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Terahertz oscillation in a noncollinear antiferromagnet under spin-orbit torques
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We perform a theoretic study on equilibria and self-oscillations of a noncollinear antiferromagnet under spin-
orbit torques and focus on the latter, which may be detected by the anormal Hall effect. Appealing to the 120◦

rotational symmetry, an analytically tractable single-vector equation is deduced from the complicated coupled
Landau-Lifshitz-Gilbert equations. After defining the stable regions of all equilibria, we derive analytic formulas
for the lower and upper thresholds of oscillation by Melnikov’s method. We further reveal that the oscillation is
largely pushed by the exchange interactions in the promise of an average balance between the dampinglike spin-
orbit torque and the intrinsic damping. Its precessional conical angle and terahertz frequency can be adjusted by
the current. We also analyze the oscillations numerically in the absence of 120◦ rotational symmetry for arbitrary
spin polarizations and find similar results. This can be ascribed to the relatively weak anisotropy compared with
the strong exchange.

DOI: 10.1103/PhysRevB.104.214423

I. INTRODUCTION

Antiferromagnets (AFMs) are promising for spintronics
applications [1–3]. One of the advantages is the absence of a
magnetic stray field, which can protect the devices from some
detrimental magnetic perturbations. However, this results in
the difficulty of controlling and detecting the antiferromag-
netic states. As for the controlling, by introducing different
spin torques generated by the magnons [4–6] and the spin(-
polarized) currents [7], AFMs can be manipulated efficiently,
such as the motion of domain walls [4–6,8–12], the switching
[13–18], and the precession [19–22]. It is also worth noting
that unequivocal detection of the collinear AFM states re-
mains a challenge in experiments [18].

Thanks to the abundance of AFM materials, some
noncollinear AFMs with a 120◦ spin structure, such as
antiperovskite [23–30] and hexagonal [31–37] manganese
compounds, exhibit large anomalous Hall conductivities,
which can be used to differentiate various AFM states. In-
spired by this favorable property, the current-driven dynamics
of noncollinear AFM has started to attract some attention
like its collinear counterpart, including the motion of domain
walls [38–40], the switching [41–44], and the chiral-spin
rotation [45]. As far as we know, the self-oscillation is sel-
dom concerned, as simply mentioned in Refs. [41,44]. The
experiment of Ref. [45] is about the spin orbit torque (SOT)-
propelling rotation of total magnetization under the magnetic
field. The self-oscillation is not only a typical nonlinear prop-
erty of magnets but also the basis of magnetic oscillators.
For noncollinear AFMs, the details of self-oscillation remain
unexplored. So, it should be worth more effort in studying the
thresholds, frequency, etc. of this oscillation.

*hepengbin@hnu.edu.cn

Here, we will investigate the self-oscillation of non-
collinear AFM under SOTs. To deal with this issue analyt-
ically, we first choose a current-injection scheme as shown
in Fig. 1, which allows a 120◦ rotational symmetry and is
of practical significance [46]. Phenomenologically, this model
is described by three coupled Landau-Lifshitz-Gilbert (LLG)
equations, which to treat analytically is very difficult. In Refs.
[39,41], two Néel vectors and an average magnetization were
introduced to reduce these complicated AFM equations and
analyze the motion of domain walls and the switching. Alter-
natively, we will reduce the LLG equations to a single-vector
equation according to the symmetry of the model.

Based on this reduced equation, we will analytically study
the equilibria and self-oscillations. The stability of equilibria
is analyzed by the linearization method. The self-oscillations
are dealt with by Melnikov’s method [47], which provides
an analytic tool to study the limit circles for the perturbed
dynamic systems with periodic trajectories. This method was
applied on the self-oscillation of ferromagnets driven by spin-
transfer torques by Serpico et al. and Bertotti et al. [48–51],
and derived independently by Stiles and Miltat [52]. In this
method, a self-oscillation is realized under the promise that
external torques should balance the damping in average during
a whole precession. To acquire this balance, different mag-
netic configurations and driven forces have been attempted
[53–66]. For example, the balance can be achieved by tun-
able magnetic fields [53,57–61] or by a fieldlike spin torque
[54–56], especially in the presence of thermal noise [62–66].
Recently, this method was also applied on the bipartite AFM
to study the current-driven precession [67]. These studies
present good agreement between the analytic calculation and
the numeric simulation.

Up to now, Melnikov’s method has mainly been applied
on ferromagnetic (FM) systems, where the oscillation orbit is
easily defined by the magnetic energy. For AFMs, more than
one correlated orbit exists, corresponding to magnetic mo-
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FIG. 1. Schematic diagram of the heavy-metal/antiferromagnet
bilayer and coordinate system. je and js are the electric and spin cur-
rents, respectively. ep denotes the direction of the spin polarization.

ments in different sublattices. Due to the exchange coupling,
which transfers energy between different sublattices, the
constant-energy trajectories are generally not well-defined.
Therefore, it is difficult to apply Melnikov’s method on AFM
systems. However, for our model, by virtue of the 120◦
rotational symmetry, we get a reduced single-vector equa-
tion, which is analogous to a ferromagnetic one. Due to
the strong exchange interaction, both the damping and the
SOTs can be regarded as weak perturbations. So, Melnikov’s
method is applicable for dealing with the self-oscillation of
this simplified structure analytically. In addition, for arbitrary
spin-polarization directions, the oscillations will be analyzed
numerically.

This paper is organized as follows. After the Introduction,
Sec. I, and model description, Sec. II, the stable regions of
all equilibria are analyzed in Sec. III. The oscillations are
investigated in detail for the case with a spin polarization
normal to the easy axes in Secs. IV and for arbitrary spin
polarizations in Sec. V. Finally, we end with discussions in
Sec. VI and conclusions in Sec. VII.

II. MODEL

We consider a noncollinear AFM thin film attached with
a heavy metal (HM) layer, as shown in Fig. 1. With a lon-
gitudinal electric current flowing through the HM layer, the
dampinglike and fieldlike SOTs are generated via the spin
Hall effect or Rashba effect [7]. Under the SOTs, the magnetic
dynamics in the AFM layer is governed by three coupled
sublattice LLG equations,

dmi

dt
= mi × dE

dmi
+ αmi × dmi

dt
+ τ i, (1)

where mi are the unit vectors of magnetization in three sub-
lattices marked by i = 1, 2, 3. α is the Gilbert constant of
damping. Here, the inhomogeneous exchange contribution is
ignored. So, we focus on the magnetic dynamics within the
framework of a macrospin model, which is a reasonably good
approximation for the small-size sample. Then, including the
exchange and anisotropy terms, the reduced magnetic energy
reads [39,44,46]

E = ωex

∑
i �= j

mi · m j − ωan

∑
i

(
mi · ei

a

)2
, (2)

where ei
a are the unit vectors along the three easy axes and

written as

ei
a = cos

[
(i − 1)

2π

3

]
ex + sin

[
(i − 1)

2π

3

]
ey. (3)

The SOTs are expressed as

τ i = −ωSOT[mi × (mi × ez ) + βmi × ez], (4)

with the spin polarization along the z axis and β denoting
the relative strength of the fieldlike SOT compared with the
dampinglike one. All parameters related with the strengths of
the torques have been scaled with circular frequency. ωex =
γ J0/(μ0Ms) with γ being the gyromagnetic ratio, J0 the
intersublattice exchange constant, μ0 the vacuum permeabil-
ity, and Ms the saturation magnetization of each sublattice.
ωan = γ K/(μ0Ms), with K being the anisotropy constant.
ωSOT = u/d with d being the thickness of AFM layer. u has
the dimension of velocity, u = μB/(eMs)ξ je with μB being
the Bohr magneton, e the element charge, and je the electric
current density. ξ is the SOT efficiency which equals TintθsH

[3,68,69], with θsH being the spin Hall angle, and Tint the spin
transparency of the interface [70].

To test our analytic results in the following sections, we
will choose typical magnetic parameters of nonlinear AFM
to do some numeric calculations. The magnetic parame-
ters of Mn3Sn [39] are adopted, which are listed as J0 =
1 × 108 J/m3, K = 1.6 × 106 J/m3, μ0Ms = 1.26 T. Then,
ωex/(2π ) = 2.79 THz and ωan/(2π ) = 44.67 GHz. Other ex-
perimentally feasible parameters are taken as d = 2 nm, ξ =
0.32, β = 0.1, and α = 0.01.

The system [Eqs. (1)–(4)] is invariant under the 120◦ ro-
tation around z axis. So, it can be inferred that the solutions
obey m1z = m2z = m3z, and the included angle between the
projections of m1,2,3 on the x-y plane is 120◦. This can be ver-
ified by numerically integrating Eq. (1) for different magnetic
states. In Figs. 2-4, we plot the evolutions of the components
of m1,2,3 for the tilted AFM, precessional, and ferromagnetic
states which all obey the 120◦ rotational symmetry around
the z axis. According to this argument, the coupled LLG
Eq. (1) can be reduced to a one-vector one. To realize this
reduction, it is convenient to parametrize mi in terms of the
polar angles θi and the azimuthal ones φi according to mi =
(sin θi cos φi, sin θi sin φi, cos θi ). Appealing to the symmetry,
we can set θ1 = θ2 = θ3 = θ , φ1 = φ, φ2 = φ + 2π/3, and
φ3 = φ + 4π/3 in spherical coordinates. Then, from Eq. (1),
the reduced equations are derived as

dθ

dt
+ α sin θ

dφ

dt
= −(ωan sin 2φ + ωSOT) sin θ, (5)

α
dθ

dt
− sin θ

dφ

dt
=

(
3

2
ωex + ωan cos2 φ

)
sin 2θ

−βωSOT sin θ. (6)

A brief derivation of Eqs. (5) and (6) is presented in
Appendix A. To apply Melnikov’s method, it is necessary to
rewrite Eqs. (5) and (6) in the Cartesian reference. By treating
θ and φ as polar and azimuthal angles of a vector n, i.e.,
defining n = (sin θ cos φ, sin θ sin φ, cos θ ), Eqs. (5) and (6)
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FIG. 2. Time evolutions of x components (a), y components (b),
and z components (c) of m1,2,3 for the tilted AFM state. Here, the
SOTs strength is taken as ωSOT = 0.7744ωan, just below the lower
threshold of oscillation, corresponding to je = 2.3531 × 109A/cm2.

can be transformed as

dn
dt

= n × dEn

dn
+ αn × dn

dt
+ τn, (7)

where the reduced magnetic energy reads

En = 3

2
ωex(n · ez )2 − ωan(n · ex )2, (8)

FIG. 3. Time evolutions of x components (a), y components (b),
and z components (c) of m1,2,3 for the precession state. Here, the
SOTs strength is taken as ωSOT = 0.7745ωan, just above the lower
threshold of oscillation, corresponding to je = 2.3534 × 109A/cm2.

FIG. 4. Time evolutions of x components (a), y components (b),
and z components (c) of m1,2,3 for the FM state. Here, the strength
of SOTs ωSOT = 3ωan, above the upper threshold of oscillation, cor-
responding to je = 9.1157 × 109A/cm2.

and the SOTs are

τn = −ωSOT[n × (n × ez ) + βn × ez]. (9)

It should be mentioned that n is not an order vector as in the
bipartite AFM. In fact, n = m1. Because the reduced Eq. (7) is
formally different from Eq. (1) of i = 1, we use the symbol n
to avoid confusion. According to the symmetry of our model,
the dynamics of m1,2,3 can be represented by that of n. From
Eq. (8), it is easy to infer that the reduced system acts as a
ferromagnetic film which possesses an easy axis along the x
axis and an easy plane normal to the z axis. The easy-plane
anisotropy is related to the exchange interaction between sub-
lattices. Based on these reduced equations, we will study the
equilibria and the dynamic states in the following sections.

III. EQUILIBRIA AND THEIR STABILITY

The stationary solutions can be calculated by taking
dθ/dt = dφ/dt = 0 in Eqs. (5) and (6). It is apparent that
sin θ0 = 0 solves the equilibrium equations, corresponding to
θ0 = 0 or π . For these two FM states, m1,2,3 go along the spin
polarization ep or the reverse, and all the torques are zero. The
evolutions can be seen in Fig. 4 as an example.

By linear stability analysis (see Appendix B), the FM state
θ0 = 0 is stable for ωSOT > ωu

SOT while, for θ0 = π , the stable
condition is ωSOT < −ωu

SOT, where

ωu
SOT = α

1 + αβ
(3ωex + ωan). (10)

For sin θ0 �= 0, the equilibrium equations become

ωan sin 2φ0 + ωSOT = 0, (11)

(3ωex + 2ωan cos2 φ0) cos θ0 = βωSOT. (12)
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The solutions are expressed as

φ0 = 1

2

[
(P − 1)π + (−1)P arcsin

ωSOT

ωan

]
, (13)

θ0 = arccos

⎡
⎣ βωSOT

3ωex + ωan − (−1)P
√

ω2
an − ω2

SOT

⎤
⎦, (14)

with P = 1, 2, 3, 4. For these solutions, the fieldlike SOT
rotates m1,2,3 around the z axis. Then, the dampinglike SOT
and the anisotropy torque tilt m1,2,3 away from the x-y plane.
After achieving a balance among all the torques, m1,2,3 are at
θ0 with ep, and their projections on the x-y plane deviate from
each easy axis as φ0. For strong exchange interactions, θ0 is
small and m1,2,3 remain the AFM configuration roughly. So,
it is referred to as tilted-AFM state. Its evolution is shown in
Fig. 2. By linear stability analysis (see Appendix C), it can be
inferred that the tilted-AFM state is stable for P = 1, 3 and
|ωSOT| < ωan.

We have sought out all the stable equilibria. In the regions
that ωan < ωSOT < ωu

SOT, there is no stable equilibrium. In
light of the Poincaré-Bendixson theorem [47,71], it can be
argued that if none of the equilibrium points is stable in a two-
dimensional dynamic system, there must exist precessional
regimes [49]. Thus, a self-oscillation possibly emerges here.
On the other hand, Figs. 2 and 3 reveal that the lower threshold
of precession is about 0.7745ωan, smaller than ωan. Hence, the
details of oscillation cannot be foretold by the linear analysis.
In view of the strong exchange interactions, the damping and
the SOTs can be regarded as small perturbations. Then, the
considered model is a weakly perturbed conservative system
in which Melnikov’s method [47,51,52] can be applied to
analyze the self-oscillation.

IV. SELF-OSCILLATION

In this section, we will redefine the thresholds of self-
oscillation and analyze the dependence of oscillation fre-
quency on the SOTs by Melnikov’s method.

A. Energy balance equation

The self-oscillation can be realized under an average bal-
ance between the energy supplied by the dampinglike SOT
and the energy dissipated by the damping. So, it is necessary
to calculate the rate of energy change. In Eq. (7), eliminating
dn/dt from the damping term by iteration, and taking the
cross product of this equation with dn/dt , the rate of energy
change can be expressed as

dEn

dt
= ωT

[
(1 + αβ )(n × ez ) · dn

dt
+ (β − α)ez · dn

dt

]

−α

(
n × dEn

dn

)
· dn

dt
. (15)

Since the energy En varies slowly for a self-oscillation, it is
a good approximation to average dEn/dt over a precession
period. Then, ∮




dEn

dt
dt = −Wdamp + WSOT, (16)

where the work done by the SOTs during a whole precession
reads

WSOT = ωT

∮



[(1 + αβ )(n × ez ) + (β − α)ez] · dn (17)

and the energy dissipated through the damping is

Wdamp = α

∮



[3ωex(n · ez )(n × ez )

−2ωan(n · ex )(n × ex )] · dn, (18)

where we have used Eq. (8) to calculate dEn/dn, and ne-
glected the higher-order terms of α and ωSOT. Due to the
strong exchange interaction, the strengths of the SOTs and
damping are sufficiently small, so both of them can be treated
as perturbations. Therefore, the difference between the exact
trajectory and the unperturbed one is also small. Accordingly,
it is reasonable to take the integrals along a constant-energy
trajectory determined by the exchange and anisotropy torques.

B. Constant-energy trajectories

Because |n| = 1, the trail of the vector terminal of n lo-
cates on the surface of a unit sphere. So, the magnetization
dynamics can be regarded as the motion of a point particle on
a unit sphere. The constant-energy trajectories are given by
the intersection of the unit sphere with the energy landscape
Eq. (8) for various En.

Three equilibria are defined by Eq. (8), according to which,
the trajectories can be grouped into two types. The first equi-
librium is that n points along the x axis. The corresponding
minimal energy is Emin = −ωan. The second one is a saddle
point, for which n is along the y axis. The corresponding
energy Esaddle = 0. The third one corresponds to state with
maximal energy (Emax = 3/2ωex), with n oriented along the
z axis.

As shown by the red dashed curves in Fig. 5(a), the two tra-
jectories identified by Esaddle are defined as the locus of the in-
tersection of two planes (defined by nx = ±√

3ωex/(2ωan)nz)
with the unit sphere. For a weak anisotropy (ωan � ωex),
these trajectories are very close to the x-y plane. These two
trajectories divide the spherical surface into four regions.

In the two regions around the x axis, the low-energy tra-
jectories are identified by Emin < En < Esaddle. Here, n rotates
around the x axis, as exemplified by the black dotted curves
in Fig. 5(a). Obviously, the spin polarization ep points outside
of the trajectory. So, if projecting the dampinglike SOT on the
direction of damping torque, its component is parallel to the
damping torque in a half trajectory, whereas antiparallel in an-
other half. Therefore, there cannot exist a balance between the
dampinglike SOT and the damping during a whole precession
[55,72]. And no self-oscillation emerges in these regions.

In the two regions around the z axis, the high-energy tra-
jectories are identified by Esaddle < En < Emax. Here, n rotates
around the z axis, as exemplified by the blue solid curves
in Fig. 5(a). Because the spin polarization is along the z
axis, the dampinglike SOT is against the damping torque
during the entire precession along these trajectories. Hence,
a self-oscillation possibly emerges. To calculate the integrals
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FIG. 5. (a) Examples of the constant-energy trajectories of n on the unit sphere. The dashed red curves are the separatrix corresponding
to En = Esaddle. The dotted black curves are two low-energy trajectories around the easy axis, corresponding to En = −2/3ωan. The solid blue
curves are two high-energy trajectories around the spin polarization, corresponding to En = 1/2ωex. (b) Time-evolution trajectory of m1(= n)
at the lower threshold of precession with ωSOT = 0.7745ωan, corresponding to the evolutions of components in Fig. 3. n locates at the stable
fucus initially. After about a quarter of a period, it shifts from the low-energy trajectory to the high-energy one near the saddle point. The points
F± are in z-x plane and locate on the separatrix. (c) Schematic drawing of the trajectories and directions of precession for ωSOT > 0. The two
exchange torques suffered by m1 are represented by the arrows at the endpoint of m1.

in Eq. (16), it is convenient to parametrize these high-energy
trajectories as

nx = a cos η, (19)

ny = b sin η, (20)

where η varies from 0 to 2π , and

a =
√

3ωex − 2En

3ωex + 2ωan
, (21)

b =
√

3ωex − 2En

3ωex
. (22)

It should be emphasized that, for completeness, the field-
like SOT is involved in the calculations, which is generally
small in the spin-Hall-effect mechanism and dominant in the
Rashba-effect mechanism [7]. The fieldlike SOT acts as an ef-
fective magnetic field along the spin-polarization direction. It
can modify the constant-energy trajectories as the intersection
of unit sphere with a hyperbolic cylindrical surface defined by(

nz − βωSOT

2ωex

)2

a2
z

− n2
x

a2
x

= 1, (23)

where az =
√

[2En + (βωSOT)2/(3ωex)]/(3ωex) and ax =√
[2En + (βωSOT)2/(3ωex)]/(2ωan). For an experimentally

feasible parameter range, βωSOT � ωex. So, the modification
of the trajectory is very small. It is a reasonable approximation
to complete the integrals [such as Eqs. (17), (18), and (29)]
along the constant-energy trajectories [Eq. (8)], not taking into
account the fieldlike SOT. This point can be verified by the
numeric results, for example, Fig. 6.

C. Balance between dampinglike SOT and damping

By use of the parameterized high-energy trajectories de-
scribed by Eqs. (19)–(22), the supplied energy Eq. (17) and

the dissipated energy Eq. (18) can be calculated analytically,
which read

WSOT = 2π
3ωex − 2En√

3ωex(3ωex + 2ωan)
(1 + αβ )ωSOT (24)

FIG. 6. Oscillation frequency versus current density. Symbols
are simulation results for different spin-polarization directions with
ep = (0, sin θp, cos θp). The solid line is plotted from analytic ex-
pressions Eqs. (27) and (35). The upper (lower) threshold current
ju(l )
e = edMs/(ξμB )ωu(l )

SOT, and jc
e = edMs/(ξμB )ωc

SOT. ωu
SOT, ωl

SOT,
and ωc

SOT are defined by Eqs. (10), (30), and (28), respectively.
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and

Wdamp = 8α

√
ωan + En

6ωex
[3ωexE (k) − 2EnK (k)], (25)

where E and K denote the complete elliptic integral of the
second and first kinds, and the modulus

k = ωan(3ωex − 2En)

3ωex(ωan + En)
. (26)

For a self-oscillation, the dampinglike SOT balances
the damping in average during a whole period, so∮



(dEn/dt )dt = 0. Then, to excite a self-oscillation on a
constant-energy trajectory marked by En, the SOT strength

ωSOT = 2

π

α

1 + αβ

√
2(ωan + En)(3ωex + 2ωan)

3ωex − 2En

×[3ωexE (k) − 2EnK (k)]. (27)

When En approaches Emax, the upper threshold for self-
oscillation can be obtained from Eq. (27), which is just the
critical value ωu

SOT [Eq. (10)] for the onset of the FM state.
This is consistent with the linear stability analysis of the FM
state. Taking another limit that En approaches Esaddle, a lower
threshold can be had:

ωc
SOT = 2

π

α

1 + αβ

√
2(3ωex + 2ωan)ωan. (28)

By the used parameters, the lower threshold Eq. (28)
is 0.1238ωan, which is smaller than the numerical value
0.7745ωan, as displayed in Figs. 2 and 3. This result means
that, in the crossover from the tilted AFM state to the self-
oscillation, neither the linearization method nor the Melnikov
method fails to predict the critical value of SOTs.

D. Lower threshold of self-oscillation

To get an analytic expression of the lower threshold, a
method developed by Taniguchi et al. [57] is very useful,
which has provided an analytic result consistent with the
numerical calculation very well for the ferromagnetic case.
This method involves the energy cost with the magnetiza-
tion evolving from the fucus to the high-energy trajectory.
Figure 5(b) shows the evolution trajectory of m1(= n) at the
lower threshold ωSOT = 0.7745ωan. m1 is initialized along the
positive x direction (point F on the sphere). Before precessing
along the high-energy trajectory, m1 must evolve from the
initial stable state (F ) to the saddle point (S) in the low-energy
region. The energy of this trajectory is not constant. Hence,
m1 needs to surmount an energy barrier Esaddle − Emin = ωan

before getting to the saddle point, namely, in the process from
the stationary initial state to the self-oscillation, apart from
balancing the damping torque, the SOT should also do work
to conquer the barrier. This work-energy relation reads

ωSOT

∫ S

F
[(1 + αβ )(n × ez ) + (β − α)ez] · dn = α

∫ S

F
[3ωex(n × ez )(n × ez ) − 2ωan(n × ex )(n × ex )] · dn + ωan. (29)

In the absence of an explicit expression for the trajec-
tory, it is impossible to complete the integrals analytically.
However, owing to ωan � ωex, the trajectory of Esaddle is
tightly close to the x-y plane. As shown in Fig. 5(b), the
points F± are very near to the fucus F . F± situate in
the z-x plane, with nz = ±√

2ωan/(3ωex + 2ωan) and nx =√
3ωex/(3ωex + 2ωan). Therefore, the integral trajectory can

be approximately replaced by the constant-energy one of
Esaddle from F± to S. Then, by integrating Eq. (29), a lower
threshold of oscillation is derived:

ωl
SOT =

(
α
√

6ωexωan + ωan
)√

3ωex + 2ωan
π
2 (1 + αβ )

√
3ωex + (α − β )

√
2ωan

. (30)

Taking the used parameters, ωl
SOT ≈ 0.7677ωan, which is very

close to the value estimated from the numerical simulation.

E. Frequency

For the self-oscillation, The dampinglike SOT and the
damping torque should cancel each other on average during
a precession. So, the precession is mainly propelled by the
exchange torque and the anisotropy one. The period T , which
relates to the frequency via f = 1/T , is determined by the
unperturbed parts of Eq. (7), which are written in the Cartesian
coordinate system as

dnx

dt
= 3ωexnynz, (31)

dny

dt
= −(3ωex + 2ωan)nznx, (32)

dnz

dt
= 2ωannxny. (33)

Substituting Eqs. (19) and (20) into one of above equations
and integrating over the whole trajectory, the period can be
calculated as a function of En:

T = 1

3ωex

a

b

∫ 2π

0

dη√
1 − a2 cos2 η − b2 sin2 η

. (34)

Accomplishing the integral and using Eqs. (21) and (22), the
final result is expressed by the elliptical integral,

f = 1

4

√
6ωex(ωan + En)

K (k)
, (35)

where K denotes the complete elliptic integral of the first kind,
the modulus k is still Eq. (26). When En = Esaddle, f = 0.
When En = Emax, f = 1/(2π )

√
3ωex(3ωex + 2ωan), which is

just the resonance frequency of FM states.
WSOT, Wdamp, and f are functions of the energy En, cor-

responding to a self-oscillation state. Eliminating En from
Eqs. (27) and (35), one can obtain the relation between the
frequency and ωSOT. Although there is no explicit analytic ex-
pression, the f - je relation is shown by the solid line in Fig. 6.
The numeric result is also shown by the symbol + in Fig. 6,
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FIG. 7. Evolutions of m1 (the first row), m2 (the second row), and m3 (the third row) for ωSOT = 0.8ωan (the first column), ωSOT = ωan

(the second column), and ωSOT = 2ωan (the third column). The red arrow denotes the spin-polarization direction that ep = (0, 1/2,
√

3/2). The
black dots represent the initial states without SOTs. The red curves are the final orbits of evolution, and the red dots represent the final states
of fixed points.

very consistent with the analytic calculations. Obviously, the
frequency increases almost linearly with ωSOT.

V. ARBITRARY SPIN POLARIZATION

In the previous sections, to illustrate the current-driven
magnetization oscillation in noncollinear AFM with 120◦
rotation symmetry, we have considered SOTs with spin po-
larization perpendicular to the easy axes of three sublattices,
which keeps the static symmetry and allows for strictly ana-
lytic calculations.

Recently, it has been reported [73,74] that the spin polar-
ization can be modified to deviate from the usual direction
je × n with n being the interface normal. In this case, the
120◦ rotation symmetry is destroyed and a simple analytic
calculation is impossible. So, we could only analyze the
oscillation numerically. By integrating the coupled LLG equa-
tions [Eq. (1)], we can obtain the evolutions of m1,2,3. As
an example, Fig. 7 summarizes three typical evolutions, in-
cluding the tilted AFM, precessional, and FM states for ep =
(0, 1/2,

√
3/2). Without SOTs, m1,2,3 are along the three

easy axes. The anisotropy torques are zero, and the exchange
torques cancel each other. The system is in a strict nonlin-
ear AFM state. Applying small SOTs, m1,2,3 deviate from
each easy axis. Up to a lower threshold, a static state (tilted
AFM) remains under a delicate balance between the exchange
torques, the anisotropy torques, and the SOTs, as shown in
the first column of Fig. 7. When the current exceeds a lower
threshold, breaking of the balance results in a nonlinear pre-
cession around the spin-polarization direction, as shown in the
second column of Fig. 7. Further increasing the current, the
cone angle of precession decreases and the orbit on the sphere
surface shrinks to a point, as shown in the third column of
Fig. 7. Under high currents, m1,2,3 point in the same direction,
determined by the equilibrium of the SOTs and the anisotropy
torque. This behaviors are qualitatively similar to the case that
ep = ez.

Moreover, we extract the values of frequency from the evo-
lution curves for different spin polarizations and currents, and
illustrate the dependence of frequency on the current density
in Fig. 6. We find that tilting the spin polarization influences
the frequency of oscillation slightly. Although the frequencies
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deviate from the values (the solid line in Fig. 6) of ep = ez, the
deviations are small and the linear trend of frequency versus
current is nearly unchanged. In addition, the lower and upper
thresholds are almost unchanged. These small differences for
different spin polarizations are largely due to the smallness of
anisotropy. The frequencies of both the linear and nonlinear
oscillations are to a great extent determined by the exchange
interaction, namely, it is mainly the exchange torques between
m1,2,3 to propel the precessions. The SOTs balance the damp-
ing torque, keeping a stable precession.

Below the lower threshold, there exists a linear oscillat-
ing mode with its frequency near the resonance frequency
(shown by the lower circle on the f axis of Fig. 6) of the
AFM state with m1,2,3 along each easy axis [e1,2,3

a that is
defined by Eq. (3)]. Without regard to the damping and SOTs,
and linearizing Eq. (1) around m1,2,3 = e1,2,3

a , this frequency
is derived as f r

AFM = 1/(2π )
√

2ωan(2ωan + 3ωex). Beyond
the upper threshold, there exists another linear oscillating
mode with its frequency approaching the resonance frequency
(shown by the upper circle on the f axis) of FM state with
m1,2,3 along ez. By linearizing Eq. (1) around m1,2,3 = ez, this
frequency is obtained as f r

FM = 1/(2π )
√

3ωex(3ωex + 2ωan).
In Fig. 6, it is also observed that there is a discontinuity

in the frequency when the current crosses the lower thresh-
old. This can be ascribed to the shift in the oscillation state
from the low-energy trajectory (around the easy axis) to the
high-energy one (around the spin-polarization direction). In
contrast, on both sides of the upper threshold, the nonlinear
(below the upper threshold) and linear (beyond the upper
threshold) oscillations are all around the spin-polarization di-
rection. So, there is no discontinuity of frequency.

VI. DISCUSSION

First, of particular note is that we adopt a three-sublattice
macrospin model which assumes a uniform distribution of
the magnetization for each sublattice, implying a periodic
boundary condition. In the surface or edge of the AFM film,
the exchange energy is generally decreased due to low co-
ordination. A possible absence of compensation results in
nonzero static surface magnetization. Likewise, the anisotropy
and damping at surface are different from their bulk coun-
terparts. Due to these differences between the surface and
bulk, the magnetization precession is not coherent. A sur-
face oscillation mode should be introduced, with different
frequencies and strengths from the bulk oscillation. In a sim-
plified picture, it is reasonable to disentangle these two kinds
of modes. As a general trend, it can be speculated that a
weak surface signal maybe emerges near the bulk peak in
the frequency spectrum for different currents. On the other
hand, the strong exchange can narrow the range of nonuniform
magnetization. Then, combining with shrinking device sizes,
the deviations from the prediction of macrospin model can be
suppressed. Furthermore, the anomalous Hall effect is sensi-
tive to the bulk magnetic behaviors [75]. Consequently, the
macrospin model may be used to give a basic understanding
of the self-oscillation. In the absence of more detailed knowl-
edge of the surface, we currently do not establish a suitable
model to describe the surface magnetic dynamics of non-
collinear AFMs. We hope our results based on the macrospin

assumption can act as a starting point for future in-depth
analyses.

Second, the self-oscillation is mainly propelled by the
exchange interaction. As shown by Fig. 5(c), the magnetic
moment in one sublattice bears two exchange torques from
the other two sublattices. The total torques drive this moment
rotating around the spin-polarization direction under the left-
hand screw rule. Here, the torques from the anisotropy field
and the fieldlike SOT also contribute to the precession. But,
due to ωex � ωan and ωex � βωSOT, the exchange torques are
dominant for propelling the self-oscillation. This is also the
reason why the frequencies are very close for different spin
polarizations.

Third, the analytic and numeric results reveal that m1,2,3

precess stably on a conical surface for the strong exchange.
The cone angle of precession decreases with ωSOT increas-
ing. This is ascribed to the balance between the dampinglike
SOT and the intrinsic damping torque. According to the
direction of procession [shown by Fig. 5(c)], the damping
torque turns m1,2,3 away from the rotational axis (z axis).
Meanwhile, the dampinglike SOT turns m1,2,3 close to the
rotational axis. When increasing the SOT, to keep this bal-
ance, the precessional angle decreases. When ωSOT = ωu

SOT,
the precessional angle becomes zero and the self-oscillation
disappears. Reference [41] studied a simplified case, in which
m1,2,3 remain in one plane during the precession. This corre-
sponds to the self-oscillation near the lower threshold in our
paper.

Fourth, the values of thresholds are an interesting issue for
future experiments. The threshold currents (∼109A/cm2) in
Fig. 6 are a little high from the application point of view.
To decrease the current sustaining the self-oscillation, one
can choose some materials with small damping, as indi-
cated by Eqs. (10) and (30). Furthermore, considering ωSOT =
μB/(eMs)ξ je/d , a large SOT efficiency (ξ ∝ θsH) or a large
spin Hall angle (as summarized in Ref. [76]) can also reduce
the current.

Finally, at the present time we are not aware of any
experimental studies concerning nonlinear precessions of
magnetization in the noncollinear AFMs. However, the strong
anisotropic anomalous Hall effect and spin Hall effect
[24,29,35] can be used to test our theoretical predictions.
In these works [24,29,35], it was revealed that the intrinsic
Hall conductivity periodically depends on the in-plane mag-
netization direction. It has been argued that the spin-torque
switching of the noncollinear AFM order can be detected by
the anomalous Hall effect [44]. Here, for a certain current,
the SOT-driving precession of in-plane (x-y plane) magneti-
zation may result in an oscillation of the Hall conductivity.
Additionally, the nonzero total magnetization along the spin
polarization ep contributes a constant anomalous Hall con-
ductivity. Therefore, setting a fixed Hall bar and applying
the SOTs, a periodic oscillation of the Hall conductivity is
expected to be observed, in analogy with the oscillation of
magnetic resistance for a ferromagnetic precession.

VII. SUMMARY

In this paper, we systematically investigate the equilibria
and the self-oscillations in a noncollinear AFM driven by
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the SOTs. According to the 120◦ rotational symmetry, we
reduce the three coupled LLG equations to a single-vector
equation. By the linear stability analysis, we seek out all
the stable equilibria. We focus on the self-oscillation which
emerges in the region without any stable equilibrium. Uti-
lizing Melnikov’s method, we deduce the analytic formulas
of the lower and upper thresholds of oscillation, as well as
the oscillation frequency. We find that the frequency locates
in the terahertz range and increases almost linearly with the
current. Furthermore, the roles of different torques are illus-
trated: the dampinglike SOT counteracts the intrinsic damping
to sustain a stable precession; the exchange and anisotropy
torques, and the fieldlike SOT propel the precession with the
exchange playing a major role. For arbitrary spin polarization,
we obtain qualitatively similar results as the case of ep = ez by
numeric calculations. This is attributed to the small ratio of the
anisotropy to the exchange. Given that the noncollinear AFM
auto-oscillator driven by the SOTs has not been investigated,

our paper may provide a way to achieve THz oscillation in
nanoscale AFM devices.
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APPENDIX A: DERIVATIONS OF EQS. (5) AND (6)

It is convenient to adopt the spherical coordinates to
analyze the symmetry and reduce the coupled LLG equa-
tions according to this symmetry. First, we parametrize mi

in terms of the polar angles θi and the azimuthal ones
φi according to mi = (sin θi cos φi, sin θi sin φi, cos θi ). Then,
the coupled LLG equations [Eqs (1)–(4)] can be written
explicitly as

dθ1

dt
+ α sin θ1

dφ1

dt
= ωex[sin θ2 sin (φ1 − φ2) + sin θ3 sin (φ1 − φ3)] − {ωan sin [2(φ1 − �1)] + ωSOT} sin θ1, (A1)

−α
dθ1

dt
+ sin θ1

dφ1

dt
= ωex{− sin θ1(cos θ2 + cos θ3) + cos θ1[sin θ2 cos (φ1 − φ2) + sin θ3 cos (φ1 − φ3)]}

−ωan sin 2θ1 cos2 (φ1 − �1) + βωSOT sin θ1, (A2)

dθ2

dt
+ α sin θ2

dφ2

dt
= ωex[sin θ3 sin (φ2 − φ3) + sin θ1 sin (φ2 − φ1)] − {ωan sin [2(φ2 − �2)] + ωSOT} sin θ2, (A3)

−α
dθ2

dt
+ sin θ2

dφ2

dt
= ωex{− sin θ2(cos θ3 + cos θ1) + cos θ2[sin θ3 cos (φ2 − φ3) + sin θ1 cos (φ2 − φ1)]}

−ωan sin 2θ2 cos2 (φ2 − �2) + βωSOT sin θ2, (A4)

dθ3

dt
+ α sin θ3

dφ3

dt
= ωex[sin θ1 sin (φ3 − φ1) + sin θ2 sin (φ3 − φ2)] − {ωan sin [2(φ3 − �3)] + ωSOT} sin θ3, (A5)

−α
dθ3

dt
+ sin θ3

dφ3

dt
= ωex{− sin θ3(cos θ1 + cos θ2) + cos θ3[sin θ1 cos (φ3 − φ1) + sin θ2 cos (φ3 − φ2)]}

−ωan sin 2θ3 cos2 (φ3 − �3) + βωSOT sin θ3, (A6)

where �1 = 0, �2 = 2π/3, and �3 = 4π/3 are the angles
included between the anisotropy directions and the x axis.
Appealing to the symmetry, we can set θ1 = θ2 = θ3 = θ ,
φ1 = φ, φ2 = φ + 2π/3, and φ3 = φ + 4π/3. Then, from the
above equations, the reduced equations [Eqs. (5) and (6)] are
derived.

APPENDIX B: STABILITY ANALYSIS OF FM STATES

In this and the next Appendix, the linear stability analysis
is performed on the equilibria derived in Sec. III, including
FM and tilted AFM states.

For the FM states, mi are along the z axis and φ is not
defined. To avoid working with equilibria near the singular
points of the spherical coordinate system, we use Eqs. (7)–
(9) instead. Then, corresponding to θ0 = 0 and π , n0 = ±ez.
To take stability analysis, we linearize Eq. (7) by assuming
n = n0 + δnxex + δnyey, with δnx and δny being the responses
to a small perturbation. Inserting the oscillating solutions
(δnx, δny ∝ eλt ) into the linearized equations, one can obtain

the secular equation,

(1 + α2)λ2 + a1λ + a2 = 0, (B1)

where

a1 = ±2(1 + αβ )ωSOT − 2α(3ωex + ωan), (B2)

a2 = 1

(1 + β2)

{[
3ωex(3ωex + 2ωan) − β2ω2

an

]
+[(1 + β2)ωSOT ∓ β(3ωex + ωan)]2

}
. (B3)

According to the Routh-Hurwitz Criterion [77–79], if a1 and
a2 are all positive, the real parts of all roots of λ are negative so
the equilibrium is stable. For typical experiments, α ∼ 0.01,
β � 1, ωex � ωan, and ωex � ωSOT. So, we can estimate that
a2 > 0. From a1 > 0, one can obtain that, for n0 = 1, ωSOT >

ωu
SOT. While, for n0 = −1, ωSOT < −ωu

SOT, where

ωu
SOT = α

1 + αβ
(3ωex + ωan). (B4)
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APPENDIX C: STABILITY ANALYSIS OF TILTED
AFM STATES

For this kind of state, it is convenient to analyze their
stability in the spherical coordinate system. We assume θ =
θ0 + θ ′, and φ0 = φ0 + φ′, with θ ′ and φ′ being the re-
sponses to a small perturbation. Inserting this ansatz into
Eqs. (5) and (6) and keeping linear terms of θ ′ and φ′, we
have

(
1 α sin θ0

−α sin θ0

)
d

dt

(
θ ′
φ′

)
=

(
a11 a12

a21 a22

)(
θ ′
φ′

)
, (C1)

where the matrix elements read a11 = 0, a12 =
−2ωan sin θ0 cos 2φ0, a21 = βωSOT sin θ0 tan θ0, and
a22 = −ωSOT sin 2θ0. These parameters have been simplified
by use of the equilibrium Eqs. (11) and (12). Usually, the
solutions of Eq. (C1) take the form (θ ′, φ′) ∝ eλt . To ensure
the existence of nontrivial solutions, λ satisfies the secular
equation:

∣∣∣∣ λ − a11 λα sin θ0 − a12

−αλ − a21 λ sin θ0 − a22

∣∣∣∣ = 0. (C2)

Inserting Eqs. (13) and (14) into Eq. (C2), the secular equa-
tion as Eq. (B1) can be derived. For P = 1 and 3, the

parameters

a1 = A
2 − αβ

β
(3ωex + ωan − B) + α(3ωex + ωan + 3B),

(C3)

a2 = 2B[(3ωex + ωan)(1 − A) + (1 + A)B], (C4)

where

A = β2ω2
SOT

3ωex(3ωex + 2ωan) + ω2
SOT

, (C5)

B =
√

ω2
an − ω2

SOT. (C6)

For the experiment-related parameters that have been used to
analyze the stability of FM state, A < 1 and B < ωan. So, we
can estimate that the current a1 and a2 are all positive. Ac-
cording to the Routh-Hurwitz Criterion [77–79], the real parts
of all roots of λ are negative, and these two tilted-AFM states
are stable. In addition, the solutions of θ0 and φ0 must be real.
Then, from Eq. (14), one has |ωSOT| < ωan. This inequation
can be regarded as a linear stability condition.

For P = 2 and 4, a1 is the same as Eq. (C3),

a2 = − 2
AB(3ωex + ωan + B)

(1 + β2)β2ω2
SOT

{
[(3ωex + ωan) − (1 + β2)B]2

+β2[(3ωex + ωan)2 − (1 + β2)ω2
an

]}
. (C7)

Obviously, a2 < 0 for the realistic experimental situation.
Thus, these two tilted-AFM states are unstable.
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