ref. [54], while the CoFeNb solid-state solution was
synthesized according to a modified procedure. A solution of
(NH4)2Fe(SO4)2 · 6H2O (39 mg, 0.1 mmol), CoCl2 · 6H2O
(23 mg, 0.1 mmol), and pyrazole (82 mg, 1.2 mmol) in
degassed water (3 mL) was added dropwise to the degassed
aqueous solution (3 mL) of K4Nb(CN)8 · 2H2O (50 mg,
0.1 mmol). A violet precipitate formed immediately. The
suspension was stirred for 5 min, filtered, and dried shortly in
air. The violet powder was stored at low temperature due to
slight sensitivity to air.

The combustion analysis (C, H, N) was performed using an
Elementar vario MICRO cube elemental analyzer. ICP-OES
analysis (Co, Fe, Nb) was performed using a Perkin Elmer,
ICP-OES Optima 2100D instrument (45.68 mg sample dis-
solved in aqueous EDTA solution). Analysis calculated for
C32CoFeH40N24NbO4: C, 37.22; H, 3.90; Co, 5.71; Fe, 5.41;
N, 32.56; Nb, 9.0. ICP-OES (Co, Fe, Nb) and combustion
analysis (C, H, N) found: C, 36.82; H; 3.85; Co, 6.11; Fe,
5.82; N, 31.99; Nb, 8.7. The powder x-ray diffraction pat-
tern for CoFeNb was recorded at room temperature using a
PANalytical X’Pert PRO MPD diffractometer (Cu Kα x-ray
radiation 1.541874 Å). It was identified with the FULLPROF

program [60] based on the Rietveld method [61]. The best
fit was obtained with the assumption of a tetragonal struc-
ture identical to that for Co2Nb, Fe2Nb (space group: I41/a;
lattice parameters: a = 21.633(6) Å, c = 9.619(4) Å; cell
volume: 4501.6 Å3; R-factors, not corrected for background:
Rp = 4.79, Rwp = 6.61, Rexp = 4.70, χ2 = 1.97), see Fig. 2.
There were no traces of distortion or the second phase. For
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FIG. 3. Zero-field heat capacity in terms of Cp (full symbols) and
Cp/T (open symbols) of the studied samples in the low-temperature
regime.

the CoFeNb compound, it was not possible to distinguish the
positions of Co and Fe atoms in the powder x-ray diffraction
pattern, as they occupy the same 8c Wyckoff position [62].

The heat capacity measurements were carried out with
the PPMS Quantum Design instrument by the relaxation
calorimetry technique. The measurements were performed in
two independent stages. In the high-temperature stage, using
polycrystalline samples of mass 1.7504 mg (Co2Nb), 2.2627
mg (CoFeNb), and 2.0087 mg (Fe2Nb) pressed to form small
pellets, the heat capacity was detected in the cooling direction
in the temperature range of 1.9–101 K without applied field by
the standard probe cooled with 4He. In the low-temperature
stage, employing the 3He probe and using polycrystalline
samples of mass 1.5417 mg (Co2Nb), 2.4641 mg (CoFeNb),
and 3.3189 mg (Fe2Nb) pressed to form small pellets, the heat
capacity measurements were run in the cooling direction in
the temperature range of 0.36–20.2 K without applied field as
well as in the field of μ0H = 0.1, 0.2, 0.5, 1, 2, 5, and 9 T.
Since the heat capacity data measured with the 3He system at
high temperatures and the data detected with the 4He system
at low temperatures are generally incorrect, we decided to use
the zero-field data provided by the former system <20 K and
those provided by the latter system >20 K.

III. ZERO-FIELD HEAT CAPACITY

In the beginning, let us focus on the zero-field data. Fig-
ure 3 shows the zero-field heat capacity in the range 0.36–20 K
for the studied samples. All three samples reveal anomalies
which can be assigned to the second-order phase transition
to a magnetically ordered phase. The transition temperatures
of the compounds are 4.9 K (Co2Nb), 7.3 K (CoFeNb), and
8.8 K (Fe2Nb), as indicated by the positions at which the
derivative dCp(T )/dT vanishes, revealing the local maxima
of Cp(T ). The uncertainty related to these values was esti-
mated to amount to 0.1 K. Let us stress that, for the mixed
compound CoFeNb, we observe a single anomaly with the
transition temperature placed between the transition temper-
atures of the pure samples Co2Nb and Fe2Nb, which implies
that the sample is a single-phase one with the metal sites
occupied randomly by the Co(II) and Fe(II) ions according

TABLE I. Constituent metal nuclei [63].

Nucleus Spin quantum number I Abundance (%)

59Co 7
2 100

54Fe 0 5.845
56Fe 0 91.754
57Fe 1

2 2.119
58Fe 0 0.282
93Nb 9

2 100

to the expected ratio 1:1 (a proper mixture), and thus, no
phase decomposition takes place. Moreover, the transition
temperature of CoFeNb compares well with the value of 7.1 K
predicted by the molecular field model, see Eq. (A7) in the
Appendix.

The following analysis aims to calculate consistently the
thermodynamic functions based on the heat capacity data. To
do it correctly, one needs the extrapolation of the heat capacity
data in the experimentally missing temperature interval of 0–
0.36 K. The correct extrapolation must consider the nuclear
contributions to the heat capacity. Table I shows the spin states
together with the abundances of the constituent nuclei.

It thus turns out that we must account for the nonzero
nuclear spin of the Co and Nb ions, while the nuclear contri-
bution of the Fe ion may be safely neglected. To quantify the
nuclear contribution to the heat capacity, we assume that the
ground state of either nucleus is split due to the local magnetic
field. The energy of this splitting is given by the following
formula:

E (MI ) = AMI (MI = −I,−I + 1, . . . , I − 1, I ),

where A (in units of energy) is proportional to the local field
strength, and I denotes the nuclear spin quantum number. The
corresponding contribution to the molar specific heat has the
following form:

Cn(β; A, I ) = 1

4
R(βA)2

[
4I (I + 1)

− (2I+1)2ctgh2

(
2I + 1

2
βA

)
+ ctgh2

(
βA

2

)]
,

(1)

where β = 1/kBT . Apart from the contribution from the
nuclear magnetism, at low temperatures, we expect a con-
tribution from the ionic magnetism and lattice vibrations.
The former involves the effects due to the long-range or-
der (magnons), the interaction with the local magnetic field
present in the ordered phase, and the hyperfine interaction
of the ionic spins. In addition, we expect the hyperfine field
to be lower than the local field due to the long-range order,
and additionally, the corresponding heat capacity contribu-
tion is expected to be substantially altered by the long-range
correlations. All these effects give rise to a single correlated
contribution, which we assume to be an increasing function
of temperature. Likewise, the lattice contribution is expected
to be an increasing function of temperature. We therefore
represent the contribution from the ionic magnetism and lat-
tice vibrations by a single algebraic term BT C . Thus, the

214428-4



COMPREHENSIVE THERMODYNAMIC STUDY OF THREE … PHYSICAL REVIEW B 104, 214428 (2021)

FIG. 4. Extrapolation of the zero-field heat capacity data down
to 0 K. The Schottky anomalies corresponding to the nuclear mag-
netism of the samples are apparent.

low-temperature molar specific heat of the samples takes on
the following form:

CLT(Co2Nb) = 2Cn
(
β; ACo,

7
2

) + Cn
(
β; ANb,

9
2

) + B1T C1 ,

(2)

CLT(CoFeNb) = Cn
(
β; ACo,

7
2

) + Cn
(
β; ANb,

9
2

) + B2T C2 ,

(3)

CLT(Fe2Nb) = Cn
(
β; ANb,

9
2

) + B3T C3 , (4)

where Bi and Ci (i = 1,2,3) are the coefficients of the al-
gebraic term corresponding to the three compounds under
study, respectively. We performed a simultaneous fit of the
formulas in Eqs. (2)–(4) to the experimental data within
the temperature range 0.36–0.75 K with all parameters ACo,
ANb, Bi, Ci (i = 1,2,3) relaxed, but this implied unaccept-
able errors for quantities ACo and ANb. It was only after
assuming that ACo = ANb = Ā that the fit was perfectly
convergent, yielding ACo = ANb = Ā = 0.0060(3)K, B1 =
0.70(1) J K–1 mol–1, C1 = 2.27(5), B2 = 0.42(1) J K–1 mol–1,
C2 = 2.05(6), B3 = 0.366(8) J K–1 mol–1, C3 = 1.84(5). The
values of exponents Ci (i = 1,2,3) are placed between 1.5
and 3, which might be expected for the temperature interval
<1 K, where the magnetic contribution (∼ T 3/2) dominates
the lattice contribution (∼ T 3). Furthermore, using the fitted
value of Ā and employing the relation

Bint = kBĀ(K )I

μ(μN)μN
(

J
T

) , (5)

where μN = 5.050783699(31) × 10–27 J T–1 is the nuclear
magneton [64], and μ is the nuclear moment expressed in
nuclear magnetons (μCo = 4.627(9), μNb = 6.1705(3) [65]),
one can estimate the magnitude of the local magnetic field.
One hence obtains Bint,Co = 12.4(6) T at the Co nucleus and
Bint,Nb = 12.0(6) T at the Nb nucleus, both of which are on
the plausible order of magnitude. Thus, it may be concluded
that the extrapolation of the heat capacities down to 0 K is
credible. Figure 4 shows the result of the extrapolation. The
Schottky anomalies corresponding to the nuclear magnetism
of the samples are apparent.

FIG. 5. Temperature dependence of the enthalpies of the studied
samples. Inset: The full range data.

Now that the extrapolations are ready to use, we can deter-
mine the thermodynamic functions. They were numerically
calculated using the following formulas:

H (T ) =
∫ T

0
Cp(T ′)dT ′, (6)

S(T ) =
∫ T

0

Cp(T ′)
T ′ dT ′, (7)

G(T ) = H (T ) − T S(T ), (8)

where Cp denotes the molar specific heat, H the enthalpy, S the
entropy, and G the Gibbs free energy. Figures 5–7 show the
temperature dependence of the enthalpies, entropies, and the
Gibbs free energies of the studied compounds, respectively.

Figure 7 shows the closeup of the Gibbs free energies of
the studied samples. The points corresponding to the mixed
sample CoFeNb are placed in between the points correspond-
ing to the pure compounds Co2Nb and Fe2Nb, which might
have been expected. The black solid line shows the value of
the equally weighted average of the Gibbs energies of the pure
compounds: Gavg = [G(Co2Nb) + G(Fe2Nb)]/2. The points
of the mixed sample (green circles) lie slightly above the black

FIG. 6. Temperature dependence of the entropies of the studied
samples. Inset: The low-temperature closeup.
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FIG. 7. Temperature dependence of the Gibbs free energies of
the studied samples. Inset: The full range data.

curve, indicating that there is a positive excess Gibbs energy.
Figure 8 shows the temperature dependence of the excess
Gibbs energy �Gmix = G(CoFeNb) − Gavg, the excess en-
thalpy �Hmix = H (CoFeNb) − Havg, and the excess entropy
�Smix = S(CoFeNb) − Savg, which can be interpreted as the
Gibbs free energy, the enthalpy, and the entropy of mixing,
respectively.

Indeed, the Gibbs free energy of mixing �Gmix is posi-
tive in the full temperature range, which suggests that there
is an additional energy input in the mixed sample CoFeNb
compared with the pure ones. This excess energy is most
probably due to a slight misfit of the two different ions ac-
commodated in a single crystal structure [62]. For the sake
of argument, let us express the value of �Gmix observed
at 100 K in terms of temperature, i.e., �Tmix = �Gmix/R,
where R = 8.3144598(48) J K–1 mol–1 is the molar gas con-
stant [64]. One readily obtains that �Tmix = 25.8 K, which
is one order of magnitude lower than the average energy
of thermal fluctuations at that temperature (100 K). With
G(CoFeNb) > [G(Co2Nb) + G(Fe2Nb)]/2 (�Gmix > 0), the
mixed sample resides most probably in some metastable state
with the energy barrier exceeding the energy of thermal fluc-
tuations and preventing the system from phase separation. It

FIG. 8. Temperature dependence of the excess Gibbs free en-
ergy, the excess enthalpy, and the excess entropy of the solid-state
solution CoFeNb (solid symbols) and the unbalanced composition
corresponding to x = 0.46 (open symbols).

could seem that the situation would change if we used the
experimental value of the population fraction x, but it is not the
case. Moreover, the combustion analysis of the key transition
elements Co and Fe implies ambiguous values for x = 0.54
and 0.46, respectively. It can be admittedly shown that �Gmix

becomes negative in the limited interval of low temperatures
for x = 0.46; however, its depth does not exceed −25 J mol–1,
and it displays an increasing trend with positive values >60 K
again (see open symbols in Fig. 8).

At the same time, the enthalpy of mixing �Hmix is negative
in the full temperature range. To understand the implications
of this fact, let us assume that there are N lattice sites in the
crystal structure on which substitution takes place, and each
such lattice site is surrounded by z nearest neighboring sites
belonging to this set. Then the total number of the nearest-
neighbor bonds is 1

2 Nz, where the factor 1
2 arises since there

are two ions per bond. Next, let the energy associated with
Co-Co, Fe-Fe, and Co-Fe nearest-neighbor pairs be, respec-
tively, ECoCo, EFeFe, and ECoFe. If the Co and Fe ions are mixed
randomly, then the probability of Co-Co, Fe-Fe, and Co-Fe
neighbors is x2, (1−x)2, and 2x(1−x), respectively, where x
denotes the mole fraction of the Co ions. Hence, the total
enthalpy of the solid solution is given by

H = 1
2 Nz[x2ECoCo + (1 − x)2EFeFe + 2x(1 − x)ECoFe], (9)

which can be rearranged to read

H = 1
2 Nz[xECoCo + (1 − x)EFeFe]

+ 1
2 Nzx(1 − x)(2ECoFe − ECoCo − EFeFe). (10)

The first term in Eq. (10) corresponds to the enthalpy
of the mechanical mixture, while the second term may be
interpreted as the excess enthalpy of mixing �Hmix. Its
sign is determined by the sign of the interaction parame-
ter Eint = 2ECoFe − ECoCo − EFeFe. The negative value of Eint

(ECoFe < (ECoCo + EFeFe)/2), which is the case with CoFeNb
(�Hmix < 0), indicates that it is energetically more favorable
to have Co-Fe neighbors rather than Co-Co or Fe-Fe neigh-
bors. To minimize the internal energy of the compound, the
number of Co-Fe neighbors should be maximized; thus, the
mixing is favored in the solid solution.

Although the negative values of the enthalpy of mixing
�Hmix can be understood in terms of fostering a mixed ar-
rangement of the Co and Fe ions in the solid solution CoFeNb,
the fact that the excess entropy �Smix is also negative in the
full temperature range is more surprising and more challeng-
ing to rationalize. Assuming that the entropy of the solid
solution is mainly vibrational in origin, i.e., related to the
structural disorder caused by thermal vibrations of the atoms
at finite temperature, let us consider a toy model of a one-
dimensional lattice whose sites may be occupied by two types
of atoms A and B. The pure compounds Co2Nb and Fe2Nb
correspond to the configurations where the sites are occupied
exclusively either by A- or B-type atoms, while the solid so-
lution CoFeNb is tantamount to the configuration where there
are exactly as many A- as B-type atoms in the system, and
either they are randomly distributed over the lattice sites, or
their distribution is ordered with an alternating arrangement of
the atoms forming the …ABABAB … chain. Figure 9 shows
the four different configurations.
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FIG. 9. The four different configurations of the one-dimensional
lattice considered in the toy model. (1) The configuration cor-
responding to the pure compound Co2Nb. (2) The configuration
corresponding to the pure compound Fe2Nb. (3) The configuration
corresponding to the solid solution CoFeNb with the disordered
distribution of the constituent atoms. (4) The configuration corre-
sponding to the solid solution CoFeNb with the ordered distribution
of the constituent atoms.

For configurations (1)–(3), the lattice involves a
monoatomic basis with atoms of mass m1, m2, and
(m1 + m2)/2 (the equally weighted mean of the masses
of the individual atoms), respectively. The corresponding
phonon spectrum is defined by the following dispersion
relation:

ω(i)(ka) = 2

√
k f

m(i)

∣∣∣∣sin

(
1

2
ka

)∣∣∣∣ with

−π � ka � π (i = 1, 2, 3), (11)

where k f is the force constant, m(i) is the mass of the atom, k
is the wave vector, and a is the distance between the nearest
neighbors (the lattice constant). The basis of the lattice con-
figuration (4) is diatomic (there is an alternating arrangement
of atoms of mass m1 and m2), which leads to the presence
of two branches in the phonon spectrum with the following
dispersion relation:

ω
(4)
± (ka) =

√
k f

μ

√√√√
1 ±

√
1 − 4

(
μ

m

)2

sin2(ka) with

−π

2
� ka � π

2
, (12)

where + corresponds to the optical branch, while – to the
acoustic branch, μ = m1m2/(m1 + m2), m = √

m1m2, and a
is still the distance between the nearest neighbors (the lattice
constant being now 2a). Knowing that the entropy associated
with a single phonon mode of circular frequency ω at temper-
ature T is given by the formula

Svib(ω)

kB
= β h̄ω

eβ h̄ω − 1
− ln(1 − e−β h̄ω ), (13)

where β = 1/kBT , one can calculate the molar vibrational
entropy of the four lattice configurations in the continuous
limit using the formulas

S(i)
vib

R
= 3

2π

∫ π

−π

dξSvib[ω(i)(ξ )] (i = 1, 2, 3), (14)

S(4)
vib

R
= 3

2π

∫ π/2

−π/2
dξ{Svib[ω+(ξ )] + Svib[ω−(ξ )]}, (15)

FIG. 10. The temperature dependence of �S(4)
mix(δ) for several

indicated values of δ. It is apparent that stiffening of the lattice
(δ > 0) leads to negative values of the entropy of mixing.

where R is the molar gas constant, and factor 3 accounts
for one longitudinal and two transverse modes. Assuming
m1 = mCo = 58.933194u, m2 = mFe = 55.845 u [64], k f =
520 N m–1 (typical for a single bond like in HCl), which re-
turns the reference energy scale of lattice vibrations Tvib,0 =
h̄
√

k f /μ/kB = 800 K, and allowing for a change of Tvib =
Tvib,0[1 + δ(%)/100] within some range for mixed configu-
rations (3) and (4), as induced by a possible change of the
force constant k f , we calculated the corresponding entropies
of mixing defined by

�S( j)
mix(δ) = S( j)

vib(δ) − S(1)
vib + S(2)

vib

2
( j = 3, 4). (16)

Figure 10 shows the temperature dependence of �S(4)
mix(δ)

for an array of values of δ = − 10, − 5, − 3, − 1, 0, 1, 3, 5,
and 10% [a similar plot for �S(3)

mix(δ) is not shown for being al-
most the same]. Stiffening of the lattice (δ > 0), which may be
due to the requirement of accommodating two different atoms
within the same lattice structure, leads to negative values of
the entropy of mixing. This is most probably the case with
our solid solution sample CoFeNb.

Finally, we want to analyze the entropy content of the stud-
ied samples associated with the discrete degrees of freedom,
i.e., nuclear and ionic spins. For this purpose, we choose to
look at the entropy differences between the samples, assuming
that the lattice contributions in all three cases are comparable
and will cancel each other out if we take duly into account
the entropy of mixing for CoFeNb, which was shown above
to be vibrational in origin. Figure 11 shows the result of the
subtractions.

All three differences indicated in Fig. 11 were constructed
to reveal positive values in the whole temperature range.
The differences are peaked at low temperatures, which
is associated with the entropy contributions originating
from the nuclear spins Sn(Co) = Rln(2 × 7/2 + 1) ≈
17.29 J K–1 mol–1 and Sn(Nb) = Rln(2 × 9/2 + 1) ≈
19.14 J K–1 mol–1: with Sn(Co2Nb) ≈ 2Sn(Co) + Sn(Nb),
Sn(Fe2Nb) ≈ Sn(Nb), and Sn(CoFeNb) ≈ Sn(Co) + Sn(Nb),
one arrives at Sn(Co2Nb)-Sn(Fe2Nb) ≈ 2Sn(Co) ≈
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FIG. 11. Temperature dependence of the entropy differences be-
tween the studied samples.

34.58 J K–1 mol–1, Sn(Co2Nb)-Sn(CoFeNb) ≈ Sn(Co) ≈
17.29 J K–1 mol–1, and Sn(CoFeNb)-Sn(Fe2Nb) ≈ Sn(Co) ≈
17.29 J K–1 mol–1, which is roughly consistent with the
peak heights. With increasing temperature, the differences
decrease and approach something close to saturation at the
high-temperature limit, which should be so if the lattice
contributions should cancel out. We can estimate the values
of the entropy differences expected at high temperatures
by assuming that the ionic spin contributions are saturated
there. The spin of the Fe(II) ion is SFe = 2, the spin of the
Nb(IV) ion amounts to SNb = 1

2 , while the spin of the Co(II)
ion is taken to be equal to SCo = 1

2 , as we assume that,
<100 K, essentially only the ground sate of the Co(II) ion is
populated, which is the Kramers doublet originating from the
crystal-field split multiplet corresponding to the full spin of
3
2 . One thus obtains

SCo2Nb = S0 + R[2 ln (2SCo + 1) + ln (2SNb + 1)]

+ 2Sn(Co) + Sn(Nb)

≈ 71.01 J K−1 mol−1, (17)

SCoFeNb = S0 + R[ln (2SCo + 1) + ln (2SFe + 1)

+ ln (2SNb + 1)] + Sn(Co) + Sn(Nb) + δS

≈ 57.09 J K−1 mol−1, (18)

SFe2Nb = S0 + R[2 ln (2SFe + 1)

+ ln (2SNb + 1)] + Sn(Nb)

≈ 51.67 J K−1 mol−1, (19)

where S0 is the component derived from the basal (the same
for all three compounds) lattice contribution to the specific
heat, and δS = �Smix(100 K) ≈ −4.25 J K–1 mol–1 is a cor-
rection accounting for the changes of the lattice contribution
of the mixed compound. The corresponding estimates read

�S1 = SCo2Nb − SFe2Nb ≈ 19.34 J K−1 mol−1, (20)

�S2 = SCo2Nb − SCoFeNb ≈ 13.92 J K−1 mol−1, (21)

�S3 = SCoFeNb − SFe2Nb ≈ 5.42 J K−1 mol−1, (22)

FIG. 12. The calculated normal heat capacities of the studied
compounds.

and are depicted in Fig. 11 with dotted lines. They roughly
agree with the observed values corroborating the assumed
ionic spin content of the samples.

IV. MAGNETIC CONTRIBUTION TO HEAT CAPACITY

In general, the measured heat capacity is a conglomerate
of several contributions stemming from various degrees of
freedom. Except for the fortuitous case of a sharp transi-
tion phenomenon, the task to subdivide a total heat capacity
among each contribution is far from straightforward. One of
the most widely adopted approaches is to calculate the lattice
heat capacity by adopting a plausible Debye temperature or a
pair of Debye and/or Einstein temperatures [66–68]. A corre-
sponding states method [69], a temperature derivative method
[70], or a temperature-dependent Debye temperature method
[71] count among other successful case-sensitive methods
of separation. In the case under study, however, all these
methods are not useful as the heat capacity anomalies due
to magnetic interaction are extended over a wide temperature
region. We therefore take an approach whose main principle
is to calculate the lattice contribution based on a reasonable
frequency spectrum, see Ref. [72] for detail. The measured
heat capacities in the full temperature range were fitted using
the following function:

Cp = Cnormal + cT −2, , (23)

where

Cnormal = Debye functions + Einstein functions (24)

is the sought-after lattice contribution to the heat capacity.
The characteristic frequencies of the Einstein contributions
were based on the known intramolecular vibrations for pyra-
zole [73], the water molecule [74], and the CN– ligand [54],
while the Debye cutoff frequencies were determined through
the fit. The second term in Eq. (23) corresponds to the
high-temperature contribution due to the magnetic short-range
order. Table II lists the best fit parameters for the three studied
compounds.

Using parameters in Table II, the normal (lattice) heat
capacities were calculated, see Fig. 12. It is apparent that
they almost perfectly overlap in the experimental window
of 0.36–100 K. It is only >110 K that they start to diverge,
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TABLE II. The best fit parameters yielded in the procedure determining the normal heat capacities.

Co2Nb CoFeNb Fe2Nb

c (J K mol–1) 1303.10 c (J K mol–1) 3912.30 c (J K mol–1) 4534.10

Symbol Frequency (cm–1) Degeneracy Symbol Frequency (cm–1) Degeneracy Symbol Frequency (cm–1) Degeneracy

Known Einstein functions (>700 cm–1)
νE1 3755.79 4 νE1 3755.79 4 νE1 3755.79 4
νE2 3656.65 4 νE2 3656.65 4 νE2 3656.65 4
νE3 3523.2 8 νE3 3523.2 8 νE3 3523.2 8
νE4 3154.5 8 νE4 3154.5 8 νE4 3154.5 8
νE5 3136.5 8 νE5 3136.5 8 νE5 3136.5 8
νE6 3125.8 8 νE6 3125.8 8 νE6 3125.8 8
νE7 2123 8 νE7 2123 4 νE7 2119 8
νE8 1594.59 4 νE8 2119 4 νE8 1594.59 4
νE9 1530.9 8 νE9 1594.59 4 νE9 1530.9 8
νE10 1447.2 8 νE10 1530.9 8 νE10 1447.2 8
νE11 1394.5 8 νE11 1447.2 8 νE11 1394.5 8
νE12 1357.5 8 νE12 1394.5 8 νE12 1357.5 8
νE13 1254.0 8 νE13 1357.5 8 νE13 1254.0 8
νE14 1158.6 8 νE14 1254.0 8 νE14 1158.6 8
νE15 1121.0 8 νE15 1158.6 8 νE15 1121.0 8
νE16 1054.3 8 νE16 1121.0 8 νE16 1054.3 8
νE17 1008.6 8 νE17 1054.3 8 νE17 1008.6 8
νE18 923.6 8 νE18 1008.6 8 νE18 923.6 8
νE19 908.2 8 νE19 923.6 8 νE19 908.2 8
νE20 878.8 8 νE20 908.2 8 νE20 878.8 8
νE21 832.9 8 νE21 878.8 8 νE21 832.9 8
νE22 745.0 8 νE22 832.9 8 νE22 745.0 8

νE23 745.0 8
Debye functions

νD1 70 15.43 νD1 80 19.86 νD1 80 21.90
νD2 160 44.16 νD2 170 42.57 νD2 170 39.93

Box Einstein functions (<700 cm–1)
νE1,L 160 36.64 νE1,L 170 33.89 νE1,L 170 37.17
νE1,H 340 36.64 νE1,H 346.67 33.89 νE1,H 346.67 37.17
νE2,L 340 10.42 νE2,L 346.67 15.06 νE2,L 346.67 3.67
νE2,H 520 10.42 νE2,H 523.33 15.06 νE2,H 523.33 3.67
νE3,L 520 59.25 νE3,L 523.33 29.59 νE3,L 523.33 75.06
νE3,H 700 59.25 νE3,H 700 29.59 νE4,H 700 75.06

satisfying the relation Cnormal(Fe2Nb) > Cnormal(Co2Nb) >

Cnormal(CoFeNb). This trend implies �Snormal(Fe2Nb) >

�Snormal(Co2Nb) > �Snormal(CoFeNb), which is consistent
with the entropy reduction due to the enhanced lattice stiff-
ness for the mixed compound, as argued in Sec. III. The
thus-obtained normal heat capacities were used to extract
the magnetic contributions to the heat capacity Cmag = Cp −
Cnormal. The results of the subtractions are shown in Fig. 13.
In zero field, we observe clear maxima at 4.87(8), 7.1(2),
and 8.44(3) K for Co2Nb, CoFeNb, and Fe2Nb, respectively,
determined by the roots of dCmag/dT and corresponding to
the transition points of the long-range magnetically ordered
phase. Being only slightly shifted toward lower temperatures,
they compare well with the values implied by the total heat ca-
pacities (see Fig. 3) and should be treated as the best estimates
of the positions of the second-order phase transitions observed
in the studied samples [62]. With increasing magnetic field,
the peaks shift toward high temperatures, becoming more and

more dispersed, and finally, they disappear in the field of 9 T.
Figure 13 shows the data in the restricted range of 0–23 K;
however, the zero-field data extend further up the temperature
scale, displaying nonzero values up to Tf = 76.7, 82.8, and
99.0 K for Co2Nb, CoFeNb, and Fe2Nb, respectively.

To estimate the entropies associated with the zero-field
magnetic heat capacities, one needs to approximate the low-
temperature behavior of the latter. We used the following
function:

Cmag,LT = a

T 2
exp

(
− b

T

)
+ d

T 2
, (25)

where the first term corresponds to the low-temperature mag-
netic contribution from the electronic degrees of freedom,
while the second term accounts collectively for the hyperfine
splitting of the 59Co and 93Nb nuclei. Fitting the function in
Eq. (25) to the magnetic heat capacities in the range 0.36–
0.49 K, one obtains a = 4.2(4) J K mol–1, b = 2.50(5) K,
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FIG. 13. Magnetic contributions to the heat capacity for the stud-
ied compounds. For the sake of clarity, the datasets corresponding to
the nonzero field values have been shifted up successively by 5 units.

d = 0.0116(2) J K mol–1, a=1.57(9) J K mol–1, b=2.09(3) K,
d = 0.0053(2) J K mol–1, and a = 1.41(9) J K mol–1, b =
2.03(3) K, d = 0.0038(2) J K mol–1 for Co2Nb, CoFeNb, and
Fe2Nb, respectively. The total magnetic entropy involves four
contributions: the first contribution �S1 originates from the
extrapolation of the magnetic heat capacity down to zero
temperature; it is obtained by logarithmically integrating the
first term in Eq. (25) with the best-fit parameter values in
the range of 0–0.36 K; the second contribution �S2 is calcu-
lated by numerically integrating the magnetic heat capacity in
the range of 0.36 K–Tf , �S2 = ∫ Tf

0.36 Cmag(T )d ln T ; the third
contribution �S3 is due to the high-temperature magnetic
heat capacity tail, it is obtained by logarithmically integrating
the second term in Eq. (23) in the temperature range Tf -∞
yielding �S3 = cT −2

f /2; and finally, the last contribution �S4

originates from the high-temperature tail of the nuclear con-
tribution to the magnetic heat capacity given by the second
term in Eq. (25); it is calculated by logarithmically integrating
this term with the best-fit parameter value in the range of
0.36 K-�, giving �S4 = 3.85802d , and should be subtracted
from the total, leaving exclusively the contributions from the
electronic degrees of freedom �Smag = �S1 + �S2 + �S3 −
�S4. Table III collects the results of magnetic entropy calcu-
lations for the studied compounds.

TABLE III. The results of magnetic entropy calculations;
�Smag = �S1 + �S2 + �S3 − �S4.

Entropy (J K–1 mol–1) Co2Nb CoFeNb Fe2Nb

�S1 0.0054 0.0074 0.0082
�S2 16.8728 24.7126 26.8012
�S3 0.1106 0.2850 0.2311
�S4 0.0441 0.0203 0.0147
�Smag 16.94 24.98 27.03
�Scalc 17.29 24.91 32.53

The last row in Table III shows the expected magnetic
entropies due to the electronic degrees of freedom, calculated
assuming the following spin states of the constitutive ions:
SCo = 1

2 , SFe = 2, and SNb = 1
2 . These values compare well

with the experimental ones for Co2Nb and CoFeNb, while for
Fe2Nb, the experimental value is largely underestimated. This
may be attributed to a possible overestimation of the normal
heat capacity in this case and/or to an effective attenuation
of the spin of the Fe(II) ion due to a possible magnetocrys-
talline anisotropy. The latter would be consistent with the
magnetization data at 2 K, cf. Fig. 6(b) in Ref. [54], where
the theoretical mean-field curve (black solid line) obtained,
assuming the high spin state of the Fe(II) ion, i.e., SFe =
2, systematically exceeds the experimental points (blue full
circles). Indeed, �Scalc calculated with SFe ≈ 3

2 amounts to
28.82 J K–1 mol–1, which is closer to the experimental value
of 27.03 J K–1 mol–1. Except for Fe2Nb, the magnetic en-
tropies inferred from the experimental data �Smag exceed
those calculated based on the presupposed spin content �Scalc.
This is due to the assumption that the spin of the Co(II)
ion is equal to SCo = 1

2 , which corresponds to the ground
Kramers doublet being exclusively populated. This is the case
at sufficiently low temperatures; however, at higher tempera-
tures, the excited Kramers doublets become more and more
populated, enhancing the spin value toward the free-ion one
SCo = 3

2 .
A comment may be in order here. Let us note that the best

fit values of the parameters in Eq. (25) are not randomly dis-
tributed but display a monotonous decrease from compound to
compound, i.e., a(b, d )Co2Nb > a(b, d )CoFeNb > a(b, d )Fe2Nb.
That decrease of parameter d is consistent with the de-
crease of nuclear spin contributions observed for the studied
compounds (twice the contribution from 59Co plus once the
contribution from 93Nb for Co2Nb, once the contribution
from 59Co plus once the contribution from 93Nb for CoFeNb,
and once the contribution from 93Nb for Fe2Nb). This ten-
dency is consistently reflected in the correction entropy term
�S4 for which we have �S4(Co2Nb) > �S4(CoFeNb) >

�S4(Fe2Nb). Similarly, the decreasing trend of parameter
b, placed in the negative exponent, reflects the increasing
trend in the electronic low-temperature spin content (twice
spin 1

2 of Co(II) plus once spin 1
2 of Nb(IV) for Co2Nb,

once spin 1
2 of Co(II) plus once spin 2 of Fe(II) plus once

spin 1
2 of Nb(IV) for CoFeNb, twice spin 2 of Fe(II) plus

once spin 1
2 of Nb(IV) for Fe2Nb). It is more difficult to

explain the decreasing trend of the multiplicative parameter
a because of possible correlations with parameter b; however,
the increasing trend in the electronic spin content is consis-
tently reflected in the low-temperature entropy contribution
�S1 for which we have �S1(Co2Nb) < �S1(CoFeNb) <

�S1(Fe2Nb). The best fit values of parameter c in Eq. (23)
cCo2Nb < cCoFeNb < cFe2Nb reflect likewise the increasing trend
in the electronic spin content. Correction �S3, for which
we have �S3(Co2Nb) < �S3(CoFeNb) > �S3(Fe2Nb), dis-
plays admittedly a different trend, but it correctly re-
flects the expected attenuation of the short-range order
in the mixed compound. In conclusion, the reported
procedure amply deserves to be deemed reliable and
convincing.
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FIG. 14. Temperature dependence of the isothermal entropy change �SM in the magnetization direction (upper panel), the adiabatic
temperature change �Tad in the magnetization direction (middle panel), and the adiabatic temperature change �Tad in the demagnetization
direction (lower panel) for an indicated array of magnetic field change values. Black open symbols in the panels displaying �SM and �Tad in
the magnetization direction for Fe2Nb show the data obtained independently and published in Ref. [58]; the agreement is close to perfect.

V. MCE

A. Isothermal entropy change �SM and adiabatic
temperature change �Tad

The two main MCE characteristics of the studied com-
pound, i.e., the temperature dependence of the isothermal
entropy change �SM and the adiabatic temperature change
�Tad, were determined indirectly using the measured heat ca-
pacity values. Here, �SM was calculated using the following
formula:

�SM(T,�H = 0 → H )

≡ �SM(T, H )

=
∫ T

Tmin

Cp(T ′, H ) − Cp(T ′, H = 0)

T ′ dT ′, (26)

where Tmin denotes the left boundary of the experimental
window. In this way, we deliberately neglect the entropy
contribution in the interval (0, Tmin), which involves both the
nuclear contribution as well as the contribution from elec-
tronic degrees of freedom. While the former contribution is
difficult to follow, especially in nonzero magnetic field, the
uncertainty associated with the latter one is on the order of
the contribution �S1 in Table III. The electronic contribution
to the specific heat is associated with the localized electrons

residing on the outermost shells of the Co(II) and Fe(II) ions;
thus, it is magnetic in character (the studied compounds are
isolators, so no contribution from the itinerant electrons is
present). The adiabatic temperature change �Tad was esti-
mated based on the following formula:

�Tad(Hi → Hf ) = [T (S, Hf ) − T (S, Hi )]S, (27)

which requires the inversion of the temperature dependence
of the total entropy S(T , H) calculated similarly with the
lower cutoff temperature Tmin. While �SM was calculated in
the magnetization direction, where the magnetic field change
consists of switching on the field Hi = 0 → Hf = H , �Tad

was calculated additionally in the demagnetization direction
involving switching off of the field, i.e., Hi = H → Hf = 0.
Figure 14 collects the corresponding results.

It is apparent from Fig. 14 that, while the amplitudes of
both quantities increase with increasing field change values,
they show a deceasing trend when looking from compound
Co2Nb through CoFeNb to Fe2Nb. The former behavior may
be attributed to the effect of quenching the magnetic entropy
by the application of the magnetic field, i.e., the stronger the
field, the larger the quench. To understand the latter effect,
let us note that the signals of |�SM| and |�Tad| are con-
sistently centered around the corresponding phase transition
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TABLE IV. Peak values of quantities �SM and �Tad.

Magnetization Demagnetization

μ0�H (T) Tmax (K) |�SM|max (J K–1 mol–1) Tmax (K) �T max
ad (K) Tmax (K) |�Tad|max (K)

Co2Nb [Tc = 4.87(8) K]
0.1 5.08 0.46 5.42 0.20 5.62 0.20
0.2 5.34 0.85 5.24 0.39 5.62 0.39
0.5 5.33 1.78 5.34 0.87 6.21 0.87
1 5.60 2.83 5.39 1.46 6.85 1.46
2 5.59 4.41 5.25 2.38 7.63 2.38
5 6.91 7.04 5.25 4.16 9.41 4.16
9 8.94 8.75 5.15 5.28 10.43 5.28

CoFeNb [Tc = 7.1(2) K]
0.1 7.23 0.23 7.52 0.10 7.62 0.10
0.2 7.22 0.43 7.43 0.19 7.62 0.19
0.5 7.61 0.94 7.59 0.42 8.01 0.42
1 7.99 1.53 7.72 0.69 8.41 0.69
2 7.99 2.77 7.57 1.28 8.86 1.28
5 9.32 5.26 7.34 2.47 9.81 2.47
9 10.88 7.33 7.45 3.42 10.88 3.42

Fe2Nb [Tc = 8.44(3) K]
0.1 8.89 0.27 8.78 0.11 8.89 0.11
0.2 8.89 0.50 8.70 0.19 8.89 0.19
0.5 8.88 1.02 8.95 0.40 9.35 0.40
1 9.32 1.56 8.70 0.62 9.32 0.62
2 9.32 2.69 8.73 1.08 9.81 1.08
5 10.33 4.93 8.86 2.01 10.87 2.01
9 12.05 6.94 8.65 2.80 11.45 2.80

temperatures which shift rightward from sample to sample. In
addition, Fig. 13 implies that the thermal effects �Q(H ) =∫

Cmag(H )dT associated with the three samples are compara-
ble. Then the entropic effect �S(T, H ) ∝ �Q(H )/T becomes
roughly inversely proportional to temperature, i.e., the higher
the temperature, the smaller the entropy changes. Table IV
collects the peak values of the quantities �SM and �Tad for
the three compounds.

Table IV shows that the peak temperatures Tmax are
all placed above the transition temperature points Tc. For
the isothermal entropy change |�SM| as well as the adi-
abatic temperature change |�Tad| in the demagnetization
mode, the peak temperatures shift visibly toward higher tem-
peratures with the increasing field change values. In the
case of �Tad in the magnetization mode, no clear trend
in the dependence of Tmax on μ0�H can be observed,
with the peak temperatures being stiffly anchored slightly
above Tc. The values of |�SM|max detected for μ0�H =
5 T amount to 7.04, 5.26, and 4.93 J K–1 mol–1 for Co2Nb,
CoFeNb, and Fe2Nb, respectively, and are on the order of
those obtained for the same field change in the isostruc-
tural compounds {[MII(pyrazole)4]2[NbIV(CN)8] · 4H2O}n

with M = Mn (6.83 J K–1 mol–1, Tc = 22.8 K) and M = Ni
(6.1 J K–1 mol–1, Tc = 13.4 K) [50,51]. Although the spin
value of the Ni(II) center (SNi = 1) is lower than that of the
Fe(II) ion (SFe = 2), the compound with M = Ni shows larger
MCE effect. This may be due to both the local anisotropy
of the Fe(II) center, which is known to affect adversely
the MCE effect [42], as well as the fact that the exchange
coupling in the compound containing Ni(II) is of ferro-

magnetic character [54]. A similar difference occurs for the
compounds with M = Co and Mn, where the effective spin
of the Co(II) ion in the low-temperature regime is as low
as SCo = 1

2 , while the spin of the Mn(II) ion is SMn = 5
2 ,

yet we observe a larger |�SM|max for the first sample than
for the other. This may be understood by remembering that
the Mn compound orders at considerably larger temperature
(∼4.7 times) than the Co2Nb, and the entropic effect is
roughly inversely proportional to temperature, as discussed
above. The values of �Tad detected for μ0�H = 5 T amount
to 4.16, 2.47, and 2.01 J K–1 mol–1 for Co2Nb, CoFeNb, and
Fe2Nb, respectively, and are larger or comparable with those
observed for the same field change for the isostructural com-
pounds {[MII(pyrazole)4]2[NbIV(CN)8] · 4H2O}n with M =
Mn (1.42 K) and M = Ni (2.0 K) [50,51]. They also ex-
ceed those found for Mn2-pyridazine-[Nb(CN)8] (1.5 K for
μ0�H = 5 T) [52] and hexacyanochromate Prussian blue
analogues (1.2 K for μ0�H = 7 T) [47].

It is interesting to look at MCE for the lowest field change
values μ0�H = 0.1, 0.2, 0.5, and 1 T, see Fig. 14. In these
cases, the inverse MCE (heating under adiabatic demagnetiza-
tion) is present above the transition temperature for the three
compounds. The effect increases with increasing field change
value to diminish or completely vanish for μ0�H � 2 T.
A similar effect was observed for the Mn analogue [51]. A
possible explanation could be that the low field cannot reorient
the correlated clusters above the transition temperature, and
the only effect it can cause is the local flipping of the magnetic
moments, which can be seen as a disordering factor. Thus,
there is an additional contribution to the in-field entropy so
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FIG. 15. Temperature dependence of exponent n quantifying the
field dependence of the isothermal entropy change �SM for the three
studied compounds.

that the entropy in zero field is slightly smaller than that in a
nonzero field.

B. Field dependence of MCE

The field dependence of MCE has been studied intensively,
either experimentally [45,51,75,76] or from a theoretical
viewpoint by using the description within the mean-field
model [77] or employing the equation of state of materials
with the second-order magnetic phase transition [78,79]. The
parameter conveniently quantifying the local sensitivity of the
isothermal entropy change to the external field amplitude H =
�H = Hf − Hi(= 0) is exponent n defined by the following
derivative:

n = d ln |�SM|
d ln H

. (28)

The value of n means that, in the vicinity of a given
thermodynamic point (T , H), the entropy change behaves
approximately as Hn. The high-temperature limit of an n vs
T curve, n = 2, is the consequence of the Curie-Weiss law,
where the magnetic entropy change using the following equa-
tion:

�SM(T,�H = Hf − Hi ) =
∫ Hf

Hi

∂M(T, H )

∂T
dH (29)

implied by the Maxwell relation, yields a quadratic field de-
pendence of �SM. The value of n in the low-temperature
regime cannot be easily predicted; however, if the magneti-
zation displays only a weak field dependence there, Eq. (29)
implies n = 1. The temperature dependence of the field-
averaged value of exponent n for the compounds under study,
estimated based on the entropy data in Fig. 14, is shown in
Fig. 15. Parameter n displays a smooth decrease on cooling
from the values ∼2, in agreement with what might be ex-
pected. Next, it attains the minimum of 0.59, 0.71, and 0.68
at 5.08, 7.21, and 8.47 K, i.e., slightly above the transition
temperature, for Co2Nb, CoFeNb, and Fe2Nb, respectively. In
the low-temperature regime, exponent n assumes again a de-
creasing trend, displaying the second minimum at the lowest
temperatures but for compound Fe2Nb. The value of exponent

TABLE V. Temperatures TC and TH. The values marked by an
asterisk correspond to the endpoint entropy data placed above the
half-maximum level.

Co2Nb CoFeNb Fe2Nb

μ0�H (T) TC (K) TH (K) TC (K) TH (K) TC (K) TH (K)

0.1 4.11 5.97 5.57 8.55 7.02 10.01
0.2 4.00 6.30 5.30 8.91 6.83 10.37
0.5 3.88 7.20 5.20 9.91 6.35 11.33
1 3.69 8.28 5.08 10.84 5.84 12.21
2 3.52 10.29 5.01 13.27 5.63 14.85
5 3.62 17.17 4.98 18.77 5.71 20.18*
9 3.89 20.16* 5.16 20.23* 5.79 20.21*

n at the transition temperature Tc has been demonstrated to be
related to the critical exponents of a material [79]:

n|Tc
= 1 + β − 1

β + γ
. (30)

The values of n at Tc practically coincide with its values
at the minima being equal to 0.59, 0.72, and 0.68 for Co2Nb,
CoFeNb, and Fe2Nb, respectively. They are close to the value
of 0.6424(4) obtained with Eq. (30) and the theoretical esti-
mates for the 3D Heisenberg universality class [80], namely,
β = 0.3689(3) and γ = 1.3960(9).

The dashed line in Fig. 15 shows the temperature depen-
dence of exponent n obtained previously and published in
Ref. [58] for Fe2Nb. The corresponding values are lower than
those found here (blue triangles). This is due to the differ-
ence in the method of calculation employed. In Ref. [58], the
exponent was found as the slope of the linear function fit-
ted to the experimental points [ln Hi, ln |�SM(Hi, T )|], where
Hi ∈ {0.1, 0.2, 0.5, 1, 2, 5, 9} T. However, a detailed analysis
revealed that the corresponding points frequently deviate from
the straight line, and consequently, the parameter n becomes
field dependent. We therefore decided to calculate the slope
locally, i.e., ni = ln |�SM(Hi+1,T )/�SM(Hi,T )|

ln(Hi+1/Hi )
, and take the average

n̄ = 1
7

∑7
i=1 ni to represent the final value of the exponent.

C. RC

A commonly accepted measure for the performance of a
substance undergoing a magnetic cooling cycle is the RC,
defined as [81,82]

RC =
∫ TH

TC

�SM(T,�H )dT , (31)

where the temperatures TC and TH of the cold and hot reser-
voir, respectively, are usually selected to cover the full width at
half maximum of the entropy change peak �SM(T,�H ). This
quantity is a measure of how much heat can be transferred
between the cold and hot reservoirs in one ideal refrigeration
cycle. Table V collects the values of TC and TH determined in
the above way for all field change values and all the studied
compounds.

In Fig. 16, the field dependence of RC is shown for the
three studied samples. As might be expected, RC is an in-
creasing function of the field change value. For CoFeNb and
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FIG. 16. Field dependence of the refrigerant capacity for the
studied samples.

Fe2Nb, the RC curves almost coincide, while for Co2Nb, the
RC values exceed those calculated for the remaining com-
pounds. RC for the field change of μ0�H = 5 T amounts to
72.7, 56.5, and 56.3 J kg–1 for Co2Nb, CoFeNb, and Fe2Nb,
respectively. These values are placed below those found for
the same field change for the Mn (132.9 J kg–1) and Ni
(73.1 J kg–1) analogues [50].

D. The Ericsson cycle

Among the thermodynamic cycles, important for magnetic
refrigeration, the regeneration Ericsson cycle is especially
worth mentioning [83,84]. Let us consider two regeneration
Ericsson cycles, referred to in what follows as Ericsson 1
and Ericsson 2 and depicted in the (T , S) plane of Fig. 17
in blue and red, respectively. Cycle Ericsson 1 (A → B →
D → E → A) consists of two isothermal processes (A →
B at temperature TH and D → E at temperature TC) and two
isofield processes (B → D at applied field H and E → A at
zero applied field). Similarly, cycle Ericsson 2 (F → C →
D → E → F) consists of two isothermal processes (F → C
at temperature Tmax and D → E at temperature TC) and two
isofield processes (C → D at applied field H and E → F at
zero applied field). Temperatures TC and TH of the cold and
hot reservoirs correspond to the endpoints of the full width at
half maximum of the entropy change peak |�SM(T, H )|, see
Table V, while Tmax is the peak temperature of �SM(T, H ),
see the second column in Table IV.

Let us first analyze cycle Ericsson 1. For this cycle, the
heat QC absorbed during the isothermal process D → E and
the heat QH rejected at the isothermal process A → B can be
calculated by

QC =
∫

D→E
T dS = −TC�SM(TC, H ) > 0,

QH =
∫

A→B
T dS = TH�SM(TH, H ) < 0, (32)

where the isothermal entropy change �SM(T, H ) is given
in Eq. (26). In the present case, where TC < Tmax < TH, the

FIG. 17. The regeneration Ericsson cycles operating between TC

and TH (Ericsson 1, blue) and TC and Tmax (Ericsson 2, red). The
genuine entropy data in μ0H = 0 and 2 T for Co2Nb have been used.

nonperfect regeneration heat quantity �Q must be divided in
two parts �Q = −(QEA + QBD) = �Q+ + �Q–, where

�Q− =
∫ Tmax

TC

T
∂�SM(T, H )

∂T
dT < 0 (33)

quantifies the heat that must be compensated by the hot reser-
voir, and

�Q+ =
∫ TH

Tmax

T
∂�SM(T, H )

∂T
dT > 0 (34)

quantifies the heat that must be released to the cold reservoir;
otherwise, the temperature of the regenerator will be changed,
and the cycle would not operate properly. Here, �Q+ corre-
sponds to the situation where the heat transferred from the
working substance to the regenerator is larger than that trans-
ferred from the regenerator to the working substance. In the
case of �Q–, just the reverse holds, i.e., the heat transferred
from the working substance to the regenerator is smaller than
that transferred from the regenerator to the working substance.
In this way, the net cooling quantity QL is reduced as com-
pared with QC, i.e., QL = QC − �Q+. According to the first
law of thermodynamics, the work input of the refrigeration
cycle W is given by the following formula:

W = −(QC + QH − �Q)

= TC�SM(TC, H )

− TH�SM(TH, H ) +
∫ TH

TC

T
∂�SM(T, H )

∂T
dT . (35)
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FIG. 18. Field dependence of the coefficient of performance of
three indicated thermodynamic cycles for the studied compounds.

Finally, the coefficient of performance (COP) of the refrig-
eration cycle is given by

COP = QL

W
. (36)

The discussion of cycle Ericsson 2 would be fully analo-
gous. It is sufficient to consider that TH = Tmax in this case.
Immediately, Eq. (34) implies that quantity �Q+ vanishes,
and consequently, the net cooling quantity QL = QC is not
reduced. One therefore should expect enhanced COP values.
The COP values for the Ericsson cycles should be compared
with that of the Carnot cycle operating between the same tem-
peratures TC and TH of the cold and hot reservoirs. The main
difference is that the isofield processes of the Ericsson cycle
are replaced by the adiabatic ones. This is formally equivalent
to the situation where the �SM(T, H ) curve is flat between
TC and TH, i.e., then ∂�SM(T, H )/∂T = 0 and Eqs. (32)–(36)
imply that

COPCarnot = TC

TH − TC
. (37)

Figure 18 shows the field dependence of the COP of cy-
cles Ericsson 1, Ericsson 2, and the Carnot cycle operating
between temperatures TC and TH for the studied compounds.
COPs for all three samples display a similar pattern. Quite sur-
prisingly, COP of Ericsson 1 assumes systematically negative
values except for that for Fe2Nb at μ0H = 9 T, where it turns
slightly positive. This implies that this refrigeration cycle,
operating in the full width of half maximum of |�SM(T, H )|,
becomes totally ineffective, although it improves steadily with
increasing magnetic field. Shifting the temperature of the hot
reservoir TH down to Tmax, which is the case for Ericsson 2,
remedies the situation, and the corresponding COP is pos-
itive and lower than that of the Carnot cycle. However, it
shows a decreasing trend with increasing magnetic field. At
the same time, the RC was demonstrated to be an increasing
function of the field change μ0�H , see Fig. 16, assuming very
small values for the lowest field change values. In view of
these facts, a compromise must be made for the Ericsson 2
cycle to be most efficient. A possible candidate quantifying

FIG. 19. Field dependence of product refrigeration capacity
(RC) × coefficient of performance (COP) quantifying the efficiency
of cycle Ericsson 2 for the studied compounds.

its efficiency is the product RC × COP, whose largest value
should roughly indicate the most efficient cycle. Figure 19
shows the field dependence of the RC × COP product for
the three studied compounds. It implies that the Ericsson 2
cycle should be most efficient for the maximal studied value
of the applied field (=9 T) with irrelevant differences between
the compounds. At the same time, the Ericsson 2 cycle using
Fe2Nb as the working substance at 9 T would be less efficient
than that using Co2Nb at the lower field value of 5 T.

VI. CONCLUSIONS

We have reported a comprehensive study of
thermodynamic properties of three samples of
bimetallic molecular magnets [CoII(pyrazole)4]2x

[FeII(pyrazole)4]2(1−x)[NbIV(CN)8] · 4H2O with x = 0, 0.5,
and 1, where the middle compound represents a substitutional
mixture of the two marginal ones. The three samples display
the same crystallographic structure. Their heat capacities
were measured in the temperature range 0.36–100 K without
applied field as well as in the field of μ0H = 0.1, 0.2, 0.5,
1, 2, 5, and 9 T. The results revealed anomalies assigned to
the second-order phase transitions to magnetically ordered
phases with the transition temperatures estimated to amount
to 4.87(8), 7.1(2), and 8.44(3) K for x = 1, 0.5, and 0,
respectively. The heat capacity results were analyzed to
discuss the stability of the mixed compound and the MCE.
The Gibbs energy of mixing turned out to be positive but
smaller in magnitude than the energy of thermal fluctuations,
which implies that the mixed sample is most probably
metastable in the full detected temperature range. The
negative values of the enthalpy of mixing are explained in
terms of favoring a direct neighborhood of the Co and Fe
ions in the solid solution CoFeNb. The negative values of the
entropy of mixing can be rationalized by supposing that the
lattice of the solid solution sample becomes more rigid due
to the requirement of accommodating two different atoms
within the same lattice structure. To extract the magnetic
contribution to the heat capacity, we took an approach whose
main principle is to calculate the lattice contribution based
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on a reasonable frequency spectrum. While Cmag is consistent
with the expected spin content of the Co(II) and Nb(IV)
ions (SCo = 1

2 , SNb = 1
2 ), it suggests an effective attenuation

of the spin of the Fe(II) ion (SFe = 2) due to a possible
magnetocrystalline anisotropy. Taking advantage of the
in-field heat capacity measurements, the MCE was described
in terms of the isothermal entropy change �SM and the
adiabatic temperature change �Tad. The magnitudes of these
quantities turned out to be typical for the class of molecular
magnets. The analysis of the field dependence of �SM implied
that the studied compounds belong to the universality class of
the 3D Heisenberg model. To get some practical insight into
the issue of magnetic refrigeration, the regeneration Ericsson
cycles employing the studied compounds as the working
substance were considered. Most surprisingly, the Ericsson
cycle operating between the temperatures corresponding to
the full width at half maximum of the |�SM| signal turned
out to be completely ineffective. It was only by shifting the
temperature of the hot reservoir TH down to the temperature
Tmax corresponding to |�SM|max that the COP became positive
and comparable with that of the Carnot cycle. To determine
the optimal value of the magnetic field for which the Ericsson
cycle is most efficient, the product of the RC and the COP was
employed. The calculations indicated that the regeneration
Ericsson cycle operating between TC and Tmax should be most
efficient for the maximal studied value of the applied field
(=9 T) with irrelevant differences between the compounds.
The above findings place the studied samples among possible
candidates for cryogenic refrigeration.

APPENDIX: THE MOLECULAR FIELD MODEL FOR AN
EXCHANGE COUPLED SYSTEM WITH PARTIAL

SUBSTITUTION

Let us assume that the system consists of two sublattices
A and B with stoichiometric factors νA and νB, respectively.
Sublattice B is occupied by the B-type ions with spin SB and
the Landé factor gB, while sites of sublattice A are randomly
filled with the A1-type ions (SA1 , gA1 ) and the A2-type ions
(SA2 , gA2 ) with x denoting the number concentration of the
latter. Thus, the system may be described by the formula
(A11−xA2x )μA BμB . The Hamiltonian pertinent to the system is
given by the following formula:

Ĥ − JA1B

∑
(i j)

ŜA1i · ŜB j − JA2B

∑
(i j)

ŜA2i · ŜB j

+ μB

∑
i

(
gA1 ŜA1i + gA2 ŜA2i + gBŜBi

) · �H , (A1)

where (i j) denotes the summation over the pairs of the nearest
neighbors, JXY is the superexchange coupling constant be-
tween the X - and Y -type ions, μB is the Bohr magneton, and �H
is the external magnetic field. We neglect the superexchange
coupling within the A sublattice (JAA = 0) and the B sublat-

tice (JBB = 0) as, in the case under study, the corresponding
bridges involve many atoms. A full solution of the model is
an extremely complex task that could only be tackled by the
quantum Monte Carlo methods. We therefore decide here for
a simplified approach based on the molecular field approxi-
mation (MFA). In the framework of MFA, the Hamiltonian in
Eq. (A1) is reduced to the following form:

Ĥ = gA1μBŜA1 · �HA1 + gA2μBŜA2 · �HA2 + gBμBŜB · �HB,

(A2)
where the molecular fields �HX (X = A1, A2, B) read

�HA1 = �H + 
A1B �MB,

�HA2 = �H + 
A2B �MB,

�HB = �H + 
BA1
�MA1 + 
BA2

�MA2 .

(A3)

Quantity �MX denotes the molar magnetization of sublattice
X , and the molecular field constants 
XY read


A1B = JA1BZA1B

NAμ2
BνBgA1 gB

, 
BA1 = JA1BZBA1

NAμ2
BνA(1 − x)gA1 gB

,


A2B = JA2BZA2B

NAμ2
BνBgA2 gB

, 
BA2 = JA2BZBA2

NAμ2
BνAxgA2 gB

,

(A4)

where ZXY denotes the number of the nearest neighbor Y -type
ions of the X -type ion. It is clear that ZA1B = ZA2B = ZAB,
ZBA1 = (1−x)ZBA, and ZBA2 = xZBA. Moreover, the number
of the coupling connections between the A- and B-type ions
in a mole of the compound may be written either as NAνAZAB

or as NAνBZBA; hence, νAZAB = νBZBA. The above relations
and Eq. (A4) imply that 
A1B = 
BA1 ≡ 
1 and 
A2B =

BA2 ≡ 
2; thus, there only two independent molecular field
constants in the model. For an arbitrary thermodynamic point
(T , H), the molecular field model defined in Eqs. (A2)–(A4)
should be solved by an iterative numerical method. However,
in the special case where the temperature is high compared
with max(JA1B/kB, JA2B/kB) (kB is the Boltzmann constant),
one can venture to calculate the magnetic susceptibility χ of
the system. An additional simplification stems from the fact
that the model is isotropic (all exchange interactions are of
the isotropic Heisenberg type), and the scalar counterpart of
Eq. (A3) can be used. Then the system is in the paramagnetic
state, and the molar magnetizations are directly proportional
to the magnetic field, i.e., MX = χX HX , where

χX = NAμ2
BνX cX g2

X SX (SX + 1)

3kBT
(A5)

is the paramagnetic molar susceptibility of sublattice X , and
cX is the number concentration of the X -type ions (cA1 =
1−x, cA2 = x, and cB = 1). The system of linear equations
MX = χX HX (X = A1, A2, B) can be solved by the Cramer
method for MX , and the total susceptibility of the system can
be calculated as χ = (MA1 + MA2 + MB)/H :

χ = χA1 + χA2 + χB + 2χA1χB
1 + 2χA2χB
2 − χA1χA2χB(
1 − 
2)2

1 − χA1χB
2
1 − χA2χB
2

2

. (A6)
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The MFA estimate of the transition temperature Tc may be found through the straightforward algebra by solving the equation
χ–1 = 0 for T . The x-dependent result may be written

Tc(x) =
√

(1 − x)[Tc(0)]2 + x[Tc(1)]2, (A7)

where the extreme transition temperatures read

Tc(0) = NAμ2
BgA1

gB

3kB

1

√
νAνBSA1

(
SA1

+ 1
)
SB(SB + 1),

Tc(1) = NAμ2
BgA2

gB

3kB

2

√
νAνBSA2

(
SA2

+ 1
)
SB(SB + 1). (A8)

In the case under study, sublattice A corresponds to the Co sublattice in Co2Nb; next, it is substituted by the Fe ions, so that
A1 = Co and A2 = Fe. The B sublattice corresponds to the untouched Nb ions, i.e., B = Nb. The pertinent values of parameters
are νCo = 2, νNb = 1, ZNbCo = 4, ZCoNb = 2, SCo = 1

2 , SFe = 2, SNb = 1
2 , gCo = 5.03, gFe = 2.16, and gNb = 2 [54].
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[8] Beata Nowicka, M. Reczyński, M. Rams, W. Nitek, J.
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Miyazaki, A. Inaba, D. Pinkowicz, and B. Sieklucka, J. Magn.
Magn. Mater. 354, 359 (2014).

[59] M. Fitta, R. Pełka, P. Konieczny, and M. Bałanda, Crystals 9, 9
(2019).

[60] J. Rodríguez-Carvajal, Physica B 192, 55 (1993); the complete
program and documentation can be obtained at https://www.ill.
eu/sites/fullprof/

[61] M. H. Rietveld, J. Appl. Cryst. 2, 65 (1969).
[62] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.104.214428 for arguments against forma-
tion of physical mixture, indication of the origins of the misfit of
the cobalt and ferrum ions accommodated in the single-crystal
structure of CoFeNb, and transition temperatures derived by
complementary methods.

[63] National Nuclear Data Center at Brookhaven National Labora-
tory: https://www.nndc.bnl.gov

[64] National Institute of Standards and Technology, The NIST
Reference on Constants: https://physics.nist.gov/cuu/Constants/
index.html

[65] N. J. Stone, At. Data Nucl. Data Tables 90, 75 (2005).
[66] J. A. Hofmann, A. Paskin, K. J. Tauer, and R. J. Weiss, J. Phys.

Chem. Solids 1, 45 (1954).
[67] J. Wucher and J. D. Wasscher, Physica 20, 721 (1954).
[68] D. A. Garanin, Phys. Rev. B 78, 020405(R) (2008).
[69] J. W. Stout and R. C. Chisholm, J. Chem. Phys. 36, 979 (1962).
[70] H. Suga, M. Sorai, T. Yamanaka, and S. Seki, Bull. Chem. Soc.

Japan 38, 1007 (1965).
[71] M. Sorai, A. Kosaki, H. Suga, and S. Seki, J. Chem.

Thermodynamics 1, 119 (1969).
[72] M. Sorai and S. Seki, J. Phys. Soc. Jpn. 32, 382 (1972).
[73] M. Majoube, J. Raman Spectrosc. 20, 49 (1989).
[74] W. S. Benedict, N. Gailar, and E. K. Plyler, J. Chem. Phys. 24,

1139 (1956).
[75] F. Casanova, X. Batlle, A. Labarta, J. Marcos, L. Manosa, and

A. Planes, Phys. Rev. B 66, 212402 (2002).
[76] A. M. Tishin, A. V. Derkach, Y. I. Spichkin, M. D. Kuz’min,

A. S. Chernyshov, K. A. Gschneidner, Jr., and V. K. Pecharsky,
J. Magn. Magn. Mater. 310, 2800 (2007).

[77] H. Oesterreicher and F. T. Parker, J. Appl. Phys. 55, 4334
(1984).

[78] V. Franco, A. Conde, J. M. Romero-Enrique, and J. S. Blázquez,
J. Phys.: Condens. Matter 20, 285207 (2008).

[79] V. Franco, J. S. Blázquez, and A. Conde, Appl. Phys. Lett. 89,
222512 (2006).

[80] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and
E. Vicari, Phys. Rev. B 65, 144520 (2002).

[81] K. A. Gschneidner Jr., V. K. Pecharsky, A. O. Pecharsky, and
C. B. Zimm, Mater. Sci. Forum 315–317, 69 (1999).

[82] K. Szalowski, T. Balcerzak, and A. Bobák, J. Magn. Magn. Mat.
323, 2095 (2011).

[83] A. Kitanovski and P. W. Egolf, Int. J. Refrig. 29, 3
(2006).

[84] G. Diguet, G. Lin, and J. Chen, J. Magn. Magn. Mater. 350, 50
(2014).

214428-18

https://doi.org/10.1002/anie.201510468
https://doi.org/10.1021/acs.inorgchem.7b00733
https://doi.org/10.1021/acs.inorgchem.6b02941
https://doi.org/10.1021/acs.inorgchem.7b01930
https://doi.org/10.1002/anie.200701027
https://doi.org/10.1021/ja802829d
https://doi.org/10.1039/b926030g
https://doi.org/10.1002/anie.201102640
https://doi.org/10.1016/j.ccr.2014.08.013
https://doi.org/10.1016/j.jmmm.2016.04.062
https://doi.org/10.1063/1.1737468
https://doi.org/10.1103/PhysRevB.73.172406
https://doi.org/10.1063/1.2928993
https://doi.org/10.1063/1.3259652
https://doi.org/10.1088/0953-8984/24/50/506002
https://doi.org/10.1016/j.jmmm.2016.06.074
https://doi.org/10.1002/ejic.201200374
https://doi.org/10.1088/0953-8984/25/49/496012
https://doi.org/10.1021/ic100937h
https://doi.org/10.1088/1742-6596/303/1/012037
https://doi.org/10.1016/j.jmmm.2013.05.041
https://doi.org/10.1051/epjconf/20134014002
https://doi.org/10.1016/j.jmmm.2013.11.047
https://doi.org/10.3390/cryst9010009
https://doi.org/10.1016/0921-4526(93)90108-I
https://www.ill.eu/sites/fullprof/
https://doi.org/10.1107/S0021889869006558
http://link.aps.org/supplemental/10.1103/PhysRevB.104.214428
https://www.nndc.bnl.gov
https://physics.nist.gov/cuu/Constants/index.html
https://doi.org/10.1016/j.adt.2005.04.001
https://doi.org/10.1016/0022-3697(56)90010-5
https://doi.org/10.1016/S0031-8914(54)80184-4
https://doi.org/10.1103/PhysRevB.78.020405
https://doi.org/10.1063/1.1732699
https://doi.org/10.1246/bcsj.38.1007
https://doi.org/10.1016/0021-9614(69)90052-4
https://doi.org/10.1143/JPSJ.32.382
https://doi.org/10.1002/jrs.1250200110
https://doi.org/10.1063/1.1742731
https://doi.org/10.1103/PhysRevB.66.212402
https://doi.org/10.1016/j.jmmm.2006.10.1056
https://doi.org/10.1063/1.333046
https://doi.org/10.1088/0953-8984/20/28/285207
https://doi.org/10.1063/1.2399361
https://doi.org/10.1103/PhysRevB.65.144520
https://doi.org/10.4028/www.scientfor20examplec.net/MSF.315-317.69
https://doi.org/10.1016/j.jmmm.2011.03.020
https://doi.org/10.1016/j.ijrefrig.2005.04.007
https://doi.org/10.1016/j.jmmm.2013.09.008

